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Abstract
Computerized tomography is a standard method for obtaining internal structure of objects from
their projection images. While CT reconstruction requires the knowledge of the imaging
directions, there are some situations in which the imaging directions are unknown, for example,
when imaging a moving object. It is therefore desirable to design a reconstruction method from
projection images taken at unknown directions. Another difficulty arises from the fact that the
projections are often contaminated by noise, practically limiting all current methods, including the
recently proposed diffusion map approach. In this paper, we introduce two denoising steps that
allow reconstructions at much lower signal-to-noise ratios (SNRs) when combined with the
diffusion map framework. In the first denoising step we use principal component analysis (PCA)
together with classical Wiener filtering to derive an asymptotically optimal linear filter. In the
second step, we denoise the graph of similarities between the filtered projections using a network
analysis measure such as the Jaccard index. Using this combination of PCA, Wiener filtering,
graph denoising, and diffusion maps, we are able to reconstruct the two-dimensional (2-D) Shepp–
Logan phantom from simulative noisy projections at SNRs well below their currently reported
threshold values. We also report the results of a numerical experiment corresponding to an
abdominal CT. Although the focus of this paper is the 2-D CT reconstruction problem, we believe
that the combination of PCA, Wiener filtering, graph denoising, and diffusion maps is potentially
useful in other signal processing and image analysis applications.
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1. Introduction
Transmission computerized tomography (CT) currently is a standard method for obtaining
internal structures nondestructively, which is routinely used in medical imaging [13, 24, 31,
32]. The classical two-dimensional (2-D) CT problem is the recovery of a function

 from its Radon transform. In the parallel beam model, the Radon transform of f
is given by the line integral
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where θ ∈ S1 is perpendicular to the beaming direction θ⊥ ∈ S1 (S1 is the unit circle), and
. The reconstruction of f from its Radon transform Rθf is made possible due to the

Fourier projection slice-theorem that relates the one-dimensional (1-D) Fourier transform

 of the Radon transform to the 2-D Fourier transform f ̂ of the function [13, 24, 31, 32]:

(1.1)

In other words, the 1-D Fourier transform of each projection is the restriction of the 2-D
Fourier transform to the central line in the θ direction. Thus, the collection of the discrete 1-
D Fourier transforms of all projections corresponds to the Fourier transform of the function f
sampled on a polar grid. Therefore, the function f can be recovered by a suitable 2-D Fourier
inversion. This reconstruction requires the knowledge of the beaming direction θ of each and
every projection Rθf.

There are cases, however, in which the beaming directions are unknown, for example, when
imaging certain biological proteins or other moving objects. In such cases, one is given

samples of the Radon transform Rθi(·) for a finite but unknown set of n directions ,
and the problem at hand is to estimate the underlying function f without knowing the
directions. The sampling set for the parameter s is usually known and is dictated by the
physical setting of the acquisition process; for example, if the detectors are equally spaced,
then the values of s correspond to the location of the detectors along the line of detectors,
while the origin may be set at the center of mass. An alternative method for estimating the
shifts will be discussed in section 8.

In this paper we address the reconstruction problem for the 2-D parallel-beam model with
unknown acquisition directions. Formally, we consider the following problem: Given n

projection vectors (Rθif(s1), Rθif(s2), . . . , Rθif(sp)) taken at unknown directions  that
were randomly drawn from the uniform distribution over S1 and given that s1, s2, . . . , sp are
fixed p equally spaced pixels in s, find the underlying density function f of the object. The
observed n projection vectors are often contaminated by noise; in such cases, the problem is
to find the beaming directions of the noisy projections.

This 2-D reconstruction problem from unknown directions was previously considered by
Basu and Bresler in [2, 3]. In particular, in [3] they derive conditions for the existence of
unique reconstruction from unknown directions and shifts. The recovery problem is
formulated as a nonlinear system using the Helgason–Ludwig consistency conditions, which
are used to derive uniqueness conditions. Stability conditions for the angle recovery problem
under deterministic and stochastic perturbation models are derived in [2], where Cramér–
Rao lower bounds on the variance of direction estimators for noisy projections are also
given. An algorithm for estimating the directions is introduced in [2], and it consists of three
steps: (1) initial direction estimation; (2) direction ordering; and (3) joint maximum
likelihood refinement of the directions and shifts. Step (2) uses a simple symmetric nearest
neighbor algorithm for projection ordering. Once the ordering is determined, the projection
directions are estimated to be equally spaced on the unit circle, as follows from the
properties of the order statistics of the uniform distribution. Thus, the problem boils down to
sorting the projections with respect to their directions.
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A different approach to sorting the projections with respect to their directions was employed
in [12], where the ordering was obtained by a proper application of the diffusion map
framework [11, 27]. Specifically, the method of [12] consists of constructing an n × n
matrix whose entries are obtained from similarities between pairs of projections, followed
by a computation of the first few eigenvectors of the similarity matrix. This method was
demonstrated to be successful at relatively low SNRs, especially when the projections were
first denoised using wavelet spin-cycling [10].

In this paper, we combine the diffusion map approach of [12] with two other denoising
techniques that together allow reconstructions at much lower SNRs. The first denoising step
consists of using principal component analysis (PCA) together with the classical Wiener
filtering approach for minimizing the mean squared error. The advantage of the basis found
by PCA over the wavelet basis that was used in [12] is in its adaptivity to the data.
Empirically, we have observed that for many images, a few principal components capture
most of the variability of their Radon transform, and projecting the 1-D projections onto this
basis diminishes the noise while capturing most of the signal features. We derive an
asymptotically optimal linear filter in the limit n, p → ∞ and with p/n = γ fixed by
employing the Wiener filtering approach together with recent results concerning PCA in
high dimensions (see, e.g., [22]). Our filter requires us to estimate the noise variance, the
number of components, and their corresponding eigenvalues. To that end, we use the
method of Kritchman and Nadler [25, 26].

We then compute the Euclidean distances between all pairs of filtered projections and use
these distances to construct a matrix of their pairwise similarities. Our second denoising step
consists of further denoising the similarity matrix using a network analysis measure such as
the Jaccard index (see, e.g., [18], where the Jaccard index was used to denoise protein
interaction maps). When two projections share a similar beaming direction, then it is
expected not only that the similarity between the two of them would be significant, but also
that their similarity to all other projections of nearby beaming directions would be large.
Fixing a pair of projections, the Jaccard index is a way of measuring the number of
projections that are similar to both of them. The similarity measure between projections is
often sensitive to noise: when the SNR is too low, we may assign a large similarity to
projection pairs of completely different beaming directions. We use the Jaccard index to
identify such false matchings of projections, because we do not expect a pair of projections
of different beaming directions to have many projections that are similar to both of them.

We performed numerical experiments for testing this combination of PCA, Wiener filtering,
graph denoising, and diffusion maps, and were able to reconstruct the 2-D Shepp–Logan
phantom from simulative noisy projections at SNRs well below their currently reported
threshold values [12]. We also report the results of a numerical experiment corresponding to
an abdominal CT. Although the focus of this paper is the 2-D CT reconstruction problem,
we believe that such a combination of PCA, Wiener filtering, graph denoising, and diffusion
maps has the potential to become a useful tool for other signal processing and image
analysis applications. In particular, we expect the asymptotically optimal linear filter that we
derive here (see (4.30)) to be useful in many other applications, regardless of the other steps
of our proposed algorithm.

The paper is organized in the following way. In section 2 we discuss the underlying
geometry of the Radon projections as a 1-D closed curve in a high-dimensional ambient
space. In section 3 we give a brief introduction to the diffusion map method and review its
application to the 2-D reconstruction problem as proposed in [12]. In section 4 we develop
the PCA-Wiener filter for the optimal weighted projection. In section 5 we explain the usage
of the Jaccard index for denoising the graph of similarities. In section 6 we summarize the
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algorithm for solving the 2-D reconstruction problem. The algorithm has only two free
parameters, and we describe a method for choosing them automatically. In section 7 we
detail the results of our numerical experiments. Finally, section 8 is a summary and
discussion.

2. Underlying geometry
The following proposition is given as an exercise in Epstein's book on the mathematics of
medical imaging [15, Exercise 6.6.1, p. 215].

Proposition 2.1

Suppose that  and that f vanishes outside the unit disk. Then, Rθf is in 

for all θ, and  tends to zero as θ2 approaches θ1. In other words, the

map  is a continuous map from S1 into .

Proof. See Appendix A.

From Proposition 2.1 it follows that the image of the Radon transform is a compact and

connected continuous curve  in  parameterized by θ, whenever f is in  and
has compact support. Note that the function f is not required to be continuous. For example,
the function f corresponding to the Shepp–Logan phantom is discontinuous, yet Proposition
2.1 guarantees that its Radon transform is a continuous function of θ, a fact that can also be
verified by a direct calculation.

