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ABSTACT How to go beyond Fisher's 1930 linear eigen-
vector definition of reproductive value has been established for
dilute systems whose dynamic relations are first-degree-ho-
mogeneous functions so that intensive ratios are scale-free. Here
such an extension is applied to standard mendelian models. It
is shown that, aside from singular cases like that of the
Hardy-Weinberg razor's-edge labile equilibrium, such general
systems are irreducibly nonlinear and, admit of reproductive-
value functions that are calculable only in an infinite number
of steps.

Before an age-structured dynamic system in population genetics
settles down into its state of balanced exponential growth or
stationarity, it may first display quasi-oscillatory transients that
depend on its initial conditions. The concept of reproductive
value was introduced by Fisher (1, Chap. 2) to summarize how
the ultimate'level of the system's growth mode depends' upon
the initial values of the separate phase variables. Keyfitz (2)
represents one valuable use of essentially this 'concept in his
measurement of the "momentum" of a population that sud-
denly shifts from high-growth fertility to stationary-growth
fertility. How high the population will continue to grow, in the
ensuing several decades required to iron out the distortions in
the system's initial age distribution inherited from past high
fertility, can be estimated by Keyfitz's ingenious variant of the
Fisher concept.
A possible purpose of reproductive value is to provide an

appropriate surrogate-model that is immediately in equilibrium
and replaces the more complicated true system's initial gyra-
tions and transients. Thus, consider a simple diploid model with
AA, aa, and Aa (or aA) numbers, involving overlapping gen-
erations and age-phased differences in mortality and fertility.
Then the simple Hardy-Weinberg property is lost in which the
proportions of AA, aa, and Aa genotypes settle down imme-
diatety to their equilibrium values. Can we perhaps hope to
approximate from the beginning such a system's ultimate
equilibrium proportions and scale by means of some clever
(finitely-calculable!) weightings of the initial age-and-genotype
classes along the lines of Fisher's reproductive-value concept
or from its patent generalizations in Samuelson (3, 4)? Some
such hope seems to have been nurtured, but detailed investi-
gation of its practicality has been neglected in the two gener-
ations since Fisher's classic 1930 treatise. The present paper
explores the application of reproductive value to some standard
nonlinear models of simplest mendelian genetics. The limita-
tions of the concept, as well as its successes, are revealed.

The Hardy-Weinberg case
First, consider the simplest monoecious model of nonoverlap-
ping generations, involving genotypes AA, aa, and Aa or aA.
If all genotypes have the same fertilities and mortalities and
mating is independently random rather than assortative, the
Hardy-Weinberg law will obtain and the system will settle
down in one generation to its ultimate genotype proportions.
The common mortalities and fertilities could depend on the size
of the total adult population, N(t), relative to the carrying ca-
pacity of the environment without necessarily affecting this
truth about intensive proportions or ratios; moreover, the ex-
tensive dynamic relation relating total N(t + 1) to N(t) could
be such that ultimately the system's malthusian parameter of
growth dampens down to zero. Until a sequel, such density-
dependent effects will be ignored in order to parallel Fisher's
original derivation of reproductive value.

Denote the respective numbers at time t of adults of types
AA, aa, and Aa (aA is included with Aa) by [NAA(t), Naa(t),
NAa(t). The total population, N(t), is defined at each time by
the relations

N = NAA + Naa + NAa
= (NAA + '/2NAa) + (Naa + '/2NAa)
=NA + Na= (p+q)N.[

The totals of A and a alleles, NA and Na, are implicitly defined
in Eqs. 1, as are the intensive proportions.

Under completely nonassortative mating, with no differential
selective effects on fertilities or mortalities, the number of births
of type AA and of adults of that type will each be proportional
to the product NA; those of type aa will be proportional to N2;
those of type Aa will be proportional to 2NANa. The factor of
proportionality appropriate for adults of the next generation,
which will itself be the product of fertility and mortality-sur-
vivorship factors, can be written as X/N. (If increases in N lower
X because of saturation effects of higher densities in a limited
environment, X is short for X[N], where X'[N] < 0. In a sequel,
the effects on the concept of reproductive value of having X[N]
drop below X[O] = X will be analyzed in detail.)
Our assumptions lead to the following dynamic recursion

relations for successive generations of [NAA(t), Naa(t), NAa(t)]
where the operator symbol E is used to shorten the written
difference equations by being given the meaning ENAA =
NAA(t + 1),

