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Introduction

Monoclonal antibodies (mAbs) have become an integral 
part of modern treatment concepts for cancer, inflammation, 
immunological disorders, and infectious diseases. Fully human 
mAbs, carrying no xenogenic components and displaying 
most preferable pharmacokinetic profiles, have emerged as the 
fastest-growing group of therapeutic antibodies entering clinical 
trials.1,2 Since the first report of the production of a mouse mAb 
through employment of B cell hybridoma fusion techniques,3 

several powerful technologies for the generation of entirely 
human antibodies have been developed.4,5 These include non-
combinatorial methodologies for the efficient immortalization of 
human B cells,6,7 the generation of stable human hybridomas,8 
and expression-cloning of physiological variable (V) gene pairings 
from blood-derived human B cells of infected individuals.9 The 
vast majority of clinically-investigated fully human mAbs, 
however, are produced by either immunization of transgenic mice 
that are equipped with the human antibody gene repertoire,10,11 
or by preparing human antibody phage display libraries. In the 
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The development of efficient strategies for generating fully human monoclonal antibodies with unique functional 
properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody 
technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell 
repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from 
lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph 
Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody 
sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the 
feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with 
high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening 
for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis 
revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to 
common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody 
fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, 
the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful 
for recovering fully human antibodies with therapeutic potential.
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latter approach, random pairs of the variable genes of the heavy 
and light antibody chains (VH and VL, respectively) are cloned as 
combinatorial libraries involving bacteriophages for presentation 
of selectable antibody fragments.12 Since the initial description 
of antibody phage display,13 this technology has evolved into the 
most successful in vitro selection platform for human antibodies 
because it is robust, inexpensive, and offers great potential for 
automation.14,15 The first fully human phage display-derived 
mAbs have recently been approved by the FDA for the treatment 
of rheumatic and chronic inflammatory bowel diseases 
(adalimumab), systemic lupus erythematosus (belimumab), 
and inhalational anthrax infection (raxibacumab). Other phage 
display library-selected mAbs are currently at advanced stages of 
clinical development and may reach market approval within the 
next few years.

Over the past 20 years, a plethora of phage-derived antibody 
libraries have been constructed that differ in design, origin, 
diversity, and method of generation. Nevertheless, depending on 
the gene sources employed, all antibody libraries can be grouped 
into naïve, immune, and (semi-) synthetic libraries. Naïve 
libraries were amplified from naturally rearranged V genes 
of primary B-cell repertoires of healthy donors,16-19 whereas 
immune libraries were created from V genes from infected or 
immunized donors against a wide range of disease-related 
target antigens.20-32 The design of synthetic libraries involved 
computational approaches and gene synthesis33-37 that were 
partially completed with segments from natural sources.38-42 
Nowadays, almost all existing commercial libraries are based on 
non-immune repertoires of high complexity because selection 
of high-affinity binders is expected to directly correlate with 
the size of the functional repertoire. To theoretically allow the 
selection of mAbs against a virtually unlimited number of target 
antigens, latest state-of-art libraries reach complexities of up to 
1011–1012 clones and thus may even exceed the size of individual 
human B cell repertoires.17,34,37 Although these libraries are 
highly successful in recovering target-specific and high affinity 
antibodies against a wide range of different antigens, they do 
not usually contain specificities that are developed during the 
course of a humoral immune response in vivo. It is nonetheless 
conceivable that antibodies derived from secondary and 
hyperimmune responses may have advantageous functional 
properties and improved fine-specificities over immunologically 
unchallenged repertoires.43,44

To exploit this particular antibody pool for therapeutic 
purposes, we aimed at generating a library collection of 
independently combinable IgG repertoires from B cells that have 
previously encountered defined target antigen(s) in the course of 
disease. In the present study, we employed lymph-node derived 
B cell repertoires for cloning 20 individualized phage display 
libraries in the scFv antibody format. Seven libraries deriving 
from donors with high serum titers against herpes simplex 
virus (HSV) were employed for panning against the viral 
glycoprotein B (gB) of HSV-1 that serves as an entry receptor 
for viral transmission.45 Our data show that high affinity scFvs 
with HSV-neutralizing properties could successfully be selected 
by this approach.

Results

Library construction
The LYNDAL concept is based on the cloning of individual 

lymph node IgG donor repertoires. In total, 20 donor lymph 
nodes were included for generation of 40 individual sublibraries 
(20 VH/VL-kappa and 20 VH/VL-lambda repertoires, 
respectively). Sizes of all individual LYNDAL are listed in Table 
1. On average, each sublibrary consisted of 1.1 × 108 independent 
members and thus 2.2 × 108 for each donor repertoire. The 
total size of the final LYNDAL library collection comprising 40 
sublibraries was approximately 4.4 × 109 clones.

