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Abstract

A nitrile-based template that enables meta-selective C-H bond functionalization was developed.
The template is applicable to a range of substituted arenes and tolerates a variety of functional
groups. The directing group uses a silicon atom for attachment allowing for a facile introduction/
deprotection strategy increasing the synthetic practicality of this template.

C-H functionalization is an area that has seen enormous growth over the past 30 years.!
Given the ubiquity of C-H bonds in organic molecules, selectivity in C-H functionalization
is a critical element to any successful methodology. The three main approaches to
controlling selectivity have been to use either sterics,? inherent reactivity,3 and directing
groupsiP-f to differentiate C-H bonds. Between these approaches, directing groups have been
the most widely applied; however, this strategy has generally been limited to activating
positions ortho to the directing functionality on aromatic rings. In a pioneering report, Yu
and co-workers have demonstrated that meta-selective C-H activation? is possible using a
directing group appended to both alcohol and acid substrates.® In this case the strain
associated with forming the requisite metallocyclophane is alleviated by the application of a
linear nitrile.

Herein we report a silicon based directing/protecting group® for meta-selective C-H
activation of aromatic rings (Scheme 1). The advantage of our methodology is that the
directing group is easily incorporated onto alcohol-based substrates and removed under
standard fluoride or acid catalyzed deprotection conditions. Moreover, the directing group is
synthesized in 3 steps from inexpensive reagents and is recyclable. The expansion of meta-
selective C-H activation to alcohol-based substrates enriches the synthetic utility of these
nitrile-based directing groups.

As a first step towards developing a practical directing group for meta selective C-H
activation, we synthesized a series of silicon based directing groups and tested them in the
oxidative C-H coupling to olefins. After preliminary optimization of the reaction conditions
(see Supp. Info.), we found that placing the nitrile meta to the silicon atom results in a
significant amount of meta functionalization of the aromatic ring (o:m:p = 7:81:12, Table 1,
entry 1). It is worth noting that the relative position of the silicon tether and nitrile is
different from the Yu group's carbon based directing group. We reasoned that the larger size
of the silicon atom along with elongated Si-C and Si-O bonds may require greater separation
between the directing nitrile and reacting aromatic group. The para isomer 2 provides the
product in low yield and with selectivity that is typical for a sterically driven C-H
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functionalization reaction (0:m:p = 22:43:35, Table 1, entry 2).” Furthermore, this reaction
serves as a control reaction, verifying the necessity of having the nitrile properly positioned
in the substrate for meta selectivity.

With this initial success, we took advantage of the modular nature of the silicon-based
directing group to further optimize the reaction. To improve the meta directing ability, we
varied the groups adjacent to the nitrile in order to examine how compressing and expanding
the bond angle (a) between the phenyl ring and nitrile affects the selectivity (Table 1).
Changing the geminal methyl groups to a cyclopropane, which should expand «, affords
comparable results to 1a (Table 1, entry 3). A contraction of a by expanding ring size (1¢)
results in an increase in the meta selectivity. Switching to bulkier acyclic groups in order to
further compress a improves the meta selectivity. This trend was observed from methyl (1a)
to sec-butyl group (1d-f, Table 1, entries 5-7), which provided the maximum selectivity.
More ortho product was obtained with cyclohexyl groups (1g, Table 1, entry 8) on the
benzylic position, suggesting that optimum angle for meta selectivity had been exceeded.
Although the reaction is highly meta selective with optimal substrate 1f, the conversion of
the reaction was found to be modest. Upon further optimization, higher conversion was
achieved by the addition of 3.0 equiv of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) without
any deterioration in selectivity (Table 1, entry 9).

The requisite silicon chloride 8 is synthesized in 3 steps from inexpensive starting materials,
and can be made in multi-gram quantities (Scheme 2). First, 2-(3-bromophenyl)-acetonitrile
5 was dialkylated using potassium tert-butoxide and sec-butyl iodide, followed by lithium-
halogen exchange mediated silylation produced intermediate silane 7 in good yield.
Conversion to silyl chloride 8 was accomplished by trichloroisocyanuric acid in excellent
yield.