ENAA = N'I[NAA + 1/2NAaI2X [2.11
ENaa = N-'[Naa + '/2NAaI2X [2.2]

ENAa = 2N-'[NAA + '/2NAa][Naa + '/2NAa]X. [2.3]
Under our assumptions of common fertilities and mortalities,
the total population satisfies a simple relation that is indepen-
t This is paper no. 3 in a series. Paper no. 2 is ref. 3.
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dent of its relative genotype composition: adding the above
three relations yields

EN(t) = N(t)X. 12.4]
The behavior of the subaggregates is determinable from ad-
joining to Eq. 2.4 the following relation deducible from Eqs.
2.1-2.3:

Ep(t) = p(t), t > 0

ENAA(t) = N(t)p(t)2, ENaa(t) = N(t)[1- p(t)]2. [2.5]
Eqs. 2.5 are the embodiment of what is called the Hardy-

Weinberg law, in which the system settles down in one gener-
ation to its stable (p2. q2, 2pq) proportions (see for example ref.
5). From them and Eq. 2.4 we can write down at once the sys-
tem's explicit solution, which grows from the beginning pro-
portionally to the geometric progression (1 + r*)t:

N(t)=(1 +r*)tNO, t>0; 1+r*X= [3.1]
NAA(t) = p(O)2(l + r*)tN0
N.(t) = q(0)2(1 + r*)tNO

NAa(t) = 2p(O)q(O)(I + r*)tNO
NA(t) = p(O)(l + r*)tNop(O) + q(O) = 1

Na(t) = q(O)(l + r*)tNo. [3.3]
This simple Hardy-Weinberg case has no need for a surrogate
system based upon some prior calculated reproductive value.
It is its own surrogate. The question is whether systems that are
not so degenerately simple as the Hardy-Weinberg case can
be artifically given its simplicity by means of artful calculation
of fisherine reproductive values.

Nonuniform fertilities and mortalities
The general case will involve different fertilities and mortalities
for the different genotypes, (XAA, Xw, XAa) rather than the
common X of the Hardy-Weinberg example. For almost all
values of these three Xs, the system's asymptotic growth mode
will have its In A, n ; p*, 1 - p*] proportions generally
independent of the positive initial conditions [NOA, No Nj].
Hence, essentially one reproductive-value function v[NA°A, Nao,
Noa 1, will be definable. Now the general dynamic relations
become
ENAA = N N2/AA = N'1[NAA + 1/2NAa]2AAA
ENaa = N-'N2Xaa = N-'[Naa + 1/2NAa]2Xaa
ENAa = 2N-INANaXAa

= 2N-1[NAA + 1/2NAa][Naa + 1/2NAa]XAa. [4]
Relations 4 are like those met in standard mendelian genetics,

as in ref. 5, but with this generalization: the total number, N,
is not assumed to necessarily stay the same from generation to
generation; how the total N(t) changes will ultimately depend
upon how large N(t) is in comparison with the environment's
carrying capacity; but so long as N(t) is small enough so that the
system can be regarded as dilute, how fast N(t) grows depends
only upon the proportions of the different genotypes (or, under
random mating, on the proportions of the gene totals).

In terms of total genes as phase variables, [NA(t), Na(t)], the
dynamic laws of motion of the system 4 can be written under
random mating as

ENA = [NA + Na]-'NA[NAXAA + NaXAa]
ENa = [NA + Na]1Na[Na1a\ + NAXAa]. [5]

Replacing [NA, Na ] by phase variables

N = NA + Na, Z = NA - Na; z = ZIN
NA = '/2[N + Z], Na = '/2[N-Z]

we have as an equivalent to Eqs. 5

Ez [1 +z]2XAA-[1-z]2aa
[1 + z]2XAA + [1 _-z]2X" + 2[1 + z][l Z]XAa

[6]

= 4I(z) [6.1]
EN = '/4Nf[1 + Z]2XAA + [1 -Z]2X= + 2[1 - Z2]XAaj.

