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Abstract

Plasmacytoid dendritic cells (pDC) are innate immunity effector cells which play a critical role in the transition from innate to
adaptive immune response. Circulating blood pDC present an immature phenotype and can differentiate into either
antigen-presenting cells (APC) or type I interferon (IFN-I)-producing cells (IPC). The immunoglobulin-like transcript (ILT)7 is a
surface receptor expressed by immature pDC, and ILT7 cross-linking (XL-ILT7) inhibits IFN-I production by pDC in response
to toll-like receptor (TLR)7 and 9 stimulation. We used peripheral blood mononuclear cells (PBMC) from healthy donors to
test the effect of XL-ILT7 on 1) TLR7/9-mediated regulation of gut mucosal (a4b7 integrin) and lymph node (CCR7)
migration markers; and 2) the maturation of pDC into APC. We found that XL-ILT7 mitigated the upregulation of CCR7 and
enhanced that of b7 on TLR7/9-stimulated pDC. TLR7/9 stimulation induced upregulation of CD40, CD80 and CD86. CD40
expression was partially reduced by XL-ILT7, whereas CD86 was further enhanced. Plasmacytoid DC stimulated with TLR9
ligand in presence of XL-ILT7 retained the ability to induce T cell proliferation and activation in response to staphylococcal
enterotoxin B (SEB) in pDC-T cell co-cultures. Our results suggest that XL-ILT7 favours the differentiation of immature pDC
into APC rather than IPC.
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Introduction

Blood plasmacytoid dendritic cells (pDC) are immature

lymphoid-derived DC which have the ability to capture and

process antigens. Upon antigen capture, pDC migrate to the

lymph nodes and mature into professional antigen presenting cell

(APC), which present peptides to T cells in association with MHC

molecules [1]. In particular, the expression of specific pattern

recognition receptors (PRR), especially Toll-like receptors (TLR),

confer them the ability to respond to viral pathogens. The

expression of endosomal TLR7 and TLR9 renders pDC

responsive to single-stranded RNA and unmethylated CpG-rich

DNA respectively, which are distinctive of most viral genomes

[2,3]. Following exposure to viruses or nucleic acid, pDC produce

large quantities of type I interferon (IFN-I) [2] which create a

cellular environment hostile for viral activity by: 1) limiting the

uptake of nutrients from the extracellular compartment; 2)

promoting RNA degradation; and 3) inducing anti-proliferative

or pro-apoptotic mechanisms in different cell types including T

cells [4]. Additionally, upon TLR stimulation, pDC upregulate

indoleamine-2,3-dioxygenase (IDO), an enzyme involved in the

catabolism of the essential amino acid tryptophan [5,6]. Thus,

activated pDC also exert a negative regulatory activity on T cells

which is essential for the maintenance of immunologic tolerance

[6–10]. When persistently activated, for example during chronic

viral infections or cancer, pDC contribute to the detriment of the

immune system in both human [6,11–13] and animals models

[14,15].

The Immunoglobulin-like transcript 7 (ILT7), also known as

CD85g or leukocyte immunoglobulin-like receptor subfamily A

member 4 (LILRA4), is a protein of 499 amino acids which

presents the typical morphology of ILT stimulatory receptors and

is exclusively expressed by human pDC [16–18]. ILT7 cross-

linking inhibits TLR7/9-mediated IFN-I production by pDC

[18,19]. Although the IFN-I-inducible molecule bone marrow

stromal antigen 2 (BST2) was identified as a ligand inducing ILT7

cross-linking [20], we have recently shown that BST2 may not

play a biologically relevant role in primary human circulating

pDC [21]. Our data indicated that ILT7 is rapidly downregulated

in vitro during spontaneous pDC differentiation, defined by an

increase of the pDC morphological complexity and CCR7

expression [21]. In contrast, CD83 upregulation, a marker of full

pDC activation and maturation, occurred only following TLR7/9

stimulation [21]. Thus, we hypothesized that ILT7 cross-linking

may be involved in the homeostatic modulation of immature

circulating pDC rather than provide a negative feedback for

activated pDC [21].