We note that it is possible for the closed curve  to intersect with itself. We refer to closed
curves without self-intersections as simple curves. For example, if f has some axis of
symmetry, then the closed curve  intersects with itself and is therefore nonsimple.
Symmetry, however, is not the only case for which  is nonsimple. There are other
nonsymmetric functions that give rise to nonsimple curves. From the slice-theorem it
follows that  is self-intersecting iff there are θ1 = θ2 such that f̂(ξθ1) = f̂(ξθ2) for all 

(notice that for  with compact support, f is also in , and as a result f̂ is

continuous). In what follows we assume that  has compact support and that its
curve  is simple.

The measurements are assumed to be discrete samples of the Radon transform of f. Every
projection vector (Rθf(s1), Rθf(s2), . . . , Rθf(sp)) can be viewed as a point in . When
varying the beaming direction θ⊥ over S1, the projection vectors sample a closed curve,
denoted  in . The discretization operator can be viewed as a projection operator from

 to its finite-dimensional subspace . The continuity of the projection operator and

the fact that  is a compact, continuous, closed curve in  imply that  is also a
compact, continuous, closed curve in . In the limit of an infinitely large number of

discretization points p → ∞, the projections sample a simple closed curve  in . The
collection of n projection vectors (Rθif(s1), . . . , Rθif(sp)) (i = 1, . . . , n) are therefore n

sampling points of a closed curve in  that approximates a simple closed curve in .
In order to have a unique solution for the finite-dimensional problem, we need to assume
that the closed curve  is also simple. Note that noise contamination perturbs , and its
effect is examined later.
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3. Diffusion maps
Diffusion mapping is a nonlinear dimensionality reduction technique [11, 27], whose
application to the reconstruction problem at hand was studied in [12]. As discussed above,
although the sampled projections are points in a high-dimensional Euclidean space, they are
restricted to a 1-D closed curve. This curve may have a complicated nonlinear structure that
may not be captured by projecting it linearly onto a low-dimensional subspace. Unlike linear
methods such as PCA, the diffusion map technique successfully finds the correct
parametrization of the nonlinear curve. In this section, we give a brief description of the
diffusion map technique and discuss some of its properties and limitations. Readers who are
familiar with [12] are advised to proceed to the next section.

We now outline the steps of the diffusion map algorithm. Suppose  is a
collection of n data points to be embedded in a lower-dimensional space. The first step is to
construct an n × n matrix W of similarities between the data points. The similarities are
defined using the Euclidean distances between the data points and a kernel function

 scaled by a parameter ε > 0 in the following way:

(3.1)

Clearly, the matrix W is symmetric. The second step is to normalize W into a probability
transition matrix A of a random walk on the data points by letting

where D is a diagonal matrix whose entries are given by

The matrix A is similar to the symmetric matrix D–1/2WD–1/2 through

Therefore, A has a complete set of eigenvectors ϕ0, ϕ1, . . . , ϕn–1 with corresponding
eigenvalues 1 = λ0 ≥ λ1 ≥ · · · ≥ λn–1 ≥ –1, where ϕ0 = (1, 1 . . . , 1)T. The eigenvectors
ϕ0, . . . , ϕn–1 are vectors in , and we denote their ith element by ϕ0(i), ϕ1(i), . . . , ϕn–1(i).
Moreover, for positive definite kernel functions in the sense of Bochner (see, e.g., [35, pp.
329–332]), the matrix W is positive definite, and as a consequence all the eigenvalues of A
are positive. For example, by Bochner's theorem, the Gaussian kernel K(u) = exp{–u2/2} is
positive definite, because its Fourier transform is positive. In the last step, the data points are
embedded in  (m ≤ n – 1) via

(3.2)

where t > 0 is a parameter. The map  is known as the diffusion map.
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Whenever the data points are sampled from a d-dimensional Riemannian manifold, the
discrete random walk over the data points converges to a continuous diffusion process over
that manifold in the limit of n → ∞ and ε → 0, provided that nεd/2+1. This convergence can
be stated in terms of the normalized graph Laplacian L, which is defined as

where I is the n × n identity matrix. In the case where the data points  are
independent samples from a probability density function p(x) whose support is a d-
dimensional manifold , the graph Laplacian converges pointwise to the Fokker–Planck

operator, as we have the following proposition [4, 20, 27, 36]: if  is a smooth

function (e.g., ), then with high probability

(3.3)

where ΔM is the Laplace–Beltrami operator on  and the potential term U is given by U(x)
= –2log p(x). In the special case of a uniform density (p and U are constants, and ∇U
vanishes) the limiting operator is merely the Laplace–Beltrami operator. The error consists

of two terms: a bias term O(ε) and a variance term that decreases as , but also depends
on ε. Balancing the two terms can lead to an optimal choice of the parameter ε as a function
of the number of points n. In the case of uniform sampling, Belkin and Niyogi [5] have
proved spectral convergence, that is, they showed that the eigenvectors of the normalized
graph Laplacian converge almost surely in the L2 sense to the eigenfunctions of the
Laplace–Beltrami operator on the manifold, which is stronger than the pointwise
convergence stated in (3.3). We refer the reader to Theorem 2.1 in [5] for the precise
conditions and statement of their theorem.

It is possible to recover the Laplace–Beltrami operator also for nonuniform sampling
processes using a different normalization of the similarity matrix [11]. Indeed, if one defines

the matrix W̃ as W̃ = D–1WD–1, the matrix D ̃ as a diagonal matrix with , and
the matrix Ã as Ã = D̃–1W̃, then L̃ = I – Ã converges pointwise to the Laplace–Beltrami
operator even if the sampling process is nonuniform. Belkin and Niyogi [5, last paragraph of
section 1 and first paragraph of section 2] observed that the arguments in their paper are
likely to allow one to show the spectral convergence of L̃ to the Laplace–Beltrami operator,
although to the best of our knowledge no such proof currently exists in the literature. The
proof of the spectral convergence in the nonuniform case is beyond the scope of this paper.

In our case, the data points are the projections which are restricted to the closed curve .
Although the beaming directions are assumed to be uniformly distributed over S1, the
projections are not necessarily uniformly distributed over , due to the nontrivial Jacobian

of the transformation from S1 to  (and to ) that takes θ to Rθf (and its discretization
in ). Assuming that the spectral convergence result by Belkin and Niyogi also holds in the
case of nonuniform sampling, the eigenvectors of L computed by the diffusion map will
therefore be discrete approximations of the eigenfunctions of the Fokker–Planck operator
over . If instead we apply the normalization that leads to the Laplace–Beltrami operator,
then (again, assuming that the result of Belkin and Niyogi holds also for this particular
normalization) the computed eigenvectors will be discrete approximations of the
eigenfunctions of the Laplace–Beltrami operator over  which are nothing but the
trigonometric functions of the normalized arclength l given by 1, sin(2πjl), cos(2πjl), j = 1,
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2, . . . , where the arclength l is normalized such that the total arclength of  is 1. In
particular, a diffusion map with m = 2 in (3.2) that uses the first two nontrivial
eigenfunctions sin(2πl) and cos(2πl) embeds  onto the unit circle S1 in  (note that the
eigenvalues associated with these eigenfunctions are equal). In practice, the eigenvectors
and their corresponding eigenvalues are only an approximation of their continuous
counterparts, and so the embedding may not coincide exactly with the unit circle but can be
more “wiggly.”

Suppose we compute the first and second nontrivial eigenvectors of L̃ and denote them by 

and . The eigenvectors  and  are vectors of length n, and from the convergence

theorem stated above it follows that their ith components  and  approximate the
corresponding values of the eigenfunctions of the Laplace–Beltrami operator over  at the
point xi. Since the first and second eigenfunctions of the Laplace–Beltrami operator are

known to be sin(2πl) and cos(2πl), it follows that  and

, where l(xi) is a particular choice of the normalized arclength
function. We can therefore estimate the ordering of the (perpendicular) beaming directions
θ1, . . . , θn ∈ S1 by the ordering of the phases

In other words, the embedding  practically solves the problem, up to
some nonlinear (“warp”) transformation which is due to the arclength function l(x). Still, the
monotonicity of the arclength function ensures that the ordering of the beaming directions is
estimated correctly. Once the ordering is revealed, the beaming directions are estimated by
equally spacing them over the unit circle. This estimator is consistent due to the underlying
assumption about the uniform distribution of the beaming directions.

