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Abstract Despite the success of antiretroviral therapy in sup-
pressing HIV-1 replication and extending the life of HIV-1
infected individuals, this regimen is associated with risks for
non-AIDS morbidity and mortality, requires life commitment,
and has a high cost. In this context, gene therapy approaches
that have the potential to cure HIV-1 infection present a clear
option for eradication of the virus in the next decades. Gene
therapy must overcome concerns related to its applicability to
HIV-1 infection, the safety of cytotoxic conditioning required
for cell-based approaches, clinical trial design, selection of
gene-modified cells, and the restrictive cost of manufacturing
and technology. These concerns are discussed herein in the
context of the most relevant gene therapy studies conducted so
far in HIV/AIDS.
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Introduction

The ultimate goal of a gene-therapy strategy for the cure of
HIV/AIDS is to contribute a new set of immune cells that
would be resistant to HIV-1 infection and would reconstitute
the immune system. The recovered immune function would
then simultaneously control infection and destroy the endog-
enous viral reservoir. The widespread use of antiretroviral
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therapy (ART) has achieved partial success in this respect by
controlling the HIV-1 infection in most individuals. ART
improves the health and extends the life of HIV-1 infected
individuals and reduces the rate of viral transmission from
individual to individual. However, this regimen is associated
with several comorbidities, requires strict compliance with a
lifelong drug regimen, and has little impact on the elimination
of the HIV-1 reservoir [1¢]. Latently infected, resting CD4+ T
cells have been shown to persist in HIV-1 infected individuals
treated with ART who otherwise have minimal levels of virus
in the plasma [2, 3e].

For the purposes of this discussion, it is assumed that use of
gene-modified, autologous cell-based strategies have the po-
tential to achieve the goal outlined above. The recent success
in apparently curing HIV-1 infection using allogeneic cell-
based approaches [4¢, 5¢¢, 6¢], although remarkable, will not
be considered here because of the expense and toxicity of this
approach. Strategies using autologous CD4 T cells or hema-
topoietic stem progenitor cells (HSPC), although also com-
plex, have a more direct path to the clinic in the non-malignant
HIV/AIDS patient. In addition to these cell-based approaches,
recent investigations have focused on (a) drugs that
reactivate latent HIV-1 from resting CD4+ T cells prior
to the therapeutic intervention to eradicate the virus [7],
and (b) immune reagents, such as neutralizing antibodies
[8, 9, 10, 11¢], which enhance the anti-HIV-1 immune
responses. These strategies are attractive and could well
be used adjunctively with cellular therapy, but they will
not be discussed here.

Autologous gene therapy-based strategies, while equally
challenging in terms of practical application, have the poten-
tial to be relatively safe and would provide either a sterilizing
cure, by completely eliminating the HV-1 reservoir, or a
functional cure, by enabling long-term control over the
virus in the absence of ART (ie, durable drug-free
remission) [12].
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Gene Therapy Challenges

Gene-therapy based approaches most commonly aim to create
a robust HIV-1 resistant immune system by targeting viral or
cellular elements necessary to suppress viral infection after
transplantation of resistant T cells or HSPC. Such strategies
ultimately protect progeny CD4+ T cells and other HIV-1
susceptible cells from further viral infection and lead to the
restoration of the immune function. To achieve this goal, the
transgene or a combination of genes of interest is cloned into a
delivery vehicle, a viral, or nonviral vector, which is then
delivered efficiently into the target cells (T cells or HSPC)
ex vivo [13e, 14]. These genetically modified cells are then
release tested for safety and quality control and then re-infused
into the patient. Except for strategies whereby genetic modi-
fication occurs by transient exposure to nucleases [15¢, 16],
most gene therapy approaches require long-term stable ex-
pression of the transgene in modified cells. Integrating and
nonintegrating vectors are used and continue to be developed,
each having their own unique advantages and disadvantages
[17, 18]. For example, integrating vectors deliver the trans-
gene into host DNA with the promise of long-lived expres-
sion, whereas nonintegrating vectors have a shorter period of
expression and thus minimize the theoretical risk of insertion-
al mutagenesis [16]. Finally, engraftment of the gene-modified
cells is a pre-requisite for the success of this approach, which
most likely requires conditioning with chemotherapy or non-
chemotherapy agents, prior to the transplant.