In the present study, we built upon our previous work and tested

the effect of ILT-7 cross-linking (XL-ILT7) on the ability of

TLR7/9-stimulated pDC to express gut and lymph node

migration markers and mature into APC. We found that XL-

ILT7 favored the upregulation of the gut-migration integrin a4b7
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and mitigated the upreulation of CCR7, which mediates migration

to lymphoid tissues. XL-ILT7 had mild effect on the expression of

CD40 and CD86, but did not interfere with the overall maturation

of pDC in APC and with their ability to activate T cells.

Materials and Methods

Ethics Statement
Leukoreduction system chambers (LRSC) from healthy blood-

bank donors were purchased as non clinical blood components

from the North London Blood Transfusion Service (UK). The

blood donor consent procedure includes provision for such

materials to be used to benefit patients indirectly, including

ethically approved research (full details available at http://

hospital.blood.co.uk). The study was approved by the Riverside

Research Ethics Committee.

Blood Samples and Leukocyte Isolation
Peripheral blood mononuclear cells (PBMC) were isolated by

density gradient centrifugation using Histopaque-1077 (Sigma-

Aldrich, Poole, U.K.) and cultured at 26106 cells/ml in RPMI

1640 (PAA Laboratories, Pasching, Austria), 10% FBS (Sigma-

Aldrich), and 1% Pen-Strep-Glut (Sigma-Aldrich).

Plasmacytoid DC and Autologous T Cell Isolation
PBMC were resuspended in PBS containing 2% FBS and

further separated into high and low density fractions by 50%

Percoll gradient centrifugation. The interface layer, containing the

monocyte/DC enriched fraction, was harvested and washed twice;

pDC were then magnetically isolated using a CD304 (BDCA-4/

Neuropilin-1) MicroBead kit (Miltenyi Biotec, Germany) in

accordance with the manufacturer’s protocol. The Percoll pellet,

enriched for lymphocytes, was washed twice and used for the

negative selection of autologus T cell using the Pan T cell Isolation

Kit II (Miltenyi Biotec, Germany) in accordance with the

manufacturer’s protocol. Isolation of pDC and T cells using this

methods yielded purities of at least 93% and 92%, respectively.

Plasmacytoid DC and T cells were then co-cultured at 1:10 ratio

in RPMI 1640 (PAA Laboratories), 10% FBS (Sigma-Aldrich), and

1% Pen-Strep-Glut (Sigma-Aldrich) for 72 hours before analysis of

T cell activation and proliferation.

TLR Ligands, ILT7 Cross-linking and SEB Stimulation
PBMC and T cell/pDC co-cultures were stimulated or not with

TLR agonists and cross-linking (XL)-ILT7 ab depending on the

experimental setting, as described in the Results section. TLR9

ligand (TLR9L) CpG ODN type A (Invivogen, San Diego, CA)

was used at 0.75 mM final concentration. TLR7 ligand (TLR7L)

R848 (Imiquimod; Invivogen) was used at 5 mg/ml final concen-

tration. XL-ILT7-specific Ab 17G10.2 (eBioscence, Hatfield,

U.K.) was used at 10 mg/ml final concentration in plate bound

form and cells were pre-incubated for 30 min before stimulation

with TLR7/9L. Culture plates were coated by overnight

incubation at 4uC with 10 mg/ml 17G10.2 Ab in 100 ml (96-well

plates) or 200 ml (48-well plates) of PBS. The PBS was discarded

after overnight incubation. Plate bounded mouse IgG1 isotype was

used as control.

The superantigen staphylococcal enterotoxin B (SEB) (Sigma-

Aldrich) was used at 5 mg/ml final concentration in T cell/pDC

co-culture.