We remark that it is also possible to use the eigenvectors ϕ1 and ϕ2 of L in order to estimate
the beaming directions, despite the fact that L approximates the Fokker–Planck operator and
that the eigenfunctions of the Fokker–Planck operator are no longer the sine and cosine
functions. As discussed in [12], the Fokker–Planck operator over a simple closed curve is a
Sturm–Liouville operator with periodic boundary conditions and positive coefficients, and
from the classical Sturm–Liouville theory of [9] it follows that the embedding of  into 
given by  also circles the origin exactly once in such a manner that the angle is
monotonic (here, ϕ1 and ϕ2 are eigenfunctions rather than eigenvectors). In other words,
upon writing the embedding in polar coordinates

the argument φ(l) is a monotonic function of l, with φ(0) = 0, φ(1) = 2π. Despite the fact that
the explicit form of the eigenfunctions is no longer available, the graph Laplacian
embedding reveals the ordering of the projections through the angle φi attached to xi. Once
the order of the beaming directions is revealed, they are estimated by spreading them evenly
over S1 (see also section III in [12]). This is a consistent estimator of the beaming directions
if they are assumed to be uniformly distributed.
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Note that the correct ordering of the beaming directions is revealed even if the beaming
directions are not uniformly distributed. However, it is impossible to accurately estimate the
beaming directions without prior knowledge of the underlying nonuniform density. This is
perhaps the main difference between the 2-D reconstruction problem considered here and its
three-dimensional (3-D) analogue that corresponds to the reconstruction of macromolecules
from their 2-D tomographic images taken at unknown random directions as in cryoelectron
microscopy images [17]. In the 3-D problem, the slice-theorem implies that any two central
slices share a common line of intersection that can be used to find the unknown imaging
directions even when they are not uniformly distributed. This implication is of great
importance since the imaging directions are nonuniform whenever the biological object has
a preferred orientation, as is often the case. However, in the 2-D problem, the implication of
the slice-theorem is trivial, as it implies only that any two line projections intersect at a point
(the origin in the Fourier domain). This trivial intersection cannot be used to improve the
estimate of the beaming directions beyond their ordering.

We now give a detailed explanation for the impossibility of accurately estimating the
beaming directions if their distribution is not known in advance and is not necessarily
uniform. To that end, suppose that f(x, y) is the image to be reconstructed and f̂(ωx, ωy) is its
Fourier transform. We assume that f is compactly supported and is in L2 so that both its
Radon and Fourier transforms are continuous. In light of the projection slice-theorem, it is
convenient to regard the frequency ω = (ωx, ωy) as a complex number and its representation
in polar coordinates as ω = reıθ, where r is the modulus of the frequency and θ is the phase.
Now, suppose that g : S1 → S1 is a continuous, 1-to-1, and onto mapping from the unit circle
to itself, also satisfying g(–ω) = –g(ω) for all ω ∈ S1. The last condition implies that g maps
antipodal points to antipodal points. As a result, g can be regarded as a continuous, 1-to-1,
and onto mapping from the projective space  to itself. That is, g maps central lines to
central lines. The rigid mapping that rotates the circle by a fixed angle is an example of such
a mapping. However, there are many nonrigid (nonlinear) transformations that “warp” the
circle. Note that only rigid transformations preserve the underlying distribution of the
beaming directions. For example, the uniform distribution remains uniform under rotation.
Nonrigid transformations change the distribution. For example, if g is differentiable, then the
density is changed according to the derivative of g. See Figure 1 for the following example
of such a nonrigid transformation g:

Consider now the function h(x, y) whose Fourier transform ĥ is given by ĥ(ωx, ωy) = ĥ(reıθ)
= f̂(rg(eıθ)). Clearly, ĥ and f̂ agree on central lines (though possibly at different angles).
Combined with the slice-theorem, this means that the set of line projections of h is the same
as the set of lines projections of f. Of course, this does not mean that the Radon transform of
h equals the Radon transform of f. However, this establishes that f and h are
indistinguishable given just samples of their Radon transforms at unknown angles, unless
the distribution of the viewing directions is known in advance, such as uniform.

We comment that it is also possible to search for the underlying closed curve directly, an
approach that boils down to solving the traveling salesman problem (TSP) in high
dimensions. Although the TSP is NP hard, there are many algorithms (heuristics and
approximation algorithms) for finding its solution. The diffusion map approach that we
invoke here is an efficient way of finding a solution to this specific case of TSP (which is far
from being the general TSP problem, as the underlying geometry corresponds to a closed
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curve). Due to noise, however, the original Euclidean distances between the Radon
projections are not so meaningful for low SNRs. Thus, TSP solvers face the same
difficulties as the diffusion mapping approach faces, emphasizing the importance of
denoising.

Indeed, noise is the main limitation of the diffusion mapping approach, since the
measurement noise causes the data points to deviate from the curve. The perturbation of the
data points by noise may distort the topology of the data set from being a simple closed
curve. This is conceptually illustrated in Figure 2. It is reported in [12] that for noisy
projections of the Shepp–Logan phantom, the diffusion map approach succeeds only for an
SNR above 10.5dB (the SNR is later defined in (7.1)). It is further reported in [12] that
applying classical wavelet noise filtering techniques prior to the diffusion mapping step
allowed successful reconstructions for SNR above 2dB. This significant improvement
encourages us to explore other denoising techniques, with our main goal being to further
improve the robustness of the algorithm to noise. We proceed to show that it is possible to
significantly increase the robustness to noise by applying PCA, Wiener filtering, and graph
denoising prior to the diffusion mapping step.

4. PCA and Wiener filtering
Clearly, noise perturbs the topology through making the distances between projections (data
points) less meaningful. It is therefore desirable to denoise the projections prior to
computing the similarity matrix W. A good denoising procedure will retain most
characteristic features of the true signal while diminishing the contribution of noise. Thus, it
is more beneficial to construct a similarity matrix W from the properly denoised projections.
For example, in [12], denoising the projections using wavelet spin-cycling significantly
improved the noise tolerance of the diffusion map algorithm. A possible limitation of the
wavelet denoising approach is that the prechosen wavelet basis is not adaptive to the data,
and it is reasonable to believe that an adaptive basis will lead to improved denoising. One
way of constructing such an adaptive basis is using PCA. The main contribution of this
section is the derivation of the linear filtering procedure (4.29), which we prove to be
asymptotically optimal in the mean squared error sense in the limit n, p → ∞ and with p/n =
γ fixed.

4.1. PCA: The basics
PCA is a linear dimensionality reduction method dating back to 1901 [34] and is one of the
most useful techniques in data analysis. Indeed, usually the first step in the analysis of most
types of high-dimensional data is performing PCA, and the situation here is no different.
PCA finds an orthogonal transformation which maps the data to a new coordinate system
such that the greatest variance by any projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance on the second
coordinate, and so on. Given a p-dimensional random variable x with mean 

and a p × p covariance matrix , the solution to the maximization
problem

is given by the top eigenvector u1 of Σ satisfying Σu1 = λ1u1. The eigenvalues of Σ denoted
λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 are also known as the population eigenvalues. Similarly, the first d
eigenvectors u1, . . . , ud corresponding to λ1, . . . , λd are the solution to
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The d-dimensional subspace spanned by the first d eigenvectors is therefore optimal in the
sense that it captures the most variability of the data. From an alternative point of view, the
first principal component u1 is the axis which minimizes the sum of squared distances from
the mean shifted data points to their orthogonal projections on that axis:

In general, the first d principal components span a d-dimensional linear subspace that
minimizes the mean square of the approximation error of the data by its orthogonal
projection (after mean shift).

Many real world data sets, though possibly complex and nonlinear, are well approximated
by a low-dimensional subspace, hence the usefulness of PCA. In our case, Figure 7(a) shows
the top 20 eigenvalues of the sample covariance matrix for projections with very high SNR
of the Shepp–Logan phantom. The rapid decay of the eigenvalues is evident. As a result,
projecting the data onto the subspace spanned by the first 15 or so principal components
results in a very small approximation error. This means that although the curve  is highly
nonlinear, its deviations from this 15-dimensional linear subspace in  are small. We
illustrate the first 8 principal components in Figure 8. Since white noise is evenly distributed
over all components, projecting the data onto that 15-dimensional subspace would decrease
the  energy of the noise by a factor of 15/p while almost completely preserving the true
signal features. This has, of course, a most desirable denoising effect.

4.2. Linear Wiener filtering
We see in the example of the Shepp–Logan phantom that PCA can be used to denoise the 1-
D projections. But what about other phantoms, and how many components should be used in
general? And, would it be perhaps more beneficial to use a weighted projection? To answer
these questions, we revisit the classical linear Wiener filtering approach [38] for finding the
optimal weighted projection.

Consider the additive noise model, where the noisy observation y is given by

(4.1)

where x is the underlying clean signal and ξ is an additive white noise.1 We assume that

 and , while  and . Given the noisy
observation y, we want to derive an estimator x̂ for its unknown underlying clean signal x. A
possible optimality criterion for deriving the estimator x̂ is the minimum conditional mean
squared error

1In some situations errors can be correlated; in such cases, a standard procedure consists of prewhitening the noise prior to the PCA
step. Notice that the noise is not assumed to be Gaussian, just white. Later on, in subsections 4.3 and 4.4 we also require the noise to
have finite fourth moments.
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(4.2)

The well-known minimizer of (4.2) is the conditional expectation

(4.3)

However, computation of the conditional expectation (4.3) requires the knowledge of the
probability distribution of x, which is not available to us: Only the second order statistics of
x is assumed to be known.2 An alternative approach is therefore required. One of the
standard alternative approaches consists of two modifications: first, replacing the conditional
mean squared error in (4.2) by the mean squared error (i.e., removing the conditioning on y),
and second, restricting the minimizer of (4.2) to a smaller class of linear estimators instead
of all possible estimators. That is, the estimator x̂ is restricted to be of the form

(4.4)

where H is a p × p matrix which is the solution to the minimization problem

(4.5)

The solution to (4.5) is given by (see, e.g., [28, Chap. 46, eqs. (46.9)–(46.12), pp. 550–551])

(4.6)

This solution is obtained in two steps. First, rewrite the mean squared error using the trace

(4.7)

where we used the independence of noise and signal as well as their first and second order

moments. Second, differentiate (4.7) with respect to H (using the fact that ) to
obtain

whose solution is given in (4.6). Plugging (4.6) into (4.4) provides the “optimal” linear filter

(4.8)

The estimator x̂ has a simple form when written in the basis of eigenvectors of Σ:

2Finding the probability density of x given noisy samples y1, . . . , yn is a deconvolution problem (assuming knowledge of the
distribution of noise, e.g., Gaussian noise). This high-dimensional deconvolution problem is ill-conditioned, especially for Gaussian
noise; see [16]. We remark that in cases where  it may be possible to estimate and use higher (than second) order moments of
x, but we do not pursue this possibility here.