The field of gene therapy is making sustained efforts to
design better strategies for efficient, safe and cost-effective
gene delivery, to identify new molecular targets for improved
antiviral effect, and to move toward clinical trials that test the
safety and feasibility of these approaches (discussed in
[13e, 19]).

HIV-1 Gene Therapy Strategies

A diverse array of transgenes to suppress HIV-1 functions or
block the infectious cycle belong mostly to 2 groups of
suppressors: nucleic acid-based and protein-based (reviewed
in [20]). Current gene therapy strategies use combinations of
different types of transgenes with viral and/or cellular targets
that aim to completely neutralize HIV-1 functions at specific
points in the infection cycle. In contrast to targeting a single
step of HIV-1 infection, the advantage of inhibiting a number
of critical steps in virus replication is that complete and
effective suppression is more likely to achieve. In addition,
use of combinations of different types of transgenes is also
expected to prevent the emergence of HIV-1 variants that
escape the gene-based strategy. A summary of published gene
therapy clinical trials using these approaches is included with
more details and references in Table 1.
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RNA-Based Suppressors, Including RNA-Antisense, RNA
Interference (RNA1), Ribozymes, and RNA Aptamers
(Reviewed in [37, 38]

Newly transcribed RNA-antisense molecules bind to mRNA
sequences and prevent translation of the encoded protein,
thereby resulting in loss or reduction of gene function. In one
of the earliest lentiviral-based gene therapy studies against
HIV-1 infection, an antisense mRNA to HIV-1 env expressed
from a lentiviral vector was safely used in the setting of T-cell
immunotherapy [34]. Further studies with the product
(VRX496-T; trade name Lexgenleucel-T) given as multiple
infusions were performed more recently in patients with well-
controlled HIV-1 infection [35¢]. The antiviral effect of the
product was evaluated in a subset of treated patients who
underwent an analytical treatment interruption (ATT) of their
antiviral medication, the idea being that the ATI allows selec-
tion of the gene-modified cells once the virus is again present
in the plasma. The study demonstrated a reduction in the viral
load and found that VRX496-T put antisense-mediated genetic
pressure on the virus during infection.

RNA decoy molecules attempt to compete with specific
HIV-1 RNA elements that bind viral proteins as part of the
replication cycle by overexpressing their RNA homologs.
TAR (TAT response element) and RRE (Rev-response
element) are 2 such cis-acting factors that are necessary for
proper function of the key HIV-1 regulatory proteins, Tat and
Rev. These elements have been evaluated in clinical trials, 1 in
transduced and transplanted marrow-derived hematopoietic
stem cells in HIV-1 infected children [21] and 1 in CD34+
HSPC transduced and transplanted in HIV-1 infected patients
with Non-Hodgkin’s Lymphoma (NHL) who required autol-
ogous transplantation [25¢¢].

Ribozymes are RNA molecules that can cleave RNA tar-
gets at specific sequences and thus can be used to inactivate
HIV-1 RNAs [17]. A ribozyme has been used as a component
of combinatorial gene therapy in HIV-1 infected patients with
NHL mentioned above [25¢¢].

RNAI, which naturally occurs in a variety of organisms,
including fungi, plants, insects, protozoans and mammals
[39], is based on a cellular process, in which double-
stranded RNA (dsRNA) induces a post-transcriptional degra-
dation of homologous transcripts. Several studies have dem-
onstrated that the functional unit of RNAI, the siRNAs, can
elicit sequence-specific target downregulation [40]. The suc-
cessful expression of siRNAs in mammalian cells has allowed
RNAI to be applied as a potent mechanism for inhibition of
HIV-1 infection and anti-HIV therapy [41, 42]. The siRNA
can be used as an antiviral agent either by transfection of the
preformed siRNAs [43] or by intracellular expression of
siRNAs. The latter approach has been utilized in a gene
therapy setting, providing anti-HIV-1 RNAs to hematopoietic
cells susceptible to HIV-1 infection [25¢¢].
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Table 1 Summary of published clinical trials of anti-HIV gene therapy (modified from [20])