[6.2]
Eq. 6.1 is an autonomous difference equation for z(t) alone. To
solve for a stationary solution, z(o), we equate Ez and z in Eq.
6.1. The resulting cubic equation in z has three real roots: (1,
-1, z*). The first two correspond to axis solutions where but one
of the homozygous genotypes obtains:

Naa(t) - 0 - NAa(t), [z(t),p(t),q(t)] - [1,1,0] [7.1]

NAA(t) 0 NAa(t), [z(t),p(t),q(t)] [-1,0,1]. [7.2]
Provided the third root, call it z*, falls on the interval-I <

[3.2] z < +1, we have genotypes coexisting in equilibrium. The
equilibrium will be stable:

lim z(t) =z* = k(z*) if -1 < V(Z*) < 1.
to-0

[8.1]

The ultimate geometric rate of growth of N(t), proportional
to (1 + r*)t, is at a rate given by
1 + T* = '/41[1 + Z*]2XAA + [1 - ]2Aa

+ 2[1 + z*][1 -Z*]XAaj [8.2]

lim (1 N( ) NoN]bydefinition [8.3]
t-..( + r* [NANat]

lim [NA(t),Na(t)](1 + r*)-t = [p*,q*v[NAANoMal
t-OCO

= ['/2 + z*,1/2- z*]V[NfA N 0aN~a] [8.4]

lim [NAA (t),Naa(t),NAa(t)](1 + r*)t

= [nAA,nwAAaaA]V[N OANaNfa]
= [(1 + Z*)2xAA,(I- Z*)2Xaa,2(l + z*)(1 - Z*)AAa]

v[N°AN° Nox 4. [8.5]

Case of heterozygous fitness
An interesting example of the previous section's analysis is the
case where the heterozygous state, Aa, is superior in fitness to
either of the homozygous states, AA or aa. We then expect that
there will be a stable ultimate equilibrium with both A and a
coexisting. It will simplify the arithmetic to set AAA and Xaa
equal, a transparent symmetric case. Thus, suppose

XAA = Xa = X <XAa =X, ' > I.

From the symmetry of AA and aa,
[z*,p*,q*] = [0,'/2,'/2]

[n*AAnaanAa] = ['/2,'/2,'Y](1 + Y) 1

v[N2AN0oNoa]-v[NON0AN0 ]-A'aa, aa' AA Aal

[9]

[10.1]
[10.2]
[10.3]

If the heterozygous state had lacked fitness, 'V < 1 and p* =
q* > '/2, the interior equilibrium would have represented an

Population Biology: Samuelson
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unstable equilibrium: any slightest perturbation of NAA/Naa
away from unity would have been followed by further move-
ment in the same direction-until only one homozygous ge-
notype remained.
From its intrinsic definition in Eq. 8.3, V[NAA(t),Naa(t),

NAa(t)] = V(t) is a scalar that grows from the beginning at the
percentage rate (1 + r*):

V(t + 1) = (1 + r*)V(t}. [11.1]
Similarly, the following surrogate vector grows like (1 +

[n!AAna nAa]V(t) = V(t)
V(t + 1) = (1 + r*)V(t). [11.2]

One interprets this as a surrogate system, which replaces the
true [NAA,NO ,NOa] = NO'and implied true N(t) by new fish-
erine initial conditions that are in equilibrium proportions, V(O):
after the period of transient delay, this surrogate system ulti-
mately closely approximates the original system-in the vec-
toral sense that

l N(t) - V(t) ~0 [12]
--0 (1 +r)t[

However, we were not able to use this concept of reproduc-
tive value V(OX1 + r*)t to learn what the equilibrium will be:
rather, it was the case that after we had already learned what
the equilibrium was we were then able to arrive at Eq. 8.3's
definition of reproductive value. It remains true that the recipe
for cooking the pie of reproductive value must begin with the
instruction: First, you must catch your bird.
Biparental genetic models
Now we can come to grips with reproductive value in a two-sex
model where males, M(t), are of respective genotypes AA, aa,
or Aa; and where females, F(t), are likewise. Using letters with
obvious mnemonic properties to denote sex, we write down the
many convenient notational identities:
N = M + F = (m + f)N, f = 1- m
= [MAA + Maa + MAa] + [FAA + Faa + FAa]
= [mAA + maa + mAaIN + LfAA + faa + fAa]N
= [FAA + 1/2FAa] + [Faa + 1/2FAa]