Singer and Wu Page 11

SIAM J Imaging Sci. Author manuscript; available in PMC 2014 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4.9)

where uk is the kth eigenvector of Σ, that is,

(4.10)

and

(4.11)

can be considered as the SNR of the kth component.

4.3. PCA in high dimensions
The filtering formula (4.9) requires knowledge of the first and second order moments μ, Σ,
and σ2. In practice, however, these are unknown and need to be estimated from a finite
collection of noisy observations. Once estimated, the naive approach to filtering would be to
replace μ, Σ, and σ2 in (4.9) by their estimated counterparts. However, as we show below,
the optimal filter turns out to be different from this naive procedure. But before constructing
the optimal filter, it is important to quickly review a few recent results regarding PCA in
high dimensions. The reader is referred to [22] for an extensive review of this topic.

Let  be n noisy observations from the additive noise model (4.1). The
sample mean estimator  is defined as

and by the law of large numbers  (almost surely) as n → ∞.

The sample covariance matrix Sn is defined as the following p × p matrix:

(4.12)

We denote by l1 ≥ l2 ≥ · · · ≥ lp the eigenvalues of the sample covariance matrix Sn and by
û1, û2, . . . , ûp the corresponding computed eigenvectors, that is,

(4.13)

The sample covariance matrix converges to Σ+σ2Ip×p as n → ∞ (while p is fixed).
Assuming that Σ is rank deficient (i.e., its smallest eigenvalue is 0), the noise variance σ2

and the covariance matrix Σ can be estimated from the sample covariance matrix in a
straightforward manner. Our assumptions about the function f imply that the covariance
matrix is indeed rank deficient. Specifically, recall that f is assumed to be compactly
supported in a disk. As a result, in the 1-D projections, the pixel values at the boundaries
correspond to noise without any signal contribution. It follows that σ2 can be accurately and
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simply estimated using the second order statistics of the values of the boundary pixels,
provided that  regardless of the value of p. If, in addition, , then we can also
estimate Σ from the sample covariance matrix and the estimate for σ2.

More thought is needed whenever the number of samples n is not exceedingly large
(compared to p), and indeed much attention has been given in recent years to the analysis of
PCA in the regime p, n → ∞ with p/n = γ fixed (0 < γ < ∞) [22]. This is also the interesting
regime of parameters for the 2-D tomography problem at hand, since typical values for p
and n range between several hundreds to several thousands. In such cases, the largest
eigenvalue due to noise can be significantly larger than σ2. It is therefore possible for the
smaller eigenvalues of Σ to be “buried” inside the limiting Marcenko–Pastur (MP)
distribution for the eigenvalues of the noise covariance matrix. As a result, the principal
components that correspond to such small eigenvalues cannot be identified. The
identifiability of the principal components from the eigenvalues of the sample covariance
matrix was studied in [1, 33]. The key result is the presence of a phase transition
phenomenon: In the joint limit p, n → ∞, p/n → γ, only components of Σ whose
eigenvalues are larger than the critical value

(4.14)

can be identified (almost surely) in the sense that their corresponding sample covariance
eigenvalues “pop” outside the MP distribution. Formally (see, e.g., [30, Theorem 2.3]), if ξ
is white noise and ξ and x have finite fourth moments, then in the joint limit p, n → ∞, p/n =
γ, the kth eigenvalue (k is fixed, e.g., k = 2) of the sample covariance matrix converges with
probability one to

(4.15)

Moreover, the dot product between the population eigenvector uk and the eigenvector ûk
computed by PCA also undergoes a phase transition almost surely:

(4.16)

This behavior is illustrated in Figure 7: As the level of noise σ increases, fewer components
can be identified (here we varied σ and fixed p and n, but similarly, the theory can also be
tested by varying any of the three parameters). Figure 8 shows principal components
computed from clean projections and principal components that are computed from noisy
projections. The resemblance between the two sets of components is evident, with the
correlation between the “noisy” components and their “clean” counterparts being greatest
for the first component and monotonically decreasing until it becomes completely random
due to the phase transition, as predicted by the theory.

4.4. Linear Wiener filter using PCA in high dimensions
Motivated by the form of the optimal linear filter (4.9), we propose the following linear
filter:
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(4.17)

where the scalar coefficients h1, . . . , hp, which we refer to as the filter coefficients, are to be
determined from the minimum mean squared error criterion similar to (4.5). In other words,
the filter coefficients are the solution to the minimization problem

(4.18)

Using (4.1) and the fact that û1, û2, . . . , ûp form an orthonormal basis to , we have

(4.19)

Since ξ is white noise with variance σ2 independent of x, and , we get

(4.20)

It follows that

(4.21)

The optimal filter is therefore given by

(4.22)

In practice, however, this filter cannot be used, since σ2, Σ, and μ are unknown. Instead, we
determine the filter coefficients in the limit n, p → ∞ and with p/n = γ fixed, and refer to the
resulting filter as the asymptotically optimal filter. First,  converges (almost surely) to μ in

the limit, so the term  converges to zero for all k. Second, from (4.10) it
immediately follows that

(4.23)

From (4.16) it follows that the first term on the right-hand side of (4.23) converges almost

surely to . We proceed to show that the second term (involving the summation) tends to
0 under appropriate rapid decay assumptions about the population eigenvalues. For example,
under the “spike” model [22], where Σ is assumed to have only a finite number K of nonzero
eigenvalues (i.e., λ1 ≥ λ2 ≥ · · · λK > 0 and λK+1 = · · · = λp = 0), we have that
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Let c̃kuk be the orthogonal projection of ûk onto uk, that is, ûk = c̃kuk + rk, where rk is

perpendicular to uk, and  (notice that  almost surely as p → ∞). Since
uk is perpendicular to ul for l ≠ k, we have that |〈ûk, ul〉|2 = |〈rk, ul〉|2. The vector rk is a

random vector uniformly distributed over the (p – 1)-dimensional sphere of radius 

[6, 29]. As a result, the expected value of the squared correlation is 
(recall that the expected value for the squared correlation of any unit vector with a random

unit vector in  is ). Moreover, with a probability that goes to 1 as p → ∞, the

squared correlation is bounded by  for some C > 0. Altogether, we get that for l ≠ k,
|〈ûk, ul〉|2 = |〈rk, ul〉|2 → 0 (almost surely) as p → ∞. Therefore, in the spike model we
obtain that

(4.24)

almost surely for all k. The spike model may be considered to be too restrictive for the
tomography problem at hand. We would like to relax the assumption about the finite number
of nonzero eigenvalues. A more realistic assumption would be that the eigenvalues decay
sufficiently quickly. For example, suppose that there exists α < 1 such that

(4.25)

The assumption (4.25) does not hold for all images. For example, it does not hold for a 2-D
image consisting of white noise windowed to a disk, as in this case Tr(Σ2) = O(p). However,
(4.25) is expected to hold for a large class of images that arise in CT. We conjecture,
without providing a formal proof, that assumption (4.25) implies (4.24). We are motivated to
make this conjecture by the following heuristic arguments. The Cauchy–Schwarz inequality
and (4.25) imply

where C > 0 is some constant. We foresee a large deviation bound for the term

since each of its p–1 individual summands is expected to concentrate at O(1/p2). A

Bernsteinlike inequality would then imply that this term is  with high

probability that goes to 1 as p → ∞. Since  for α < 1, we expect the
conjecture to hold true.
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Under the spike model or, alternatively, assumption (4.25) (provided that the above
conjecture holds true), the optimal filter coefficients (4.22) converge almost surely to

(4.26)

where SNRk is given in (4.11). Using (4.16), we rewrite the filter coefficients as

(4.27)

where

(4.28)

We conclude that in the limit n, p → ∞ and with p/n = γ fixed, the asymptotically optimal
linear Wiener filter is given by

(4.29)

Comparing (4.29) and (4.9), we find that filtering using the computed eigenvectors is more
aggressive compared to filtering using the population eigenvectors, in the sense that the

decay of the filter coefficients is faster due to the extra  terms. We explain the excess
aggressiveness of the filter (4.29) in its need to compensate for the fact that the computed
principal components are noisier for smaller population eigenvalues.