Flow Cytometry
Cell were incubated for 20 min at room temperature with

different combinations of the following anti-human Abs: CD83

Phycoerythrin (PE) clone HB15e, CD8 allophycocyanin (APC)

clone SK1, CD80 Fluorescein isothiocyanante (FITC) clone

2D10.4, a4 PE clone 9F10, b7 FITC clone FIB504, CD4 PE

clone RPA-T4, CD38 FITC clone HB7 (all purchased from

eBioscence); CD123 PE-Cy7 clone 6H6, CD86 Peridinin Chlo-

rophyll Protein (PrCP Cy5.5) clone IT2.2, CD40 Pacific Blue

clone 5C3, CD69 PrCP Cy5.5 clone FN50 (purchased from

BioLegend London, U.K.); CD14 allophycocyanin -Hilite.7 (APC

H7) clone 6MPw9, CCR7 PrCP Cy5.5 clone 150503 (purchased

from BD Biosciences); BDCA2 (CD303) APC clone AC144

(purchased from Miltenyi Biotec). Cells were washed with staining

buffer (BD Biosciences) and fixed with BD cytofix buffer (BD

Biosciences). FACS analysis was performed on a LSR-II flow

cytometer using FACSDiva software (BD Biosciences). FlowJo

software (Tree Star, Ashland, OR) was used for data analysis.

Fluorescence-minus-one controls were used to establish positivity

thresholds.

Proliferation Assay
T cells proliferation was evaluated using a flow cytometry-based

intracellular dye dilution proliferation assay, based on the Violet

Proliferation Dye 450 (VPD450; BD Bioscience). VPD450 staining

was carried out according the manufacture’s protocol.

Statistical Analysis
Statistical analyses were performed using SPSS 20.0 software

(SPSS, Chicago, IL). Pairwise comparisons (control versus TLR7/

9-stimulated cells; and TLR7/9-stimulated in presence versus

absence of XL-ILT7) were performed using nonparametric

Wilcoxon sign rank test. p values ,0.05 were considered

statistically significant.

Results

ILT7 Cross-linking did not Affect pDC Survival and
Inhibited TLR9-induced IFN-a Production

Freshly isolated PBMC were cultured overnight in presence or

absence of TLR7/9L and pre-incubated or not with plate bound

XL-ILT7 Ab. As previously reported, overnight TLR9L stimula-

tion of PBMC induced significant IFN-a production, which was

inhibited using either plate bound or soluble XL-ILT7 Ab (Fig. 1A

and 1B). Plate bound XL-ILT7 proved more potent than soluble

XL-ILT7 Ab in downregulating TLR9-mediated IFN-a produc-

tion (83%612% versus 71%69% inhibition; Fig. 1B). Plate bound

XL-ILT7 Ab has been used for all experiments described, and will

be referred to simply as XL-ILT7 from this point on.

ILT7 cross-linking did not significantly affect recovery of pDC

(CD14- BDCA2+ CD123+, Fig. 2A) after overnight stimulation

with TLR7L (median = 0.037% IQR = 0.016–0.052%, versus

median = 0.033% IQR = 0.015–0.053%) or TLR9 (medi-

an = 0.033% IQR = 0.015–0.048%, versus median = 0.026%

IQR = 0.018–0.039%).

ILT7 Cross-linking Modulates TLR7/9-induced Expression
of Migration Markers by pDC

We analysed pDC (CD14- BDCA2+ CD123+, Fig. 2A) for the

expression of a4/b7 and CCR7, which are associated with

migration to gut mucosal tissue and secondary lymphoid organs,

respectively [22,23]. Freshly isolated PBMC were cultured

overnight in presence or absence of TLR7/9L and pre-incubated

or not with plate bound XL-ILT7 Ab. PBMC stimulation with

TLR9L induced a significant upregulation in both the frequency

of b7+ pDC and b7 MFI, whereas b7 upregulation by TLR7L

ILT7 and pDC Differentiation into APC
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tested significant only when MFI was analysed (Fig. 2B and 2C).