Characterization of LYNDAL repertoires
Selection of specific binders from phage display libraries 

requires expression of correctly folded scFv fragments on the 
phage surface. The quality of the LYNDAL repertoire was 
therefore characterized on both the gene and protein level. Of 
1460 sequenced clones from 20 donors, 67% contained full-
length scFv inserts with a similar proportion of kappa and lambda 
sublibraries (71% and 65%, respectively; Table S1). To further 
evaluate the number of solubly expressed scFvs by E. coli, we 
analyzed the induced periplasmic preparations of randomly picked 
clones from the LYNDAL collection by dot blot and western blot 
analysis. Eighty-two percent of LYNDAL clones investigated by 

Table 1. Number of independent antibody clones within LNYDAL

Library Size [x107]

Donor HC/VL-kappa HC/VL-lambda Total

1 0.7 12.1 12.8

2 4.4 2.0 6.4

3 1.0 1.1 2.1

4 4.7 1.1 5.8

5 1.1 2.9 4.0

6 4.0 28.1 32.1

7 2.7 2.6 5.3

8 4.8 4.3 9.1

9 8.6 16.6 25.2

10 16.3 5.2 21.5

11 9.6 15.7 25.3

12 14.2 7.7 21.9

13 3.9 13.1 17.0

14 2.9 15.4 18.3

15 7.3 4.2 11.5

16 29.3 2.6 31.9

17 89.5 54.3 143.8

18 8.5 10.7 19.2

19 3.9 3.9 7.8

20 4.5 11.3 15.8

Single sublibrary sizes were determined by preparing serial dilutions from 
two randomly chosen transformations and extrapolation to the number of 
grown colonies.
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dot blot screening were expressed as soluble antibody-pIII fusion 
proteins (Fig. 1A) with comparable expression rates of kappa and 
lambda light chain sublibraries (80% and 83%, respectively; 
Table S2). The proportion of detectable antibody-pIII fusions 
correlated well with that of complete inserts as analyzed by 
colony PCR (r = 0.75). Similar results were obtained in anti-pIII 
western blotting. Expression of intact scFv-pIII fusion proteins 
was shown for 27 of 30 clones chosen at random from positive dot 
blot signals (Fig. 1B). Thus, in total 73% of the LYNDAL clones 

could be expressed as complete 
scFv-pIII fusion proteins. On the 
basis of these analyses the current 
LYNDAL collection can be 
estimated to consist of 3.1 × 109 
independent clones.

The primer set used for 
LYNDAL cloning was designed 
for PCR amplification of all 
known functional human 
antibody alleles and families 
as represented in the antibody 
gene database VBASE. Sequence 
analysis of 280 randomly picked 
clones (142 VH/VL-kappa 
and 138 VH/VL-lambda) 
with verified scFv insert was 
performed to analyze distribution 
and usage of germline genes 
and gene families actually being 
amplified by this primer set. 
We identified 90 out of the 117 
VBASE annotated functional 
antibody genes (Fig. 2A–C). All 
known 22 human V gene families 
(Fig.  3A) and most of the VH 
(45 out of 51), VL-kappa (22 
out of 35), and VL-lambda (23 
out of 31) functional sequences 
were identified (Fig.  3B). The 
distribution pattern of the 
functional sequences in LYNDAL 
was comparable to that of three 
large antibody gene databases 
(VBASE, VBASE2, IMGT) 
considered to closely represent the 
naturally occurring distribution 
(Fig.  3C). Apparent differences 
were found for 4 families that 
occurred more frequently in 
either LYNDAL (i.e., VH6, 
VK4) or in the database entries 
(i.e., VH2, VL5).

Antibody selection from 
LYNDAL

In a next step, we assessed 
whether the pool of affinity-
matured antibodies within the 

LYNDAL collection was directly accessible for antibody selection. 
We chose envelope glycoprotein B of HSV type 1 (gB-1) as the 
target for antibody selection because of the high prevalence 
of HSV-1 in the adult world population (50–85%).46,47 To 
exclusively use HSV-experienced B cell repertoires for screening 
of LYNDAL, only donor libraries from patients with confirmed 
serum antibody response in ELISA were included. Of 17 tested 
serum samples, 14 LYNDAL donors (82%) were gB-reactive 

Figure  1. LYNDAL antibody-pIII fusion protein expression. Induced periplasmic preparations of individual 
clones from 40 sublibraries were analyzed by (A) dot blot and, (B) western blot. (A) Dot blot analysis using the 
anti-c-myc-tag antibody 9E10 showed that 261/320 clones (82%) expressed detectable amounts of antibody-
pIII fusion proteins (framed boxes). Negative control (NC) growth medium; positive control (PC) purified 
scFv (5 µg in 1:2 dilutions). (B) Immunoblotting with monoclonal anti-pIII antibody of 30 random clones with 
detectable protein expression in dot blot revealed for all clones with exception of clones 10, 14 and 22 (90%) 
protein bands migrating at an apparent molecular weight of approximately 80 kDa corresponding to scFv-
pIII fusion proteins. Size of molecular weight markers are indicated (kDa).
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with OD signals at least five times greater than those of non-
immunized controls (OD 0.25; SD ± 0.04). Seven libraries (No. 
1, 3–8) from donors with high IgG antibody titers against gB-1, 
containing a total of 7.1 × 108 clones, were combined for selection. 
Specific binders to gB-1 were successfully enriched (Fig.  4A). 
ELISA screening with monoclonal phages from round 2 and 
3 revealed increases of target-specific scFv phage antibodies of 
21% (20 out of 96) (Fig. 4B) and 34% (33 out of 96) (Fig. 4C), 
respectively. Subsequent fingerprint analyses of clones with 
verified scFv genes (Fig. S1) resulted in the identification of 34 
individual binders from 192 screened colonies, i.e., every 6th 
screened colony (17.7%) encoded for a gB-specific antibody with 
unique gene sequence.