Although we derived the optimal filter (4.29) in the limit n, p → ∞, we suggest using it in
the practical case of a finite number of sample points. That is, the filter we propose using is

(4.30)

where K ̂ is the number of components estimated to satisfy .

In order to use the filter (4.30) in practice, we need to know the noise variance σ2 and the
eigenvalues λ1, . . . , λp. These are, however, unknown and need to be estimated from the
data. We mentioned earlier that σ2 can be estimated using the boundary pixels that
correspond merely to noise. Here we adapt the estimation method suggested recently by
Kritchman and Nadler [25, 26] and conveniently use their MATLAB code.3 The exact
details of their procedures are beyond the scope of this paper, but the interested reader is
urged to check their papers for details, analysis, and the history of the problem. Their
method provides an estimator  for the noise variance and an estimator K̂ for the number of
components satisfying (4.14) under the (more restrictive) spike model assumption. The top
K̂ population eigenvalues λ1, . . . , λK̂ are then estimated as the positive solutions to the
decoupled quadratic equations

3The MATLAB code is freely available from Nadler's website at http://www.wisdom.weizmann.ac.il/~nadler/Rank_Estimation/
rank_estimation.html.
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as implied by (4.15). Figure 7 illustrates the estimators for a particular example.

Figures 11 and 12 show several denoised projections using (4.30) for different viewing
directions and different levels of noise. The root mean squared error (RMSE) using the
combined PCA-Wiener filter method is significantly smaller than the RMSE of the wavelet
spin-cycling method. We emphasize that the PCA-Wiener filtering method does not require
any external parameters: It is completely adaptive to the data and is free of any tuning
parameters.

We remark that while optimality of the filter is guaranteed in the limit n, p → ∞, we cannot
claim optimality in the finite sample case. The deviation of (4.26) from (4.22) due to finite
sample effects is not explored in this paper and is left for future research. It is plausible that
suitable finite sample corrections would lead to an improved filtering procedure in the
practical finite sample case.

Finally we remark on the possibility of using “sparse PCA” [7, 23] for an improved filtering
scheme. The clean projections (shown in Figure 11) and the clean principal components
shown in Figure 8 are piecewise smooth functions and are therefore expected to have a
sparse representation in a suitable wavelet basis. We emphasize that while this property
seems to hold for the Shepp–Logan phantom, it is not expected to hold in general for all
possible 2-D images. In cases where the components are piecewise smooth, one may benefit
from applying sparse PCA techniques [7, 23] in order to produce more accurate, and, under
certain conditions, even consistent, estimators of the principal components and their
eigenvalues. Our empirical experience with sparse PCA for the 2-D tomography problem is
positive, but we postpone the derivation of the optimal filter for sparse PCA to future
investigation.

4.5. Parity of components and their minimal required number
We conclude with a discussion of two PCA related issues that are more specific to the 2-D
tomography problem. The first issue concerns the parity of the principal components. The
perceptive reader has probably noticed that all components shown in Figure 8 are either
even or odd functions. This is not a mere coincidence: The principal components are either
even or odd functions, regardless of the underlying image, whether it is the Shepp–Logan
phantom or another image. To see this, note that the projection taken at direction –θ is
related to the projection at direction θ through

(4.31)

This motivates us to artificially double the number of projections from n to 2n by including
all mirrored projections that correspond to the antipodal directions. The resulting sample
covariance matrix commutes with the reflection matrix; therefore its eigenvectors are either
even or odd, as inspected. However, the reflected projections are clearly dependent on the
original ones; in particular, the realizations of noise are no longer independent, a necessary
assumption for the method of [25, 26]. Thus, we cannot simply employ [25, 26] using the
parameters 2n for the number of samples and p for the dimension. Fortunately, there is a
simple remedy to this problem. Instead of doubling the number of projections, we first
project the n projections onto the two orthogonal linear subspaces of even and odd functions,
each of which is of dimension p/2 (for simplicity, we assume p is even). The even and odd
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projectors, restricted to the positive axis s > 0, are denoted PE and PO, respectively, and are
given by

(4.32)

and

(4.33)

We restrict the projected projections to the positive axis (s > 0), hence representing each
projection with just p/2 pixels, form two sample covariance matrices of size (p/2) × (p/2),
compute their eigenvectors and eigenvalues, and reflect the computed eigenvectors to the
negative axis (s < 0) based on the parity (even or odd). This procedure results in exactly the
same eigenvectors and eigenvalues of the p × p sample covariance formed from the n
original projections and their n reflections. Also, the realization of noise in the two sample
covariance matrices remains independent. Thus, we apply the method of [25, 26] for each of
the two (p/2) × (p/2) sample covariance matrices separately, using parameters p/2 for the
effective dimension and n for the number of samples.

The second issue concerns the minimum number of principal components required to solve
the 2-D tomography problem. Clearly, it is impossible to determine the viewing directions of
the projections by using just the top principal component; at least two principal components
are necessary to preserve the topology of a closed curve. But is it also a sufficient number of
components? Figure 9 shows the embedding of the closed curve  of projections of the
Shepp–Logan phantom onto the subspace spanned by the top two principal components.
Clearly, the projected curve has a nontrivial self-intersection, rendering the impossibility of
unique viewing direction determination.4 The self-intersection is a byproduct of the parity of
the top two principal components. Note that in the case of the Shepp–Logan phantom, the
first principal component u1 is an even function, while the second component u2 is an odd
function. Consider the expansion of the projection Rθf in terms of the mean projection μ and
the principal components u1, u2, . . . :

Suppose θ* is a viewing direction for which a2(θ*) = 0, that is, Rθ* f – μ is perpendicular to
u2: Such a direction must exist due to the continuity of the Radon transform (Proposition
2.1) and due to the fact that

The reflection property (4.31), the fact that the mean μ and the first component u1 are even
functions, and a2(θ*) = 0 together imply that the projections onto the top two principal
components of R–θ* f and Rθ* f coincide:

4Since there is a single intersection, it is possible to “traverse” the curve in two different ways, giving rise to two different viewing
direction orderings. The user may still be able to correctly choose between the two possibilities, either automatically by using
multiway clustering methods [8], or manually by examining the two resulting reconstructions.
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This explains the nontrivial self-intersection of the 2-D PCA map in the case of the Shepp–
Logan phantom. While the above discussion focused on the Shepp–Logan example, it can be
easily generalized to any image, and it allows us to conclude that, for a general image, at
least two odd principal components are needed in order to avoid nontrivial self-intersections.
This is a necessary condition, although it may not be sufficient. Returning to the Shepp–
Logan example, we observe that the 3-D PCA mapping of  also exhibits a nontrivial self-
intersection, since u3 happens to be an even function. The fourth component u4 turns out to
be an odd function, and Figure 9 shows that the PCA mappings in dimension four (and
therefore also in higher dimensions) successfully preserve the topology of . This is also
demonstrated by the 2-D diffusion map embeddings shown in Figure 10. From this
discussion we also conclude a theoretical limitation of any PCA-based method for solving
the 2-D tomography problem in the case of a general underlying image. Indeed, recall that
the identifiable components are those whose eigenvalues are greater than the critical value
(4.14) (where the effective dimension is p/2 instead of p as discussed above). It follows that
there exists a theoretical limitation for any PCA-based method such as ours: A necessary
condition is that the number of samples n is sufficiently high as well as that the noise
variance σ2 is sufficiently low so that at least two odd components can be identified; i.e.,

their corresponding eigenvalues must be greater than .

5. Graph denoising
As mentioned above, the diffusion map method is limited in the presence of noise, as the
latter may change the topology of the underlying manifold, even when using the combined
PCA-Wiener filtering scheme. In our case, noise can “shortcut” the curve (see, e.g., Figure
2). It is therefore desirable to detect such shortcut edges in advance and remove them from
the similarity matrix W.

After their introduction by Watts and Strogatz [37], small-world graphs were extensively
used to describe many natural phenomena [21]. We briefly describe the small-world graph
model. A d-regular ring graph is a graph whose vertices can be viewed as equally spaced
points on the circle, and whose edges connect every point to its d nearest neighbors. The
small-world network is constructed from the ring graph by randomly perturbing its edges:
With probability q each ring edge is rewired to a random vertex, and with probability 1 – q it
remains untouched. We refer to the rewired edges as “shortcuts.”