XL-ILT7 significantly enhanced the positive effect of TLR9L on

b7 expression (Fig. 2B and 2C). As expected, the frequency of a4+
pDC approached 100% in all conditions tested (Fig. 2B). XL-ILT7

induced a mild, albeit statistically significant decrease in a4+ pDC

in presence of TLR7L (Fig. 2B), but no significant effect was

observed in response to TLR9L or when a4 expression on a per

cell basis, as measured by a4 MFI, was considered (Fig. 2C). Both

TLR7L and TLR9L induced a significant upregulation of CCR7

expression in pDC, measured both as frequency of CCR7+ cells

and MFI (Fig. 2B and 2C). Interestingly, XL-ILT7 resulted in a

mild but statistically significant downregulation of TLR7-induced

CCR7+ pDC, and a similar trend was observed in response to

TLR9L, albeit not statistically significant (Fig. 2B).

ILT7 Cross-linking Regulates TLR7/9-induced Expression
of Costimulatory Molecules by pDC

We evaluated the expression of the activation marker CD83 and

the costimulatory molecules CD40, CD80 and CD86 by pDC in

the same experiments described in Figure 1. As expected, we

observed a significant increase in the expression of all markers

analyzed in response to TLR7/9L stimulation, compared to

untreated cells (Fig. 3A and 3B). TLR7/9L-induced CD83

upregulation was not affected by XL-ILT7 (Fig. 3A and 3B).

Similarly, XL-ILT7 did alter TLR7/9-mediated upregulation of

CD80 by pDC (Fig. 3A and 3B). Surprisingly, addition of XL-

ILT7 to TLR9L induced a significant decrease in the frequency of

CD40+ pDC compared to TLR9L stimulation alone (Fig. 3A); a

similar trend was observed in response to TLR7L, approaching

statistical significance. In addition, XL-ILT7 caused significant

decreases in CD40 MFI in both TLR7L- and TLR9L-stimulated

cells (Fig. 3B). Conversely, XL-ILT7 further enhanced CD86 MFI

in TLR9L- but not TLR7L-stimulated pDC (Fig. 3B).

We evaluated the co-expression of CD83, CD40, CD80 and

CD86 by pDC. Only 6% pDC expressed at least three markers of

interest in unstimulated pDC (Fig. 4A). Stimulation of PBMC with

TLR7L or TLR9L induced co-expression of at least three markers

in 82% and 62% pDC, respectively (Fig. 4A). Interestingly, after

stimulation with TLR7L or TLR9L in presence of XL-ILT7, co-

expression of at least three of the molecules analysed was still

observed on 77% and 66% pDC, respectively (Fig. 4A). In all

conditions the majority of triple positive pDC co-expressed CD80,

CD86 and CD40 (Fig. 4B).

These data collectively suggest that ILT7 cross-linking may

exert minor effects on the relative expression of different

costimulatory molecules, but does not interfere with pDC

maturation into APC, measured as overall expression of

costimulatory molecules.

Effect of ILT7 Cross-linking on pDC Antigen-presentating
Activity

In order to evaluate the influence of XL-ILT7 on the ability of

pDC to stimulate T cell activation and proliferation, we co-

cultured purified pDC with autologous T cells in presence of

different combinations of TLR9L, XL-ILT7 and the T cell

superantigen staphylococcal enterotoxin B (SEB). We analysed the

expression of the T cell activation markers CD38 and CD69 in

relation to T cell proliferation. As expected, both CD4 and CD8 T

cell did not show any proliferative response when cultured alone

with SEB or when co-cultured with autologous pDC without SEB,

independent of whether TLR9L was present or not (Fig. 5A–D).

Conversely, in presence of SEB and pDC, both CD4 and CD8 T

cells proliferated and showed upregulation of the activation

markers CD38 and CD69. As expected, the expression of the

early activation marker CD69 gradually decreased in proliferating

cells, as indicated by lower CD69 MFI in late T cell generations

(Fig. 5A–D). T cell activation and proliferation in response to SEB

was enhanced in T cell-pDC co-cultures stimulated with TLR9L,

consistent with pDC maturation into APC (Fig. 5A–D). Increased

T cell activation and proliferation in presence of TLR9L was

observed also when cells were co-cultured under XL-ILT7

conditions (Fig. 5A–D).