Sequence analysis of HSV-specific LYNDAL antibodies
Sequence analysis revealed that the variable genes of selected 

scFvs derived from various germline sequences (18 out of 117) 
and antibody families (9 out of 22) with a predominant use of 
VH1 and VH3 gene families and lambda light chains (Fig. 5). 
By analyzing respective VH/VL pairings, 22 out of 34 scFvs 
were partially clonally related. To further analyze antigen-driven 
affinity maturation of enriched scFvs, the number of somatic 
hypermutations was determined on both the nucleotide (Fig. 6A) 
and the amino acid level (Fig. 6B). On average, the VH domain 
possessed more amino acid exchange mutations than the VL 
domain (17.4 vs. 8.6). Considering the number of nucleotide 
mutations (VH: 32.5, VL: 14.8), the frequency for non-silent 
mutations was comparable for both variable genes (VH: 54%, VL: 
58%). When excluding the CDR3 and FR4 regions for analysis, 
the exchange mutations predominantly accumulated within the 
CDRs with the highest mutation frequency for CDRH2 and 
CDRH1, followed by CDRL2 and CDRL1 (Fig. 6C).

Functional characterization of HSV-specific antibodies
For further analyses, scFvs were solubly expressed in the 

periplasm of TG1 E. coli cells, purified by immobilized metal 
ion affinity chromatography (IMAC) (Fig. S2), and subjected to 
size exclusion chromatography (SEC). The vast majority of the 
investigated antibody fragments eluted predominantly as scFv 
monomers (Fig. S3). In flow cytometry, using Vero cells either 
infected with HSV-1 or HSV-2, all scFvs bound specifically to 
membrane-associated gB of both members of the herpes virus family, 
while no binding was found on uninfected Vero cells (Fig. 7). Flow 
cytometric competition assays of four randomly selected scFvs 
in the presence of a 10-fold molar excess of recombinant gB-1 
further confirmed antigen specificity of LYNDAL scFvs (Fig. S4). 
Obtained immunofluorescence signals tended to be stronger on 
HSV-2 infected cells probably due to the known higher genome 
copy number of HSV-2 compared with that of HSV-1.48 Notably, 5 
of 34 scFvs showed an almost three times greater reactivity toward 
HSV-1 than to HSV-2 infected cells, which could indicate binding 
to a non-shared epitope of gB (Fig. 7).

To accurately measure equilibrium constants (K
D
) of scFvs 

for binding to the target antigen in its natural context, we 
first performed flow cytometric affinity measurements of 12 
randomly chosen scFv monomers on HSV-1 infected cells (Table 
2). Of these, 11 scFvs bound to the target antigen with K

D
 values 

in the nanomolar range. Subsequent surface plasmon resonance 

Figure  2. Phylogenetic analysis of LYNDAL sequences. Germline 
sequences of 280 randomly sequenced clones containing verified 
scFv genes were determined. Functional sequences from the VBASE 
database were employed for drawing three unrooted phylogenetic 
trees for the VH (A), VL-kappa (B) and VL-lambda (C) subset by means 
of the Phylogeny.fr web tool, followed by grouping the sequences to 
corresponding antibody families (black cycles). All functional sequences 
that were identified within the analyzed sample are marked green 
(77%), and non-represented germline sequences are labeled red. The 
nucleotide distance scales are indicated with a value of 30% distance for 
VH and VL-kappa, and 20% distance for VL-lambda.
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(SPR) affinity measurements of these clones confirmed the 
tight binding (r = 0.90) of selected scFvs (Table 2; Fig. S5). To 
evaluate the scFvs for mediating therapeutically relevant antiviral 
activity, we next tested their ability to prevent HSV infection in 
vitro using a standard plaque neutralization assay. Of eight scFvs 
with HSV-neutralizing activity, clone 28 exhibited the highest 
antiviral potency and was therefore further analyzed. We have 
previously shown that the valency of gB-specific antibodies 
may have a strong effect on their HSV-neutralizing capacity.48 
Clone 28 eluted in gel filtration chromatography on a calibrated 
Superdex 75 column in two peaks at retention times correlating 
to the size of a monomer (~34 kDa, 84%) and a non-covalently 
associated dimeric (scFv)

2
 fragment (~57 kDa, 16%). Both 

antibody fractions were therefore separated by preparative size 
exclusion chromatography (Fig. S6) and further independently 
characterized.