With the optimized conditions and template structure in hand, the substrate scope was
investigated. Various benzyl alcohols with electron withdrawing or donating substituents
were prepared from the corresponding alcohols and silyl chloride in one step (Scheme 2).
Although we could not avoid formation of bis-substituted products for 2-substituted
substrates (Table 2, 9a-9c), high meta selectivity was observed regardless of substrate's
electronic nature. The result for 3-substituted substrates clearly shows this method is
applicable to a wide variety of functional groups. Compound 9d afforded the highest yield
maintaining high selectivity. All the halogens from fluoride to bromide are well tolerated
(9e-9g), resulting in good yields and selectivity. The presence of a strongly electron
withdrawing CF3 group led to diminished yield (50%) but the highest selectivity
(meta:others=97:3, 10h) was observed. C-H activation of 9i, which contains a methoxy
substitutent, results in inferior selectivity. Competition experiments with other ortho-
directing groups present suggested that the directing ability of the nitrile group is superior to
that of an ester (compound 9k)® but not of an acetoxy group (compound 9j).° Meta
selectivity decreased slightly with 4-substituted compounds (91-9n) due to steric hindrance.
In the case of methoxy substitution, the electronic effect and directing group worked in
concert to enhance meta selectivity (10n, meta:others=98:2). Interestingly, among the seven
aromatic C-H bonds in 1-naphthyl methanol 9o, the C-H bond at C-3 is activated and affords
the product in 53% yield. We were also able to apply this method toward secondary a-
methylbenzyl alcohol substrates with similar levels of selectivity and yield in the C-H
activation step (9p-r).

Further investigation with various olefin partners revealed that electron deficient olefins
bearing amide, ketone, and sulfone groups produced functionalized compounds with
moderate yields and high selectivity (11a-c). 1,2-disubstituted trans-methyl crotonate also
proceeded well affording a single stereoisomer 11d as the major product.
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To probe the mechanism of the reaction an intermolecular competition experiment was
performed. A Kinetic isotope effect of 2.5 was estimated by NMR spectroscopic analysis
after cleavage of the silicon directing group (Scheme 3). This value suggests C-H bond
activation is the rate determining step and a bent transition state is expected to be
involved.10

An additional advantage of this chemistry is the potential to reuse the silicon directing
group. The template was easily cleaved by tetrabutylammonium fluoride at room
temperature within an hour after filtration of the silver and palladium precipitates without
additional purification step (Table 2, compound 10d’). Alternatively, when the purified C-H
activation product is treated with wet ethanol in the presence of a catalytic amount of para-
toluenesulfonic acid, the free benzyl alcohol 10d’ is obtained and the template is recovered
as silanol 12 (Scheme 4). Silanol 12 can be used to prepare protected starting material 9d in
moderate yield.

In summary, we have developed an efficient meta directing group based on a silicon tether.
Introduction of the template was performed using standard silicon protection conditions and
in-situ cleavage was demonstrated as feasible. C-H activation was successful for all
substitution patterns on the aromatic ring, and the template could be applied to primary and
secondary alcohols with equal efficacy. Because of the reversible nature of the silicon
oxygen bond, investigations are underway to develop conditions that will facilitate catalytic
use of our template.
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Refer to Web version on PubMed Central for supplementary material.
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Scheme 2. Preparation of directing group and installation
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Scheme 3. Kinetic isotope effect
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Table 1
Optimization of ligand structure?
Pd(OAc) Qpe
€)2,
oPe ic-c()iy-OH
gOAc
YA CoEt —————— ° P
LW:::] 2= DCE, 90°C m
24 h =
CO,Et
1a-1g, 2 3a-3g, 4
DG= _ 1a: R = Me Me Me
R ,I-F_’r 1b: R = -(CH3)-
R=10, ﬁ“*ﬁ 1c: R =-(CH,),- NC .
|- e~ MR=E Si—Pr
N 1e: R =i-Pr |
1f: R = s-Bu O
1g: R = c-Hx
entry | substrate o:m:pb product | yield [%] (mono/di)
1 la 7:81:12 3a 43 (5.1:1)
2 2 22:43:35 4 8C
3 1b 6:81:13 3b 52 (4.8:1)
4 1c 5:86:9 3c 42 (5:1)
5 1d 6:88:6 3d 62 (3.4:1)
6 le 4:90:6 3e 54 (2.6:1)
7 1f 4:92:4 3f 57 (3.6:1)
8 1g 6:90:4 3g 50 (5.3:1)
od 1f 2:96:2 3f 84 (1.74:1)