Figure 1. Effect of ILT7 cross-linking on TLR9-induced IFN-a production. PBMC from healthy donors were cultured overnight with TLR9L in
the absence (isotype control) or presence of soluble or plate bound XL-ILT7 (sXL-ILT7 and pbXL-ILT7, respectively). Panel (A) shows box and whiskers
plots summarizing IFN-a levels in supernatants from N = 9 independent experiments performed using pbXL-ILT7; horizontal lines within boxes
indicate median values, boxes indicate 25th and 75th percentiles, and vertical lines extend to 10th and 90th percentile; numbers above brackets
indicate P values for pair wise comparisons (Wilcoxon sign rank test). Panel (B) shows a comparison between sXL-IL7 and pbXL-ILT7 on N = 3
independent experiements; each symbol represents results from one individual donor.
doi:10.1371/journal.pone.0089414.g001
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Figure 2. Effect of ILT7 cross-linking on TLR7/9-induced expression of migration markers by pDC. Flow cytometry dot-plots showing the
gating strategy used to identify pDC are shown in panel A. Frequency of b7+, a4+ and CCR7+ pDC (B) and mean fluorescence intensity (MFI) of b7, a4
and CCR7 on pDC (C) in PBMC stimulated with TLR7L or TLR9L in the absence (isotype control) or presence of XL-ILT7. In each plot, dots indicate
individual experiments and crosses indicate medians for each condition. Numbers above brackets indicate P values for pair wise comparisons
(Wilcoxon sign rank test).
doi:10.1371/journal.pone.0089414.g002

ILT7 and pDC Differentiation into APC

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e89414



Figure 3. Effect of ILT7 cross-linking on TLR7/9-induced expression of activation and costimulatory markers by pDC. Frequency of
CD83+, CD80+, CD40+ and CD86+ pDC (A) and MFI of CD83, CD80, CD40 and CD86 on pDC (B) in PBMC stimulated with TLR7L or TLR9L in the
absence (isotype control) or presence of XL-ILT7. In each plot, dots indicate individual experiments and crosses indicate medians for each condition.
Numbers above brackets indicate P values for pair wise comparisons (Wilcoxon sign rank test).
doi:10.1371/journal.pone.0089414.g003
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Figure 4. Co-expression of activation and costimulatory molecules on pDC. The data presented in Figure 2 were analyzed for co-expression
of multiple markers. A) Pie charts showing frequency of pDC expressing 0 (light blue), 1 (violet), 2 (green), 3 (dark blu), or 4 (orange) of the markers
analysed (CD83, CD80, CD40 and CD86) in PBMC cultured overnight in media alone (CTR) or stimulated with TLR9L or TLR7L in presence or absence of
XL-ILT7 Ab. B) Histograms showing the frequency of pDC expressing different combinations of CD83, CD80, CD40 and CD86. In both A and B,
median from experiments performed on N = 6 independent donors are shown.
doi:10.1371/journal.pone.0089414.g004
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Figure 5. Effect of ILT7 cross-linking on T cell activation in a pDC-T cell co-culture system. Flow cytometry dot plots (A and C) showing
the expression of CD38 and CD69 in relation to violet proliferation dye (VPD) dilution in CD8 T cells (A) and CD4 T cells (C) co-cultured with

ILT7 and pDC Differentiation into APC
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These data suggest that ILT7 cross-linking does not impair the

ability of pDC to mature into functional APC in response to TLR

stimulation, despite suppressing IFN-a production.

Discussion

Persistent pDC activation has been shown to lead to harmful

consequences for the immune system in both murine models

[14,15] and humans [6,11–13]. When chronically activated, pDC

contribute to the detriment of antiviral and antitumor adaptive

immunity through persistent IFN-I and IDO overexpression

[6,24]. The signalling pathways leading to pDC differentiation

into APC or IFN-I-producing cells (IPC) are mutually exclusive,

and pDC which have matured into fully competent APC may not

respond to TLR stimulation by producing IFN-I [25,26]. Thus,

regulatory pathways which modulate IFN-I and IDO activity

whilst preserving APC function may be of particular interest as

candidate immunotherapeutic targets for chronic infections and

cancer.