Bivalent binding of the dimeric (scFv)
2
 28 resulted in increased 

avidity to glycoprotein B on the surface of HSV infected cells 
with apparent equilibrium constants of 7.3 nM for HSV-1 and 
6.8 nM for HSV-2. The monomeric scFv 28 showed a 2-fold 
weak binding (K

D
 15.5 nM for HSV-1 and 14.8 nM for HSV-2, 

respectively, Fig. 8). Similar affinities of scFv 28 and (scFv)
2
 28 

for binding to both HSV-1 and HSV-2 infected cells indicated 
that this antibody must recognize an epitope that is shared by 
both strains. Evaluation of HSV-1 and HSV-2 neutralizing 
activity showed that the dimeric (scFv)

2
 28 indeed neutralized 

both HSV serotypes significantly better than the monomeric scFv 
(Fig. 9). Surprisingly, both monomeric scFv and dimeric (scFv)

2
 

neutralized HSV-2 with a 14-fold and 7-fold higher efficacy than 
HSV-1. The efficacy of the dimeric (scFv)

2
 28 for neutralizing 

HSV-2 was even more favorable than that of a humanized mAb 
currently being developed for clinical applications in acyclovir-
resistant disease.49

Figure 3. Diversity of LYNDAL antibody sequences. Sequence analysis of 280 randomly chosen clones from all sublibraries against the VBASE database 
identified all antibody V gene families (A) and most of the functional VH (88%), VL-kappa (63%) and VL-lambda (74%) germline sequences (B). Comparison 
of LYNDAL functional germline gene usage against the three independent human antibody databases VBASE, VBASE2, and IMGT (C). Error bars are 
shown as standard deviations (SD) of mean values.
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Discussion

Humoral immune responses play a critical role 
in acquiring immunity against infectious disease. 
As demonstrated by single B cell expression cloning, 
single antibodies developed in the natural course of 
infection in patients may exhibit strong capacity for 
broadly neutralizing viral pathogens such as HIV-
150-52 or influenza virus.53 Despite the still limited 
understanding of how these antibodies contribute to the 
actual control of especially chronic infectious diseases 
in a living organism, it seems clear that they undergo 
affinity maturation in lymphoid tissue.51 Retrieval of 
such particular V gene repertoires as a source for library 
construction is highly attractive because these repertoires 
may enable discovery and development of antibodies 
with potentially unique functional properties.

Access to human immune repertoires is generally 
restricted to peripheral blood and bone marrow. Here, 
we described an alternative approach for recovering 
functional mAbs from combinatorial antibody 
phage display libraries derived from lymph nodes as 
a source of immune repertoires. The underlying idea 
of the LYNDAL concept is based on the assumption 
that human immune libraries cloned from antigen-
encountered antibody repertoires may have unique 
antigen-specific biological properties that can be 
exploited for therapeutic interventions.

Lymph nodes appear to be a highly valuable source 
for immune library cloning54 because fundamental 
processes of the humoral immunity take place within 
their germinal centers, such as somatic hypermutation, 
class switch recombination, and differentiation of 
clonally expanded B-cells into memory B and plasma 
cells.55,56 Moreover, lymph nodes contain a high number 
of antigen-encountered and activated B lymphocytes,57,58 
including a conceptually interesting subset of re-entered 
and re-activated IgG positive memory cells harboring 
extensive somatic hypermutation.59 Since the selection 
of HIV-neutralizing mAbs from antigen-specific 
memory B cells has been reported,51 the memory B cell 
population in general might represent a crucial antibody 
gene pool for selecting antiviral antibodies with unique 
biological properties. Based on these considerations, 
we employed lymph node-derived (memory) B cell populations 
from 20 donors for cloning 20 independently combinable IgG 
repertoires. With a combined size of 3.2 × 109 independent 
antibody clones, LYNDAL represents, to our knowledge, one of 
the largest lymph node-derived antibody libraries to date.

To demonstrate the proof-of-concept for extracting high 
affinity antiviral antibodies from the combinatorial repertories 
of immunized donors, we combined sublibraries from individuals 
with high target-specific IgG titers for panning. HSV was chosen 
as the target for antibody selection because of the high infection 
prevalence in the population and the previously reported 
successful antibody selection from HSV-seropositive bone marrow 

libraries.60 Here, we have shown that screening of LYNDAL from 
donors with humoral response to HSV resulted in a high rate 
of unique high affinity binders with a broad representation of 
different germline sequences from various antibody families. 
Notably, variable regions of isolated scFvs had accumulated a 
particularly high degree of somatic hypermutations. As a result, 
the average number of mutated amino acids was higher than 
that reported for hyperimmunized vaccinated individuals (26.0 
vs. 20.5) hypothesized to be representative for a fully matured 
humoral immune response.61 Thus, the LYNDAL concept 
allowed the selection of HSV-specific antibodies being matured 
during the course of a natural occurring immune response. To 