+ [MAA + 1/2MAaI + [Maa + '/2 MAaa]
= [MA + Ma] + [FA + fa] = [mA + ma + fA + faiN
= NA + Na = [nA + na]N
= NAA + Naa + NAa = [nAA + naa + nAa]N. [13]
To avoid the complexities involved with natural selection for

the male-female sex ratio at birth, g/(l - g), I shall usually
assume that g is the same parameter for all genotypes of the
parental matings and offsprings. I begin by assuming no over-
lapping of generations and that all mating is strictly inde-
pendent-random.
The dynamic relations for the six phase variables [MAA(t),

... , FAa(t)] now are assumed to be
EN AA= g'1EMAA = (1 - g) 'EFAA = N'1MAFAXAA
ENaa = g-'EMaa = (1 g)-'EFaa = N-'MaFaXaa
ENAa = g-'EMAa = (1 g)- EFAa

= N-1[MAFa + MaFAIXAa. [14]
Deducible from Eqs. 14 are

EN = N[mAfAXAA + majaXaa + (mAfa + mafA)XAaI
= NO(mA,ma,fA; XAA,XaaXAa) for short, t > 0

= Ng(l - g)[nXAA + (1 - nA)2Xaa
+ 2nA(1 -nA)XAaI, t > 1 [15.1]

EnA =mAfAXAA + '/2(mAja + mafA)XAa t 2 0

O(mA,ma,fA; XAA,aaAXAa)
_ ~XnAAA + nA(l -nA)XAa t >1
n2AA + (1 -nA)2Xaa + 2nA(1 -nA)XAa

= 4[nA ] for short; I l'[nAI I < 1. [15.21
Relation 15.2 is an autonomous first-order difference equa-

tion for nA(t) alone, just as Eq. 6.1 was for z(t); indeed, relations
exactly like 15.1 and 15.2 could have been written in place of
6.2 and 6.1 for the monoecious case. For, as is noted by Crow
and Kimura (5, P. 45), so long as the relevant sex ratios are
uniform, the dioecious case can be reduced after one extra
generation to the monoecious case. Therefore, we need not
duplicate the details of our earlier analysis. Thus, greater fitness
of the heterozygous state will lead to a unique equilibrium of
coexisting genotypes, approached asymptotically over infinite
time from any initial conditions that involve positive (MA, Fa)
or (Ma, FA). The results of Eqs. 8 apply once we follow obvious
steps in calculating [NAA(1),Naa(1),NAa(1)] from [MAA(O),
Maa(O),MAa(0),FAA(O),Faa(0),FAa(0)]1

Also, in the Hardy-Weinberg case when all Xs are equal,
results just like Eqs. 2 and 3 apply-but now only after two
generations rather than one. This means that the ultimate (p*,
q*) mendelian probabilities are equal to the [p(l), 1 - p(l)]
numbers; and although these are not the same as the crude [p(O),
1 - p(O)] numbers derived from pooling the originally present
genotypes without respect to their partition between initial
males and females, they are easily calculated in a small finite
number of steps from the initial [m°,m°af°,f?] data by use of
Eqs. 15 as applied to t = 0. Hence, there could in this case be
analytical profit from the concept of reproductive value.
Linearlizable cases of overlapping generations
There are some special cases where a diploid genetic model
could yield to Fisher-Lotka linear eigenvector algorithms. One
such is where (i) male and female mortalities are identical (fl)
the male/female sex ratio at birth is always the same g/(l-g),
or (Mii) only parents of the same age mate together and at rates
independent of the numbers of persons of other ages (see ref.
6). Another is that where all who mate do so at random without
regard to their respective ages and where their fertilities and
sex ratio of offspring are the same at all ages of the parents.
When Bt is thus linearly determined by (Bt-1, . .. , Bt-K), the
1930 Fisher concept applies. When its true nonlinear relation
is perturbed only slightly away from such a singular linear case,
the latter's eigenvector gives approximate reproductive-value
weights that approxinmtely wipe out initial age oscillations.
Age-phased reproductive value
Now I face up to the fact that adults reproduce at more than
one age, so that generations cannot be nonoverlapping. If there
is only one parent and the system is dilute, the standard linear
demographic models of Sharpe and Lotka (7) and Leslie (8)
could give Fisher his simple 1930 reproductive value formulas
But when biparental reproduction is involved, none of this re-
mains generally valid.