The small-world graph obtained by rewiring the edges of the ring graph has the following
useful property: The number of common neighbors for the vertices i and j with a “shortcut”
edge e = (i, j) between them is expected to be much smaller than the number of common
neighbors of two nearby vertices [37]. Thus, the number of common neighbors can be used
as a measure for detecting shortcut edges from the edges of the original ring graph. One of
the many possible measures for this detection is the Jaccard index, defined by

(5.1)

where Ni is the set of vertices connecting to vertex i. It is therefore expected that the Jaccard
index of shortcut edges will be smaller than that of the original ring edges.
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Using the Jaccard index we can therefore detect the shortcut edges in the graph and further
remove them in order to reveal the structure of the original graph. This observation was used
in [18] to reveal the underlying structure of protein interaction maps. In our case, noise can
fool us to believe that two projections of entirely different beaming directions correspond to
two similar beaming directions. While the underlying geometry of the graph should be that
of a simple closed curve, such confusion due to noise is realized by shortcut edges that may
change its topology. This change in topology can affect the long time behavior of the
random walk on the graph. Indeed, it was observed in [37] that the mixing time of the
random walk on a small-world graph having a relatively small number of shortcut edges is
significantly shorter compared to the mixing time of the random walk on the ring graph. It is
therefore desirable to detect and remove the shortcut edges prior to estimating the beaming
directions using the diffusion map technique. We use the Jaccard coefficient in order to
detect and remove such shortcut edges. Specifically, we set the similarity Wij to zero for all
edges (i, j) for which the Jaccard index J(i, j) is below some threshold. The threshold value
is chosen by the number of edges we wish to keep.

The Jaccard index can be computed efficiently as follows. Suppose W is the adjacency
matrix of the graph (that is, the entries of W are either 0 or 1). The graph may be either
directed or undirected, where in the latter case the matrix W is symmetric. The number of
common neighbors to i and j is

and the number of neighbors of i is

where 1 = (1, 1, . . . , 1)T is the all-ones vector. The inclusion-exclusion principle implies
that

The Jaccard index J(i, j) can therefore be written as

(5.2)

or, equivalently, in matrix notation

(5.3)

where ./ denotes elementwise division (as in MATLAB). Note that J is a symmetric matrix;
that is, J = JT even if W is nonsymmetric as in the directed graph case.

The benefit of using (5.1) together with diffusion maps can be summarized by the viewpoint
of different time scales. On the one hand, the beaming directions are estimated from the top
first and second nontrivial eigenvectors of the random walk matrix A. These eigenvectors
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correspond to the long time behavior of the random walk over the data points, since they
correspond to the largest (nontrivial) eigenvalues of A. On the other hand, the computation
of (5.1) involves only the common neighbors, which is related to the diffusion process at a
short time scale, corresponding to at most two steps of the random walk. While the purpose
of the Jaccard index is to remove the “bad” edges, the purpose of the diffusion mapping
using the top two eigenvectors is to reveal the global ordering of the beaming directions.

6. Algorithm
In this section we summarize the steps of our reconstruction algorithm. The input to the
algorithm consists of n noisy projections y1, . . . , yn, each of which is a vector in 
corresponding to the discretization of the p equally spaced detectors. The algorithm depends
on only two parameters, denoted α and β, that are explained in Steps 2 and 3 below. These
parameters either can be prechosen by the user or the algorithm can automatically search for
their optimal values.

Step 1: PCA and linear filtering. Project y1, . . . , yn onto the  subspace of
even functions and onto the  subspace of odd functions; see (4.32)–(4.33).
Perform PCA twice, once for each subspace, and extend the computed eigenvectors to
vectors of length p based on the parity. Each PCA can be computed by either forming the
sample covariance matrix or by using the singular value decomposition (SVD), which is the
preferred method due to computational considerations.5 The computed eigenvalues are fed
into the method of [25] to estimate the number of components K, the noise variance6σ2, and
the signal-to-noise ratios SNRγ,k. Denoise all projections using the filter (4.30), and denote
the filtered projections . Compress each filtered projection  to

 using its first K̂ expansion coefficients 〈x̂i, ûk〉 (k = 1, . . . , K̂), and denote

(6.1)

Step 2: Similarity matrix W. For each of the n compressed projections in  search for its N

nearest neighbors with respect to the Euclidean distance . Assuming that changing the
beaming direction by α degrees has a small effect on the Radon projection, choose

. If α is not prechosen by the user, then the algorithm is repeated with different
values for α, and in Step 6 of the algorithm it automatically chooses the optimal
reconstruction based on a criterion described in Step 6. From the results of the nearest
neighbors search, construct a directed graph with n vertices corresponding to the projections,
and put a directed edge from i to j iff projection j is one of the N nearest neighbors of

projection i (that is, iff j ∈ Ni). Construct an n × n similarity matrix Wα whose entries 
are defined by

(6.2)

Note that Wα is not necessarily symmetric. That is, we may have a pair of nodes i and j
satisfying j ∈ Ni, but i ∉ Nj.

5For large values of n and p, even the SVD may be computationally infeasible. In such cases we recommend using the recently
proposed randomized algorithms for computing the SVD; see [19] for a comprehensive review of such methods.
6Each of the two PCAs may give a slightly different estimate for the noise variance. We therefore estimate the noise variance by
averaging the two estimators. Alternatively, the noise variance can be estimated using the boundary pixels.
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Step 3: Graph denoising. Calculate the Jaccard index Jα(i, j) for all edges. The second
parameter of our algorithm is the threshold value β. Remove all edges whose Jaccard index
is less than β. Moreover, keep only edges for which both i ∈ Nj and j ∈ Ni. We denote the
thresholded matrix by Wα,β, that is,

(6.3)

Note that Wα,β is a symmetric matrix that can be viewed as the adjacency matrix of an
undirected graph. If β is not prechosen by the user, then the algorithm tries several different
values of β and executes the following steps for each of them separately. That is, the
remaining steps of the algorithm are performed on several Wα,βs with different values for β,
until Step 6, where we automatically detect the optimal threshold value β, based on the
criterion described in Step 6. We remark that for large values of β some nodes may become
isolated, that is, all their edges have been removed. We remove such nodes from the graph
and, as a result, estimate only the beaming directions of the projections that correspond to
the remaining nodes.

Step 4: Diffusion map embedding. Form an n × n diagonal matrix Dα,β with

, the normalized weighted matrix W ̃α,β := (Dα,β)–1Wα,β(Dα,β)–1, and an n

× n diagonal matrix D̃α,β so that . Then we compute the top two

nontrivial eigenvectors ϕ1 and ϕ2 of Aα,β whose entries are given by . The
embedding  reveals the ordering of the beaming directions. We estimate
the beaming directions as equally spaced points on S1 according to their ordering.

Step 5: 2-D reconstruction. Invert the Radon transform to reconstruct the 2-D image fα,β

from the noisy projections and their estimated beaming directions.

Step 6: Automatic estimation of parameters (optional). At this stage we get several different
2-D image reconstructions fα,β corresponding to the different choices of the parameters α
and β used in Steps 2 and 3. Out of all available reconstructions we need to automatically
choose the best one using some optimality criterion. One possible criterion is to use the 
norm of the expansion of the reconstructed image in a wavelet basis. Specifically, for each
reconstruction, we compute the 2-D wavelet decomposition of the  image
fα,β/∥fα,β∥2. Then, we choose the reconstruction whose wavelet coefficient vector has the
smallest  norm. For the wavelet transform we use the Daubechies db2 mother wavelet with
4-level decomposition. The motivation for this step is that the underlying clean image is
expected to be sparse in the wavelet domain. While this  heuristic seems to perform well
for the Shepp–Logan phantom (see section 7), we do not find it to perform well for many
other natural images, including the image that is used in subsection 7.1. For such images
other quality measures are expected to perform better, depending on the application domain.
We do not explore other quality measures in this paper, and we do not claim that the 
heuristic is optimal in any sense. We emphasize that Step 6 is optional, and in practice the
user may want to use parameters α and β that are predetermined using some sort of manual
training.

7. Numerical results
We performed several numerical simulations in order to test the performance of our
algorithm. In the first set of experiments the underlying 2-D object was the Shepp–Logan
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phantom, while in the other set of experiments the underlying 2-D image was a more
realistic abdominal CT. For the simulations with the Shepp–Logan phantom, the number of
projections was n = 1024, and the number of discretization points was p = 512. In each
simulation, we added to the clean projections a Gaussian zero-mean white noise of a fixed
variance σ2. We define the SNR (measured in dB) by

(7.1)

where S is the array of the noiseless projections. As a reference to later reconstructions,
Figure 3(a) shows the original Shepp–Logan phantom, while Figures 3(b)–3(e) show
reconstructions of the Shepp–Logan phantom from noisy projections with known beaming
directions at different levels of noise.

The results of applying the algorithm described in section 6 to noisy projections with
unknown beaming directions are illustrated in Figure 4. These results are obtained by fixing
the parameter values to α = 6 and β = 0.5. That is, the final optional step of the algorithm
was not applied. Obviously, for same level of noise, the reconstructions in Figure 3 have
better quality compared to the reconstructions in Figure 4, which are missing the extra
knowledge of the beaming directions. Still, our algorithm succeeds in providing similar
reconstructions (up to the unavoidable degrees of freedom of rotation and reflection) even
when the beaming directions are unknown for SNR = –3dB and above. The main features of
the original Shepp–Logan phantom are visible in our reconstructions even at such low
SNRs. Figures 4(i)–4(p) demonstrate that the beaming directions are estimated successfully
and mostly follow their true ordering for SNR = –3dB and above.