Figure 4. Enrichment of gB-specific LYNDAL antibodies. LYNDAL of seven donors 
with high anti-HSV titers (No. 1, 3 - 8) were combined for panning against target 
gB-1. Polyclonal phage ELISA (A) confirmed enrichment of target-specific scFv 
phage antibodies during selection rounds 1 to 3. The error bars represent standard 
deviations of duplicates. Screening of individual clones by monoclonal phage 
ELISA revealed an increase of specific binders between round 2 (B) and 3 (C). 
Phage antibodies were detected using an anti-phage peroxidase conjugate in 
combination with colorimetric substrate TMB.
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assess whether the high degree of somatic hypermutations would 
also translate into favorable functional properties of the selected 
antibodies, we performed HSV neutralization assays. Despite the 
quite limited number of analyzed clones, several scFvs exhibited 
potent antiviral activity. Most notably, neutralization properties 
of one clone (#28) were so remarkable that further exploration of 
the antiviral efficacy in HSV infected mice is warranted.

We conclude that antigen-encountered lymph node B cell 
repertoires from several donors may provide a valuable alternative 
for selecting high affinity antibodies with immunologically 
unique functional properties. It remains to be shown in the 
future if this may also translate into antibodies with superior 
therapeutic activity when compared to antibodies obtained from 
very large synthetic or semi-synthetic libraries. By showing the 
value of lymph node derived-immune libraries for isolating in 
vivo matured mAbs with promising virus-neutralizing properties, 
we expect the LYNDAL concept to be also extendable to other 
disease-specific targets.

Materials and Methods

Ethics statement and lymph node collection
The study was approved by the ethics committee of the Faculty 

of Medicine, Heidelberg University. All patients provided written 
informed consent. Lymph nodes were obtained from 20 donors 
undergoing surgery. Dissected lymph nodes were transferred 
directly into RNAlater reagent (Qiagen, 76163) and stored at -20 
°C. Individual lymph nodes were thawed to room temperature 
(RT) and homogenized using a TissueRuptor (Qiagen). Total 
RNA was isolated using the RNeasy Lipid Tissue Midi Kit 
(Qiagen, 75842), and single stranded cDNA was prepared using 

a First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, 
K1612).

Construction of LYNDAL
Libraries were generated by randomly combining amplified 

human VH and VL genes into phagemid vector pHENIS, a 
derivative of pHEN,62 containing a hexahistidine and a c-myc-
tag encoding sequence. Variable domain genes were cloned as 
scFv fragments in VH/VL orientation linked by a 15 amino acid 
encoding peptide (G

4
S)

2
GGSAQ. IgG V region repertoires of 

human donors were amplified in a two-step, semi-nested PCR 
strategy using primers with a maximum of two degenerated 
nucleotide positions. Forward primer design was based on all 
functional variable gene sequences as represented in VBASE 
(http://www2.mrc-lmb.cam.ac.uk/vbase/). Reverse primers 
bound to constant genes (kappa, lambda, and CH1) or to J 
encoding segments and were designed on the basis of sequence 
information of the Kabat63 and VBASE database, respectively. 
VH, VL-kappa, and VL-lambda encoding gene repertoires 
were separately amplified from prepared cDNA in several 
independent PCRs using 2 units/reaction of Pfu polymerase 
(Thermo Fisher Scientific, EP0502). Antibody genes were PCR-
amplified during the first set of PCRs (1st PCRs, 30 cycles), 
followed by re-amplification of PCR products (2nd PCRs, 
15 cycles) to introduce cloning restriction sites by using the 
same PCR program: 94 °C for 3 min for initial denaturation, 
followed by cycles of 94 °C for 30 s, 55 °C for 1 min, 72 °C 
for 2 min, and 72 °C for 10 min final elongation. Amplified 
VH gene repertoires were subcloned as SfiI/XhoI-fragments, 
followed by electroporation of phagemids into electrocompetent 
TG1 E. coli cells (Agilent Technologies, 200123). Light chain 
kappa or lambda repertoires were separately cloned as ApaLI/

Table 2. Affinity of monomeric scFvs

Flow cytometrya Surface plasmon resonanceb

ScFv KD ± SE [nM] kon ± SD [105 M-1s-1] koff ± SD [10-4 s-1] KD ± SD [nM]