I now apply the methods and definitions of refs. 3 and 4 to
show how reproductive value is to be properly computed for
such nonlinear systems in their dilute, homogeneous stages.
Begin with a dioecious, diploid model where at first only one
genotype is involved. Denote the number of males at time t by
M(x,t) and the number of females of age x' at t by F(x',t).
Suppose time and age are observed at discrete equally spaced
intervals, (t =.. , -1, 0, 1, 2,. . .) and (x,x' = 0, 1, 2,.. . , K),
where K is the oldest relevant age and age 0 represents new
births.

Proc. Natt. Acad. Sci. USA 75 (1978)



Proc. Nati. Acad. Sci. USA 75 (1978) 4065

As in standard demography, begin by assuming invariant
age-specific mortalities for each sex (initially independent of
genotype). The fraction of males newborn at age 0 who survive
to age x is written as [lM(x)]; the similar fraction of surviving
females is written as [lF(X')]:

1 = Im(O) _ Im(1) _ . . . _ Im(K) > [
1 = IF(O) _: IF(1)-: .. * *-- F(K) > °. [161

Then, much as in refs. 9 and 10,

M(xt)= lm(x M tM(X)- ), x-@, t_lM(X-0)
= lM(x)M(0,t- x) = IM(x)BM(t - x), t _ x [17.1]

F(x', t = 1F F( ) F(x'-0,t-0), x'>0 t>0

= IF(X )F(0, t - x') = IF(X )BF(t - X), t > x'.

Our assumptions about fertilities cannot be so conventional,
having to go beyond those of the standard one-sex demographic
model. Total births of each sex at t equals the sum of the births
of that sex born at t to parents of all ages x and x':

B(t) = M(Ot) + F(Ot) = BM(t) + BF(t) [17.2]
K K

= F, [g(x,x') + iI - g(x,x')j]B(x,x',t) [17.3]
x=o x'=o

Here g(x,x') is the fraction of births that are male born to a fa-
ther of age x and mother of age x'. (Initially, genotype is con-
sidered irrelevant.) For x or x' outside the fertile ages, B(x,x',t)
= 0 and we have no need to define g(x,x').
Although ages of human fathers and mothers often tend to

bunch close together, it is only realistic to recognize that births
to parents of ages x and x' might depend on more than their
own respective numbers, M(x,t) and F(x',t). Thus, the number
of females 1 year younger than a given female will reduce her
chance to mate with a male of any age. The number of infants,
although each is in an infertile age, may well influence the
probability of their relatives bearing offspring. Even if no one
mated with a person more than one period different in age, it
could still be the case that the fertility of 20 year olds could be
influenced by the relative numbers of middle-aged persons.
Therefore, our general fertility function must become
B(x,x',t + 1)

= f[x,x',;M(O0,t), . . ., (K,t)F(Ot), . . ., F(K,t)]
= f[x,x'; M(t),F(t)] for short. [17.4]

So long as the system remains sparse or "dilute" relative to
the environment's limited resources, f[ I can be expected to be
a first-degree-homogeneous function of all of its arguments,
albeit not linear in them, i.e.,
f[x,x';qM(O,t),... , qF(K,t)]

- qf[x,x'; M(O,t),..., F(K,t)], q> O. [17.5]

The generality of f[ ] in Eqs. 17, like that of fil[ ] in Eqs. 20
is more than enough to permit the usual geneticist's quasi-
random-mating specialization (as in Eqs. 18). However, the
generality of Eqs. 17 is not excessive: to handle the fact that
humans mate with people near their own age but are affected
in doing so by the number of people present of varying ages,
one must go beyond the conventional mendelian formulas.
Combining Eqs. 16-17.5, we derive valid recursive relations

for [BM(t),BF(t)], holding after K periods have passed and all
the initial living individuals have been replaced by individuals
whose numbers have been obeying our postulated mortality and
fertility laws:

BM(t) = sIM[BM(t - 1), BM(t - 2),
...,BM(t-K),BF(t-l),...,BF(t-K)]
= b[BNi(t), B]#t)] for short
BF(t) = PF[BM(t), BF(t)]