We previously confirmed that ILT7, a surface molecule

selectively expressed by human pDC, potently suppress TLR7/

9-induced IFN-I [21]. However, we showed that ILT7 expression

was rapidly downregulated in pDC which differentiated and

matured upon in vitro culture [21]. We hypothesised that ILT7

may provide a homeostatic mechanism rather than a negative

feedback control on activated pDC [21].

Here we found that XL-ILT7 may modulate the ability of the

TLR7/9-stimulated pDC to migrate to the lymph nodes or

mucosal tissues. The integrin a4/b7 is involved in the trafficking of

different leukocytes, including lymphocytes, NK, DC and macro-

phages, from the blood to the gut mucosa [22]. In contrast,

expression of the chemokine receptor CCR7 by circulating

lymphocytes is a fundamental factor for lymph node (LN) entry

via high endothelial venules [27,28]. The expression of CCR7 on

human pDC is controversial. Some studies reported high level of

CCR7 expression on circulating pDC without, however, confer-

ring responsiveness to CCR7 ligands [29,30]. Conversely, other

studies suggest low expression levels of CCR7 on resting pDC [31–

33]. However, it is well established that, upon stimulation with

TLR ligands, both murine and human pDC increase the

expression of CCR7, resembling the mDC activation profile

[30,34,35]. We observed an increase of TLR-induced expression

of b7 integrin, and a parallel decrease CCR7 expression upon XL-

ILT7. Of note, ILT7 expression decreases with pDC maturation

and activation, which in turn promote CCR7 expression [21].

Thus, ILT7 and CCR7 appear to be mutually exclusive, in that

ILT7 cross-linking inhibits CCR7 upregulation and activated

CCR7-expressing pDC downregulate ILT7. These data are

consistent with the hypothesis we that XL-ILT7 may function as

a control mechanism on the activation of immature circulating

pDC, by both preventing IFN-a secretion and migration to

secondary lymphoid organs, while favouring their retention in the

gut mucosa. Extensive in vivo experiments may be necessary to

determine whether the effect exerted by XL-ILT7 on pDC

migration markers is biologically significant.

XL-IL7 did not interfere with the ability of pDC to mature into

APC. The analysis of activation and costimulatory markers

revealed that, in response to TLR stimulation, XL-ILT7-treated

pDC retained the expression of CD83 and CD80 and further

increased the expression of CD86. CD40 is normally up-regulated

when DC migrate from the peripheral blood to draining lymph

nodes as a consequence of microbial challenge [36]. Thus, the

observed downregulation of CD40 by XL-ILT7 is consistent with

the reduction of CCR7 expression. Importantly, despite the

relative changes in CD40 and CD86 expression, the vast majority

of pDC showed a phenotype consistent with mature APC

following TLR stimulation, independent of XL-ILT7. Although

XL-ILT7 caused a mild reduction of CD38 and CD69 expression,

and slightly reduced proliferation in CD4 and CD8 T cell subsets

in some experiments, it did not prevent TLR9L-induced

enhancement of T cell stimulation by pDC in presence of SEB.

Thus, XL-ILT7-treated pDC preserved the ability to stimulate T

cell activation and proliferation in response to TLR9 stimulation

in presence of the superantigen SEB.

Taken together, the data from the present study and our

previous report [21] suggest a role for ILT7 in the modulation of

immature blood pDC differentiation into either APC or IPC.

Thus, in conditions of ILT7 cross-linking, TLR7/9 stimulation

may favor the maturation of pDC into APC. Conversely, in the

absence of ILT7 cross-linking, TLR7/9 stimulation may lead to

pDC differentiation into IPC. Mature ILT7-cross-linked APC-

differentiated pDC may partially redistribute between LN and

mucosal sites to allow antigen processing and presentation to T

cells in the absence of IFN-I- and IDO-dependent cytostatic and

cytotoxic mechanisms.
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