1 19.1 ± 1.0 0.73 ± 0.07 8.67 ± 0.36 12.0 ± 1.6

4 6.1 ± 0.6 NC NC NC

5 587.0 ± 25.7 ND ND ND

9 3.2 ± 0.2 7.45 ± 2.05 4.83 ± 0.35 0.7 ± 0.2

10 11.6 ± 0.8 3.58 ± 0.26 15.30 ± 0.28 4.3 ± 0.4

11 7.0 ± 0.5 1.62 ± 0.15 6.43 ± 0.01 4.0 ± 0.4

22 28.9 ± 3.2 0.95 ± 0.01 40.45 ± 2.33 42.6 ± 2.3

28 15.5 ± 2.3 2.22 ± 0.08 16.90 ± 0.28 7.6 ± 0.2

30 8.5 ± 0.4 4.27 ± 0.59 3.95 ± 0.43 0.9 ± 0.1

31 6.6 ± 0.7 NC NC NC

33 11.1 ± 0.8 1.03 ± 0.07 12.25 ± 0.07 12.0 ± 0.6

34 7.2 ± 0.3 2.41 ± 0.95 8.82 ± 1.24 4.1 ± 2.1

aBinding affinities (KD) of SEC-purified scFvs to gB on the cell surface of HSV-1 infected cells were calculated from the equilibrium-binding curves as 
measured by flow cytometry. SE, standard error. bAssociation and dissociation rate constants of monomeric scFvs were determined by SPR using amine 
coupled gB-1 as ligand. Affinity constants were calculated as KD = koff/kon. Constants and errors were averaged from two independent determinations. SD, 
standard deviation; NC, not calculated; ND, not determined.



www.landesbioscience.com	 mAbs	 137

NotI-fragments into the VH-containing phagemid. 
Library-containing phagemid vectors were transformed 
by electroporation (n = 88–132 per donor) into E. coli, 
thus creating two independent libraries (VH/VL-kappa 
and VH/VL-lambda). Transformed bacteria were 
spread on 145 mm 2xYT agar plates containing 2% 
(w/v) glucose, and 100 µg/ml ampicillin (2xYT-GA). 
After overnight (o/n) growth at 30 °C, individual donor 
libraries were stored as glycerol (15% final) stocks in 
aliquots at -80 °C.

Characterization of LYNDAL
To determine LYNDAL sizes, two transformed 

samples per sublibrary were randomly chosen, 
incubated for 1 h at 37 °C before 10-fold serial 
dilutions of cells were plated on 2xYT-GA agar plates. 
The next day, the respective library size was calculated 
by extrapolating the average bacterial number from 
dilutions with countable colonies. Up to 40 randomly 
picked transformants per sublibrary were further 
analyzed by colony PCR for successful integration of 
both heavy and light chain genes (fragment size ~1kb). 
Sequences from at least five intact, randomly chosen 
scFvs per sublibrary were determined and analyzed 
by sequence alignment software DNAPLOT (http://
www2.mrc-lmb.cam.ac.uk/vbase/dnaplot2.php) to 
identify the closest germline V, (D), and J segment 
genes as deposited in VBASE. Complementarity-
determining regions (CDRs) were additionally 
analyzed by using the Fab Analysis tool (http://
www.vbase2.org/vbscAb.php) by aligning the scFv 
sequences to the VBASE2 database.64 Relative gene 
family occurrences of sequenced LYNDAL clones were 
calculated and compared with the mean distribution 
of all functional V gene entries of human antibody 
databases VBASE, VBASE2, and IMGT-GENE.65 
Clones with non-functional reading frames, orphans, and 
pseudogenes, were excluded from the analysis.

Each sublibrary was analyzed for soluble expression of 
antibody-pIII fusions in E. coli by dot blot and western blot 
analysis. Individual colonies were inoculated in 96-well plates in 
2xYT-GA medium and grown o/n at 37 °C on a shaker. Induction 
plates containing 150 µl 2xYT-A with 0.1% glucose were 
inoculated with 3 µl o/n cultures and incubated for an additional 
3 h until soluble expression of antibody-pIII fusions was induced 
by adding 1 mM isopropyl β-D-1-thiogalactopyranoside 
(IPTG). After o/n expression at 28 °C, pelleted bacteria (3000 
xg, 10 min, 4 °C) were resuspended in periplasmic preparation 
buffer (30 mM TRIS-HCl, pH 8.0, 1 mM EDTA, 20% sucrose) 
containing 50 µg/ml freshly prepared lysozyme and incubated for 
30 min on ice. Then MgSO

4
 was added to a final concentration 

of 10 mM. Clarified periplasmic fractions (3000 xg, 20 min, 
4 °C) were either applied onto nitrocellulose membranes using 
a Minifold I Dot Blot system (Whatman) for dot blot analysis 
(100 µl/dot) or onto 12% SDS-PAGE under reducing conditions 
for western blot analysis. Antibody-pIII fusions were detected 
using either peroxidase-conjugated 9E10 anti-c-myc antibody 

(1 µg/ml; Roche Diagnostics, 11814150001) or mouse anti-pIII 
antibody (0.5 µg/ml; MoBiTec, PSKAN3) as first and goat 
anti-mouse IgG peroxidase conjugate (0.02 µg/ml; Jackson 
ImmunoResearch Laboratories, 115-035-008) as secondary 
antibody. Peroxidase activity was detected by chemiluminescence 
using ECL substrate (Thermo Fisher Scientific, 32106) and 
chemical film Curix HT1.000G Plus (Agfa HealthCare).