,m[qBMjt), qBF(t)] = qbm[Bm(t), BF(t)]
[17.6]

Although an exponential-growth solution to Eqs. 17.6 is no
longer guaranteed now that 4M and 4F are nonlinear functions
and possibly no longer monotone-increasing in all of their
arguments, under specifiable conditions of some plausibility
there will be a stable exponential solution of the form:

[BM(t),BF(t)] = C[1,0*](1 + r*)t. [17.7]
Here [1 + r*,t#*] are the positive roots for [R, #3 = BF/BM] in

1 = 4DM[R-',. . ., R-K,OR-,.. ., 3R-K]
,8 = (DF[R-I,.. R-K, ,#R-l, . .., ,BR-K] [17.8]

s and c is a scalar proportional to generalized fisherine repro-
ductive value and dependent on the system's initial condi-
tions.
From any initial state of positive [M(0,0),M(1,0), . . ., F(0,0),

** F(K,)],1
tim B (t1) tim B (t+ )=1+ r* [17.9]

-i (1 N(t)
)lim

= v[M(0,0),M(1,0),.. ., M(K,0),F(0,0),.. ., F(K,O)]
= v[M(0),F(0)J for short [17.10]

i m M(~= lM()1 +rM)t

t F(,t) = LF(X)( r [17.11]

In Eq. 17.10, N(t) is the sum of all individuals of all ages and
sex, Z2X[M(x,t) + F(x,t)], and v[M(0),F(0)J is the well-defined
reproduction-value function of the system, generalized to
nonlinear homogeneous systems, with v[ ] itself being first-
degree-homogeneous in its arguments. Any other extensive
variable of the system beside N, as for example M(3,t), has
defined for it a reproductive value function that is its appro-
priate equilibrium proportion times v[ ] of Eq. 17.10.
The relations 17 provide a complete and general solution for

the nonlinear, biparental case of overlapping generations. It
shows that the infinite number of computations implied by Eq.
17.10 is the irreducible number. Only in special, singular ra-
zor's-edge cases that lack structural stability (and hence almost
never occur in nature however frequently they appear in
textbooks and treatises), like the cases given in the previous
section, can the 1930 interest-rate-discount eigenvector for-
mulas of Fisher be applicable.
An interesting nonlinear case is that special one in which (a)

effective relative fertilities of each sex show a systematic in-
variant relationship with adult age, but where (b) the adult
mating patterns are random with respect to age. Let [wM(X),
WF(x)] be the weights of relative fertilities by age: thus
WF(40)/WF(20) = 1/3 means that one 20-year-old female is like
three 40-year-old females in effective fertilities.
From these relative-fertility weightings, we derive the ef-

fective number of procreating males and females at time t,
WM(t) and WF(t):

K
WM(t) = E WM(X)M(X,t)

x0=

Population Biology: Samuelson
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K

WF(t) = E WF(X)F(Xt). [18.1]
x'=O

Each member of the WM(t) category is as likely to mate with
any given member of the WF(t) category as with any other, the
number of births at t + 1 being proportional to the product
WM(t)WF(t). Now we can replace Eqs. 17.3-17.4 by the spe-
cial relationship

B(t + 1) = g-IM(O,t + 1) = (1 - g)-lF(O,t + 1)

WM(t)WF(t) [18.2]

Adjoining to Eqs. 18.1-18.2 the unchanged mortality relations
17.2, our general recursion relations of 17.6 reduce down to

B(t) = 4[B(t- 1),...,B(t-K)], t 2 K

= q4l4k[qB(t - 1), ... , qB(t - K)] [18.3]

EXWM(x)kM(x)gB(t -x )]

X[ WF(x')4(x )(1 -g)B(t-x')]K~~~

1 E [WM(x)OM(x)g + WF(X)IF(X)(I - g)]B(t - x)
0 [18.4]

Then

lim B(t + 1) 1 r* [18.5]

t-N B(t)
where 1 + r* is the positive R root in

1 = 4[R-l,...,R-K] = 4(R), 4l(R) < 0 [18.6]

lim
N(t)

t l+ r*)t

= v[M(0,0), M(1,0),...,F(0,0),.. .,F(K,O)] [18.7]

! O [M(x,t) F(x,t) [LM(X)lF(X)j(1 + r*)-x. [18.8]