Figure 4 indicates that the algorithm fails to produce a reasonable estimation of the angles
for SNR = –4dB and below when using the fixed parameter values α = 6 and β = 0.5. We
therefore turned to explore the behavior of the algorithm when the final step is also applied.
We searched the parameter space by letting α ∈ {3, 4, 5, 6, 7, 8, 9, 10} and β ∈ {0.35,
0.36, . . . , 0.74, 0.75}. The reconstructions and the beaming angle estimation are shown in
Figure 5. The result for SNR = –4dB is much more satisfactory (compared to Figure 4).
Even for SNR = –5dB the ordering of the estimated beaming directions is not completely
random, and some features of the phantom can still be observed, although the image is quite
fuzzy. The optimal values for α and β that were found in Step 6 of the algorithm are
summarized in Table 1.

Figure 6 shows reconstructions obtained by applying the method described in [12] to the
same sets of noisy projections. That method uses wavelet spin-cycling denoising instead of
PCA and diffusion maps without the graph denoising step, and provides successful
reconstructions only for SNR = 2dB and above.

In the following we describe the numerical results that are specific to the different steps of
the algorithm. We start with Step 1 for PCA and Wiener filtering in order to denoise the
projections. Bar plots of the 20 largest eigenvalues of the sample covariance matrix
(including both odd and even functions) corresponding to different levels of noise are shown
in Figure 7. The caption of Figure 7 details the number of identifiable components as
predicted by [25]. Figure 8 shows the principal components obtained from clean projections
as well as the principal components obtained from noisy projections at SNR = –5dB.

Figure 9 shows the 2-D embedding of clean projections obtained by linearly projecting them
onto the subspace spanned by the top two principal components. The embedded curve
exhibits a nontrivial self-intersection rendering the impossibility of unique determination of
the beaming directions when only two components are used. This phenomenon is explained
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in section 4, where we emphasize that at least two odd principal components are necessary
to avoid nontrivial self-intersections. Examination of the parity of the principal components
shown in Figure 8 reveals that at least the top four components are needed in order to avoid
nontrivial self-intersections. This finding is confirmed by the 2-D diffusion mappings of
clean projections after linearly projecting them to subspaces spanned by the top K principal
components (K = 2, 3, 4, 5), as shown in Figure 10.

A comparison between denoising the noisy projections using our combined PCA-Wiener
filtering approach and denoising using wavelets is illustrated in Figures 11, 12, and 13. The
wavelet denoising procedure consists of using the full spin-cycle algorithm [10] with hard
thresholding of the Daubechies db2 wavelet coefficients of each projection image, as
described in [12]. The comparison shows that both denoising methods do relatively well for
SNR = 2dB (Figure 11), but the combination of PCA with the Wiener filter is clearly better
for SNR = –1dB (Figure 12) and SNR = –5dB (Figure 13). We attribute the success of the
combined PCA-Wiener filter approach at relatively low SNRs to the adaptivity of the
principal components and to the optimality criterion of the Wiener filter.

The effect of graph denoising in Step 3 of the algorithm is demonstrated in Figure 14
corresponding to SNR = –4dB. The vertices are arranged on a circle according to the
beaming directions of the projections they represent, while edges are represented by chords.
The left panel shows the edges of the nearest neighbors graph that is formed in Step 2 with α
= 6, while the right panel shows the edges after Step 3 with a thresholding level β = 0.5. A
large portion of the “shortcut” edges were successfully removed. We attribute the seemingly
nonrandom behavior of the shortcut edges that are left in the denoised graph shown in
Figure 14(b) to the particular shape of the Shepp–Logan phantom, which gives rise to
somewhat similar projections that are taken at particular different beaming directions.

Finally, we conducted a large scale experiment with 100 different realizations of noise for
each value of the SNR. For that experiment we also incorporated the final step of the
algorithm and searched for the optimal parameter values, with α ∈ {3, 4, 5, 6, 7, 8, 9, 10}
and β ∈ {0.35, 0.36, . . . , 0.74, 0.75}. The results are summarized in Table 2. Note that the
standard deviation of the  norm is considerably smaller for SNR = –5dB compared to other
SNR values. We explain this by the constant failure of our algorithm to produce satisfactory
reconstructions at such a low SNR (the poor reconstruction is indicated by the large  norm
associated with this SNR).

7.1. Numerical experiment for abdominal CT
In this section we demonstrate the applicability of our algorithm to a real abdominal CT
image (the image is a CT of the second author's father and is used with his permission). The
CT image (Figure 15) was obtained by a Toshiba Aquilion 64 CFX CT scanner and is of
size 380 × 380 pixels. We randomly picked n = 1024 angles from [0, π] and generated the
projections related to these angles. The number of discretization points of each projection is
p = 541. The clean projections were contaminated by Gaussian white noise at different noise
levels SNR [dB] = 30, 10, 8, 5, 4, 3. The first 50 eigenvalues of the covariance matrix of the
clean projections are shown in Figure 15; the first eight eigenvectors of the covariance
matrix of the clean projections and the covariance matrix of the noisy projections (SNR =
8dB) are shown in Figure 16. There are only a few dominant principal components although
their number is larger compared to the case of the Shepp–Logan phantom. We found that the

 criterion proposed in Step 6 did not perform well in this case. Instead, we fix the
parameters α = 5 and β = 0.6 in all experiments. While these parameters were found to be
optimal for the Shepp–Logan phantom, they are not necessarily optimal for the real CT
image. Still, by eyeballing the reconstructions that our algorithm produced, we confirmed
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that these parameters gave satisfactory results. At the moment we do not have a better
automatic way of choosing the parameters for images of this kind.

The PCA-based denoising results are demonstrated in Figure 17 when the noise level is 8dB.
Figure 18 shows the reconstruction results obtained by applying the entire algorithm (Steps
1–5, excluding Step 6). When the noise level is 4dB, the estimation of the projection angles
is accurate, and the large structures are distinguishable; for example, the spinal cord and the
liver are visible, although the other parts are blurred. The algorithm fails when the noise
level is 3dB or below, as shown in Figure 19.

8. Summary and discussion
In this paper we introduced a reconstruction method of 2-D objects from noisy tomographic
projections taken at unknown beaming directions. The method combines diffusion maps for
finding the unknown beaming directions with two preliminary denoising steps. The first
denoising step consists of a combination of PCA and classical Wiener filtering, while the
second denoising step consists of denoising the graph of similarities between denoised
projections using the Jaccard index from network analysis. The additional denoising steps
significantly improve the noise tolerance of the reconstruction method for the Shepp–Logan
phantom from a benchmark of SNR = 2dB reported in [12] using diffusion maps and
wavelet denoising, to SNR = –3dB obtained here.

We expect the combination of PCA, Wiener filtering, graph denoising, and diffusion maps
to be useful in many other applications that require the organization of high-dimensional
data with an underlying nonlinear low-dimensional structure. While the diffusion map
framework is well adjusted to studying and analyzing complex data sets, it is somewhat
limited by noise that may change both the dimensionality and the topology of the underlying
data.

The role of PCA in our procedure is to denoise the noisy projections by projecting them onto
a low-dimensional subspace that captures most of the variability of the data and is adaptive
to the data in that sense. We combined recent results for PCA in high dimensions with the
classical Wiener filtering approach in order to derive an asymptotically optimal filter. We
believe that this result may be valuable in many other applications. Our asymptotically
optimal filter requires the estimation of the noise variance, the number of identifiable
principal components, and the population eigenvalues. These are estimated in practice using
the method of [25]. Our numerical experiments show that denoising by PCA outperforms
denoising by a prechosen basis such as a wavelet basis, and we attribute this success to the
data adaptivity of the PCA basis.

The second denoising step in our procedure consists of denoising the graph using the
Jaccard index. The objective in this denoising step is to restore the correct topology of the
data by removing “bad” edges that shortcut the underlying manifold.

Throughout this paper we assumed that the projections are centered, but in practice the
projections may be shifted with unknown, though usually small, shifts. The problem of
finding both the beaming directions and the shifts was considered in [2, 3]. We remark that
we can still use the diffusion map framework by associating similarity weights wij with the
translational-invariant distances dij that are given by
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where Tτ is the translation operator over  satisfying Tτf(x) = f(x + τ), and Ri denotes the
noisy version of Rθif. These distances factor out the single degree of freedom associated with
translations so that diffusion maps should recover the correct parameterizations of the closed
curve as before. Moreover, if the shift of projection Ri is , then the relative shift of
projections Ri and Rj is τi – τj, which can be estimated from computing

After the diffusion map step, but prior to reconstruction, the shifts τis can be estimated by
solving an overdetermined least squares problem of the form τi – τj = τij for all (i, j) with
similar beaming directions θi and θj (as estimated by the diffusion map).