Antibody selection
Selection of herpes simplex virus specific scFvs, using antigen-

coated immunotubes, was performed as described previously66 
with the following modifications. Antibody repertoires of seven 
LYNDAL donors were separately packaged by inoculating 2× 
YT-GA medium (200 ml/donor) with corresponding library 
glycerol stocks, followed by superinfection with helper phage 
VCSM13 (Agilent Technologies) at a multiplicity of infection 
of 15. Expression of antibody-pIII fusions was induced by 
resuspending the pelleted bacteria in induction medium (2× YT, 
100 µg/ml ampicillin, 25 µg/ml kanamycin, 0.5 mM IPTG) 
and incubation of combined libraries on a shaker at 28 °C for 
6 h. Phages were purified during two PEG-precipitation steps 
by incubation o/n at 4 °C and 1 h on ice, respectively. After 

Figure 5. Sequence analysis of gB-specific LYNDAL antibodies. Germline sequences 
of the 34 selected scFvs were determined and phylogenic relationships analyzed 
by drawing phenograms employing the Phylogenic.fr web tool. The germline 
sequences as well as corresponding antibody families are shown for each clone.
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pre-incubation of 2 × 1013 t.u. (transducing units) in 
2% MPBS for 1 h at RT, phages were applied without 
depletion step to a gB(724tHis)-coated67 (20 µg/ml in 
PBS) and blocked immunotube. Binding of phages to 
target protein gB-1 occurred during roll-over shaking 
for 90 min and 30 min rest at RT. After washing (5× 
PBST and 5× PBS), bound phage antibodies were 
eluted with acid solution (0.1 M glycine-HCl, 0.5 M 
NaCl, pH 2.2) by incubation for 8 min at RT under 
rotation. Eluted phage antibodies were neutralized (pH 
7.4) with 1 M TRIS-HCl pH 9.5 and added to log-
phase TG1. To rescue non-eluted phages, the selection 
tube was additionally filled with log-phase bacteria. 
After infection at 37 °C, both cultures were combined 
before continuing as described.66 Two further selection 
rounds were performed by preparing 160 ml start 
cultures and increasing the stringency during panning 
by employing less gB-1 antigen for coating (5 µg/ml) 
and more washing cycles (10× for round 2 and 15× for 
round 3 with PBS and PBST, respectively).

Phage ELISA
Polyclonal phage ELISA (ppELISA) was performed 

as described previously66 by adding 1011 t.u./well of 
rescued phages to the antigen-coated microtiter plates. 
For monoclonal phage ELISA (mpELISA), single 
colonies from positively enriched panning rounds were 
inoculated into 96-well microtiter plates containing 
100 µl of 2× YT-GA. Cultures were shaken o/n at 37 
°C and used for inoculation of an infection plate with 
fresh medium; the master clones were stored by adding 
glycerol. After incubation of infection plates for 2 h at 
37 °C, bacteria were superinfected with 108 t.u./well 
of helper phages at 37 °C, followed by re-suspension 
of the pellets in induction medium for antibody-pIII 
expression o/n at 28 °C under shaking. The next day, 
each clone was analyzed for binding to coated selection 
antigen (1 µg/ml gB-1 in PBS) and control antigen 
(2% MPBS), respectively, by incubation of blocked 
wells (2% MPBS for 1 h at RT) with 100 µl/well phage 
supernatant in 2% MPBS for 1 h at RT. Detection 
using an HRP-conjugated anti-M13 antibody (GE 
Healthcare, 27-9421-01) was performed as described.66 
The absorbance was read at 450 nm using a GENios 
Plus reader (Tecan). Readings for gB-1 ten times higher 
than the average signal for milk protein were considered 
to be antigen-specific binding.

Characterization and expression of enriched scFvs
The integrity of the scFv gene from specific binders 

was assessed by colony PCR and re-amplified genes 
were digested with BstNI for fingerprint analysis. 
After sequencing, germline sequences and respective 
antibody gene families were determined by DNAPLOT, 
followed by the construction of phylogenetic trees with 
the Phylogeny.fr web tool.68 Somatic hypermutation 
analysis of selected scFvs was performed by employing 
the IMGT/V-QUEST online tool.69

Figure  6. Analysis of somatic mutations within enriched LYNDAL antibodies. 
Variable genes of the 34 gB-specific scFvs were aligned to the closest respective 
germline sequences and the number of nucleotide (A) and amino acid (B) mutations 
was determined. Mean values and corresponding standard deviation are shown for 
VH, VL, and combined VH/VL genes. The distribution of amino acid mutations was 
analyzed separately for the VL and VH domains (C). The number of mutations in 
the framework regions 1–3 and complementarity determining regions 1 and 2 were 
determined and normalized to the length of each corresponding region. Results are 
presented as mean mutation frequency, i.e., the average probability of observing 
an amino acid mutation within the investigated segment when compared with its 
corresponding germline sequence. Error bars represent standard deviations of the 
mean values.