areaction conditions: 0.1 mmol substrate, 1.5 equiv ethylacrylate, 10 mol % Pd(OAc)2, 20 mol % AcGly-OH, 2.0 equiv AgOAc in 1 mL DCE,
90°C, 24 h.

bRatio was determined by 14 NMR.
°NMR yield

dReaction time was 6 h using 3.0 equiv. HFIP and 3.0 equiv AgOAc.
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Table 2
Substr ate Scope?

Pd(OAC), e
\C)a,
oPe Ac-Gly-OH ‘ N
AgOAc, HFIP -
N A cog e NP
2y DCE, 90 °C
7 624h N
9a-9r 10a-10r COEt
OH
By Pr =
= . TBAF
DG= sBu Si—i-Pr /L RA
| THF, rt
Il d N
N
10101 COE
OH Me OH Br OH OMe
o o ° N o o
m R R
S N N
COEt COEt COEt COE
108" mong: 51% 10D 000 46%  10C"mong: 57% 10d 000 81%
m:others = 95:5 miothers =937 miothers =94:6  muothers = 95:5
10a'y; 28% 10b'y; 26% 10¢'y; trace (md'mm. 75% )
mmothers =92:8  mm'others =80:20 mm'others =-  \ miothers = 95:5

oDG | oG | oDG |
o o o

CO,Et CO.Et COE CO,Et

10 mono: 72%° 10 on0: 78%° 10gmono: 63%° 10N nono: 50%
miothers =86:14  miothers =91:9  miothers =91:9  miothers = 97:3

COEt COE COE COEt
1ione: 71% 0o 73% 10kone: 75%° 100 oo 46%
miothers = 87:13  miothers =78:22 miothers =91:9  M:others = 91:9
10 26%

mm':others = 91:9

COEt CO,Et CO,Et COEt
10M'mono 37% 10N monot 51% 100" mono 53% 10Prmono 75%
miothers =84:16  mothers =98:2  miothers =96:4  mrothers = 97:3
10m'y: 8% 10n'g: 9%
mm'others = -9 mm'others = 78:22

CO,E CO.Et

10amono: 60% 10rmono: 77%
miothers =92:8  miothers = 91:9

areaction conditions: 0.1 mmol substrate, 1.5 equiv ethylacrylate, 10 mol % Pd(OAc)2, 20 mol % AcGly-OH, 3.0 equiv AgOAc, 5.0 equiv HFIP in
1 mL DCE, 90 °C, 24 h. Isomeric ratio was determined by 1H NMR.

b20.0 equiv HFIP were used.
C10 equiv HFIP, 3.0 equiv acrylate were used.

d. . T
inseperable mixture with side product from metal-halogen exchange
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Table 3
Reaction with various olefins?
Pd(OACc),, QDG
o0 Ac-Cly-OH N Me
% Me + oOlefin AgOAc, HFIP /I
| ' DCE, 90 °C
Z 24 h

CONMe, "

11a: 65% 11b: 67%" 11c: 53%" 11d: 65%
m:others = 98:2 m:others = 90:10 m:others = 93:7 m:others = 97:3

areaction conditions: 0.1 mmol substrate, 1.5 equiv ethylacrylate, 10 mol % Pd(OAc)2, 20 mol % AcGly-OH, 2.0 equiv AgOAc, 5.0 equiv HFIP in
1.0 mL DCE, 90 °C, 24 h. Isomeric ratio was determined by IH NMR.

b .
10 equiv HFIP was used.
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