Finally, we note that better reconstructions can be achieved by regularizing the inverse
Radon transform (Step 5). The reconstruction problem can be viewed as finding the original
function f from its projections Rθf. So once the beaming directions are estimated, this can be
cast as an overdetermined linear system of the form Ax = b, where the operator A is the
Radon projection operator, x relates to the function f, and b are the Radon samples. One way

to reconstruct would be to minimize  (least squares method), and this can be done
efficiently using conjugate gradient iterations, where the matrices A (projection) and AT

(backprojection) can be applied quickly using the slice-theorem and the nonuniform FFT
algorithm of Dutt and Rokhlin [14]. It is also possible to add a regularization term of the

form , where  is the wavelet transform and μ > 0 is the regularization parameter.
This will encourage the reconstruction to have a sparse representation in the wavelet basis.
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Appendix A

Proof of Proposition 2.1

Suppose  is a function like f that vanishes outside the unit disk. Clearly, Rθh
vanishes outside the interval [–1, 1] since h vanishes outside the unit disk. The fact that

 implies that Rθh is in L2([–1, 1]), since Cauchy–Schwarz inequality gives the
following estimate:

That is,
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(A.1)

In fact, it can be similarly shown that

that is,  (see, e.g., [15, Proposition 6.6.2, p. 214]), but we do not
need this finer estimate here.

Continuous functions that vanish outside the unit disk are dense in L2(B1), where B1 denotes
the unit disk. Therefore, for any ε > 0, we can find a continuous function g that vanishes

outside B1 such that . From the linearity of the Radon transform and the
estimate (A.1) we get

(A.2)

Since g is a continuous function and the unit disk is compact, g is uniformly continuous and
there exists δ > 0 such that |g(x) – g(y)| < ε for all x, y ∈ B1 satisfying ∥x – y∥ < δ.

Suppose that θ2, θ1 ∈ S1 satisfy ∥θ2 – θ1∥ < δ. Then, for s2 + r2 ≤ 1, we have

Therefore,

The triangle inequality thus gives

for all s ∈ [–1, 1]. Hence,

(A.3)

From (A.2), (A.3), and the triangle inequality, we get that

whenever ∥θ2 – θ1∥ < δ. This shows that
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(A.4)
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Figure 1.
An example of a nonrigid transformation g (both axes are from 0 to 2π).
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Figure 2.
Upper row: The data (blue points) sampled from a circle (red line) at different noise levels.
Lower row: The data (blue points) sampled from a closed curve (red line) at different noise
levels.
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Figure 3.
Reconstruction of the Shepp–Logan phantom image from projections with known beaming
directions at different levels of noise.
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Figure 4.
Top: Reconstruction from noisy projections at unknown directions using the algorithm
described in section 6 (excluding Step 6) at different levels of noise with fixed α = 6 and β =
0.5. Bottom: Estimated beaming directions (y-axis) against their correct ordering (x-axis).
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Figure 5.
Top: Reconstruction from noisy projections at unknown directions using the algorithm
described in section 6 (including Step 6) at different levels of noise. Bottom: Estimated
beaming directions (y-axis) against their correct ordering (x-axis).
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Figure 6.
Top: Reconstructions from noisy projections at unknown directions using the algorithm
described in [12] for different levels of noise. Bottom: Estimated beaming directions (y-axis)
against their correct ordering (x-axis).
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Figure 7.
Bar plots of the first 20 eigenvalues of the sample covariance matrix corresponding to noisy
projections at different levels of noise. The numbers of significant principal components K̂

determined by [25] are 49, 12, 10, 10, 8, 7, 6, and 3.
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Figure 8.
The first eight principal components for clean projections and the first eight principal
components for noisy projections with SNR = –5dB. Note that the principal components are
determined up to an arbitrary sign, and we choose the signs so that corresponding pairs of
components are positively correlated.
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Figure 9.
Projecting the curve  of clean projections of the Shepp–Logan phantom onto the linear
subspace spanned by the top two principal components. The projected curve has a nontrivial
self-intersection, implying the insufficiency of just two principal components.
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Figure 10.
The diffusion map embedding of  after the latter was mean shifted and projected onto the
linear subspace of the top K principal components (K = 2, 3, 4, 5). As expected from the
parity sequence of the principal components, at least four components are required to avoid
nontrivial self-intersections.
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Figure 11.
Comparison between the combined PCA-Wiener filtering and wavelet denoising for four
different noisy projections with SNR = 2dB taken at , and . (a) Clean projection
(blue) and the PCA denoising of the noisy projection (red); (b) noisy projection (blue) and
its filtered version using PCA (red); (c) clean projection (blue) and the wavelet denoising of
the noisy projection (red); (d) noisy projection (blue) and its filtered version using wavelets
(red). The number of principal components used by the Wiener filter is 12. RMSE: 0.464 for
the PCA-Wiener scheme and 0.612 for wavelets.
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Figure 12.
Comparison between the combined PCA-Wiener filtering and wavelet denoising for four
different noisy projections with SNR = –1dB taken at , and . (a) Clean projection
(blue) and the PCA denoising of the noisy projection (red); (b) noisy projection (blue) and
its filtered version using PCA (red); (c) clean projection (blue) and the wavelet denoising of
the noisy projection (red); (d) noisy projection (blue) and its filtered version using wavelets
(red). The number of principal components used by the Wiener filter is 8. RMSE: 0.514 for
the PCA-Wiener scheme and 0.745 for wavelets.
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Figure 13.
Comparison between the combined PCA-Wiener filtering and wavelet denoising for four
different noisy projections with SNR = –5dB taken at , and . (a) Clean projection
(blue) and the PCA denoising of the noisy projection (red); (b) noisy projection (blue) and
its filtered version using PCA (red); (c) clean projection (blue) and the wavelet denoising of
the noisy projection (red); (d) noisy projection (blue) and its filtered version using wavelets
(red). The number of principal components used by the Wiener filter is 6. RMSE: 0.587 for
the PCA-Wiener scheme and 0.919 for wavelets.
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Figure 14.
The effect of graph denoising (Step 3) for SNR = –4dB and α = 6 by thresholding edges
whose Jaccard index is below β = 0.5. (a) The graph after Step 2 with edges given by Wα

(6.2), and (b) the graph after Step 3 with edges given by Wα,β (6.3).
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Figure 15.
Left: The abdominal CT image. Right: The first 50 eigenvalues of the covariance matrix of
its clean projections.
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Figure 16.
The first eight principal components for clean projections of the abdominal CT image and
the first eight principal components for noisy projections with SNR = 8dB. Notice that the
principal components are determined up to an arbitrary sign, and we choose the signs so that
corresponding pairs of components are positively correlated.
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Figure 17.
Results of the combined PCA-Wiener filtering for four different noisy projections with SNR
= 8dB taken at , and . Top: Clean projection (blue) and the PCA denoising of the
noisy projection (red). Bottom: Noisy projection (blue) its filtered version using PCA (red).
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Figure 18.
Left column: Reconstructions from noisy projections at known directions for different levels
of noise. Middle column: Reconstructions from noisy projections at unknown directions
using the proposed algorithm for different levels of noise. Right column: Estimated beaming
directions (y-axis) against their correct ordering (x-axis). The number of principal
components used by the Wiener filter is 95, 21, 15, and 13 for the noise level 30dB, 10dB,
5dB, and 4dB.
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Figure 19.
The algorithm fails when SNR = 3dB. Left: Reconstruction from noisy projections at known
directions. Middle: Reconstruction from noisy projections at unknown directions. Right:
Estimated beaming directions (y-axis) against their correct ordering (x-axis). The number of
principal components used by the Wiener filter is 10.
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Table 1

The optimal parameter values for α and β as a function of the SNR.

SNR [dB] α β

3 5 0.40

2 5 0.41

1 5 0.42

0 5 0.40

-1 5 0.40

-2 7 0.45

-3 4 0.43

-4 4 0.46

-5 4 0.41
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Table 2

Performance analysis of our algorithm. For each level of noise we performed 100 independent runs of the
algorithm, corresponding to different independent realizations of noise and beaming directions. The table
reports the mean and standard deviation (over 100 runs) of the RMSE for denoising using PCA with the
asymptotically optimal linear filter, the optimal parameter values α and β, and the  norm of the wavelet
expansion of the reconstructed image.

SNR [dB] RMSE α β ℓ1

10 0.350 ± 0.001 7.1 ± 2.5 0.41 ± 0.02 228.9 ± 1.3

5 0.417 ± 0.001 5.2 ± 1.1 0.41 ± 0.02 256.3 ± 1.6

3 0.448 ± 0.001 5.1 ± 0.9 0.44 ± 0.05 266.7 ± 8.4

2 0.464 ± 0.002 5.3 ± 1.0 0.45 ± 0.05 270.4 ± 9.4

1 0.478 ± 0.002 5.3 ± 0.9 0.44 ± 0.05 271.1 ± 8.8

0 0.497 ± 0.002 5.6 ± 1.0 0.44 ± 0.04 271.4 ± 7.7

–1 0.514 ± 0.002 6.0 ± 1.1 0.45 ± 0.05 273.6 ± 8.4

–2 0.532 ± 0.002 6.4 ± 1.4 0.45 ± 0.05 273.1 ± 6.1

–3 0.550 ± 0.002 6.4 ± 1.6 0.45 ± 0.05 275.3 ± 7.1

–4 0.568 ± 0.002 6.3 ± 1.8 0.47 ± 0.06 284.3 ± 8.8

–5 0.588 ± 0.002 7.5 ± 2.1 0.53 ± 0.06 292.0 ± 0.2
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