Independently, Crow4 has proposed certain genetic variants
of the scenario of Eqs. 18.
Age-structured genotype demographics
Now we may assume males and females of age x at time t are

also characterized by their genotype: AA, aa, Aa, . . .; or, to
simplify notation, by A 1A 1, A2A2, A 'A2, A2A 1, A3A3,...,
A8A8 where AAAI represents the presence of alleles AI and At.
Now we have

S K SS
N = E F, F M'j(x't) + F, F, 1 Fli(x',t)

x=o l= J=1 x'0= =1

LEM'(xt)J + E 1 FI(x't) [19]x~o f=1 x =o f=1

Always, by our convention, M'i(x,t) = MJI(x,t) and F'i(x',t)
= FJI(x',t). Now we have mortality functions by genotype:
[lf(x), 41(x')], with

M'l(x,t) = IZ(x)MiJ(O,t - x) = I(x)BZ(t - x)

FIJ(x',t) = lyS(x')F'i(O,t - x') = lIj(x')BYl(t - x'). [20.1]

Now our 17.6 fertility relations give BZ(x,x',t) and By(xx',t)
in terms of the vector [M(0jt), ... I.,M"(Kt),M2(0,t), ...

Crow, J. F. (1977) Gene frequency and fitness change in an age-
structure population, Working paper from Department of Genetics,
University of Wisconsin, Madison, draft of May 1, 1978.

Proc. Nati. Acad. Sci. USA 75 (1978)

M 12(Kt),M22(0,t), ..., Mss(Lt),F'(0,t), ...), F,8(Kt)] =
[M(t),FAt)J for short. With prescribed mortality relations of Eqs.
20.1, we can express this last pair of vectors in terms of the past
values [BZf(t -1),. . .., BZ2 (t-K), BY(t -1),. ..,By! (t-K)]
= [B(t - x), B1(t - x)] for short. Thus, for (i,j = 1, 2, . . ., s),

BZ(t) = DZ [B,(t - x),BF(t - x)]
= q-'$4[qBm(t- x),qBF(t - x)]

BYl(t) = 4I1[BM(t - X),BF(t - x)]

= q-'t14[qBM(t - x), qBp(t - x)]. [20.3]
Under plausible regularity conditions on the VIl[ ] functions,

we define a stable exponential mode of asymptotic growth
lim N(t +1) = 1 + r*, the positive R root of [20.4]
t-. N(t)

BZt = ItZ [R-lB",R-2B,...., R-IB2, ...,R-KB881,
By1 = 4tp [R-'BU,, R-2BM, ... , R-1B2,..R.,R-KB88]

(i,j1= ,...,s) [20.5]
lim [BZ(t),BI(t)]N(t)-I = [BZ,BV1], [20.6]
t-0-0

lim(l+( )t = v[M(0),0)], [20.7]

etc.
The present analysis will disappoint readers of Fisher who

hoped that the simplicity of his asserted "fundamental theorem
of natural selection" could be restored to validity by appeal to
reproductive-value weightings (as where in the 1958 edition
of ref. 1, p. 38, Fisher says "... the ease of its [the 'fundamental
theorem's'] interpretation may be increased by appropriate
conventions of measurement. For example, the frequencies
should strictly be evaluated at any instant by the enumeration,
not necessarily of the census population, but of all individuals
having reproductive value, weighted according to the repro-
ductive value of each."
The reader of the present series of papers on reproductive

value will realize that, trivially special cases aside, there exist
no such individual's weighting to save the theorem. Left for
another occasion is exploration of various generalizations of the
reproductive-value concept in the direction of defining the
approximate effect of initial conditions on penultimate be-
havior of the system or on its early behavior under dilute con-
ditions, and use of approximate 1930 eigenvector reproductive
value to smooth out oscillations in age deviations of systems
perturbed only slightly from singular linear cases.

I have benefited from discussion with Joel Yellin of the Massachusetts
Institute of Technology, James F. Crow of the University of Wisconsin,
and Nathan Keyfitz of Harvard, but not necessarily earned their ap-
proval in all respects. I owe thanks to Kate Crowley for editorial as-
sistance, and to National Science Foundation 75-04053-A01-SOC and
NIH R01-HD09081-02 for partial financial support.
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