www.landesbioscience.com	 mAbs	 139

ScFv encoding genes were PCR-amplified 
and subcloned as SfiI/NotI fragments into 
expression vector pAB170 for soluble protein 
expression in the bacterial periplasm (o/n at 18 
°C) as described previously.71 Hexahistidine-
tagged scFvs were purified by IMAC with 
Ni-Sepharose 6 Fast Flow (GE Healthcare, 
17-5318-01) according to the manufacturer’s 
recommendations. The oligomeric state of 
IMAC-purified scFvs was analyzed after 
buffer exchange to PBS by SEC on a Superdex 
75 10/300 GL column using an ÄKTA 
FPLC system (both GE Healthcare). The 
column was calibrated using gel filtration 
low molecular weight standards (Amersham 
Biosciences, 17-0442-01). Elution profiles 
were recorded by monitoring the absorbance 
at 280 nm and elution volumes determined 
with the Unicorn software 5.11. If necessary, 
scFvs were further purified to homogeneity by 
preparative SEC on a HiLoad 16/60 Superdex 
75 column (GE Healthcare). Purified scFvs 
were concentrated with centrifugal filter 
units, filter sterilized, and concentrations were 
measured spectrophotometrically.

Target binding analysis on virus infected 
cells

Specific binding of purified scFvs to native 
gB protein was evaluated by flow cytometry 
using the African green monkey kidney cell 
line Vero (ECACC, 84113001) either infected 
or non-infected with HSV-1(F) or HSV-2(G). 
Infection and fluorescence measurements 
were performed as described previously48 
by detection of bound scFvs (100 nM) 
with mouse anti-c-myc IgG (5 µg/ml) and 
goat anti-mouse fluorescein isothiocyanate 
(FITC) conjugate (7.5 µg/ml, Jackson 
ImmunoResearch Laboratories, 115-095-008). Fluorescence 
was measured on a FACSCanto II flow cytometer and mean 
fluorescence intensity calculated using FACS Diva software 
(Becton Dickinson). For determination of equilibrium-binding 
curves, HSV-1 or HSV-2 infected Vero cells were incubated 
in triplicate with scFvs dilutions (0.03–1000 nM) followed by 
detection as described above. Background fluorescence was 
subtracted from measured median fluorescence intensities, and 
relative affinities were calculated by nonlinear regression using 
GraphPad Prism version 5.0 (GraphPad Software).

SPR biosensor binding analysis
Binding kinetics were determined by SPR on a BIACORE 

2000 system (GE Healthcare). A standard coupling protocol was 
employed for immobilizing gB(724tHis) via exposed primary amines 
on a CM5 sensor chip (GE Healthcare, BR-1003–99). Surface 
activation of flow cells No.1 and No.2 for 7 min was performed 
with a 1:1 mixture of 0.1 M NHS (N-hydroxysuccinimide) and 

0.4 M EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 
hydrochloride) at a flow rate of 5 µl/min. After immobilization of 
the ligand (100 µg/ml in 10 mM sodium acetate, pH 4.7; 7 min, 
flow rate 5 µl/min) at a density of 230 RU on flow cell, 2 residual 
reactive sites were blocked by injection of 1 M ethanolamine, 
pH 8.5 for 7 min at 5 µl/min. Flow cell 1 served as a reference 
surface. To measure kinetics, increasing concentrations (1 nM, 
10 nM, 50 nM, 100 nM, 200 nM, 500 nM, and 1000 nM) of 
purified monomeric scFvs were injected in running buffer (10 mM 
HEPES, 150 mM NaCl, 0.05% P20, pH 7.0) at a flow rate of 
10 µl/min and 25 °C. Analyte-ligand association and dissociation 
phases were monitored for 3 min and 30 min, respectively. Surfaces 
were regenerated in running buffer for further 30 min. The data 
were globally fitted with the Langmuir 1:1 binding model using 
the BIAevaluation 4.1.1 software.

Neutralization of HSV-1 and HSV-2
Neutralizing activity of LYNDAL antibodies was determined 

in a plaque reduction assay as described previously.49 The 

Figure  7. Binding analysis of gB-specific antibodies from LYNDAL. Specificity of scFvs for 
binding to cell surface glycoprotein B of HSV-1 and HSV-2 infected Vero cells was analyzed by 
flow cytometry.

Figure 8. Equilibrium-binding curves for antibody 28. Binding activities of monovalent scFv 
and bivalent (scFv)2 was measured on either (A) HSV-1 or (B) HSV-2 infected Vero cells by flow 
cytometry. Error bars represent standard deviations of the mean values. MFImax, maximum 
median fluorescence intensity.
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humanized version of a highly potent HSV-neutralizing antibody 
was used as positive control.49
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Figure  9. In vitro neutralization of HSV by LYNDAL-selected antibody. 
Efficacy of clone 28 for neutralizing HSV-1 strain F (A) or HSV-2 strain G 
(B) was studied by plaque reduction neutralization tests (PRNT) using 
Vero cells. Neutralization capacity was assessed with serial dilutions 
of either monovalent scFv or bivalent (scFv)2 and concentrations were 
determined that neutralized 50% of viruses (PRNT50). The neutralizing 
humanized monoclonal antibody, IgG hu2c, was used as a control 
and comparator. Experiments were performed in duplicate. Error bars 
represent standard deviations of the mean values.
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