Mechanism Target

Delivery of genes/cell transplantation

Phase References

HSPC-based studies

RNA decoy Viral (rev protein) Retroviral (MMLYV) into autologous CD34+ HSPC Pilot [21]
Ribozyme Viral (tat-vpr mRNA) Retroviral (MMLYV) into autologous CD34+ HSPC I-IT [22ee, 23, 24]
shRNA RNA decoy Viral (tat-rev mRNA) Viral Lentiviral vector (SIN HIV) into autologous CD34+ HSPC Pilot  [25e]
(TAR) ribozyme (tat protein) Host (CCR5 mRNA)
Transdominant negative  Viral (Rev protein) Retroviral MoMLV-based vector into allogeneic Pilot [26]
Rev mutant CD34+ HSPC
T-cell-based studies
Inhibitory Rev10 protein Viral (Rev protein) Plasmid or retroviral —based vector into autologous T cells  Pilot [27, 28]
HIV-specific T cells CD4zeta chain Retroviral (MMLV-based) vector into autologous 11 [29]
CD4 and CD8 cells
Ribozyme Viral (U5 and pol mRNA) Retroviral (MMLYV) into autologous CD4+ T cells 1 [30]
C46 peptide Viral (env protein) Retroviral (MMLYV) into autologous CD4+ T cells 1 [31]
Ribozyme Viral (tat-vpr mRNA) Retroviral (MMLYV) into syngeneic CD4+ T cells Pilot [32, 33]
Antisense Viral (env mRNA) Lentiviral vector (LTR HIV) into autologous CD4+ T cells  I-11 [34]
Antisense Viral (env mRNA) Lentiviral vector (VRX496-T; trade name, Lexgenleucel-T) I-1I [35<]
into autologous CD4+ T cells
Antisense Viral (TAR and/or Rev) Retroviral vector into uninfected lymphocytes I [36]

from twin donor

Protein-Based Suppressors

Normal viral functions can be suppressed by expression of
transdominant mutant proteins that act as competitors of cog-
nate HIV-1 proteins. The most experimentally advanced
transdominant protein to date is a mutant Rev protein
(RevM10) [44], which retains 2 Rev functions: the ability to
bind RRE on the viral genome and the ability to form Rev
multimers. However, because RevM10 cannot exert its regu-
latory role in transporting unspliced or singly spliced RNAs
from the nucleus to the cytoplasm, susceptible cell lines that
express RevM10 exhibit long-term resistance to HIV-1 repli-
cation (>30 days). Human CD34+ blood progenitor cells
transduced with RevM 10 can give rise to T lymphocytes that
exhibit significant resistance to challenge with HIV-1 [26].

Clinical Trials of Gene Therapy Using Autologous T Cells

One cell-based strategy for gene therapy against HIV-1 infec-
tion targets autologous T lymphocytes, including CD4+ or
CDS8+ T cells [27, 34]. Mature T lymphocytes are easily
harvested from the peripheral blood of donors and can be
expanded to large numbers in vitro using cell surface stimu-
lation with antibodies to the markers CD3 and CD28 [45].
Targeting mature T lymphocytes for genetic modification has
other advantages, which make it the method of choice for
initial evaluation of such gene therapy strategies. The effect of
the therapeutic gene on cell survival, viral load, and other
parameters can be rapidly evaluated. Autologous T cells can

be transduced and immediately selected in vitro using a mark-
er gene included in the vector, so that the reinfused population
contains a high percentage of genetically modified cells.

Several clinical trials have evaluated gene therapy products
against HIV-1 infection using autologous T lymphocytes
(Table 1).

The first clinical study of a gene therapy approach in HIV-1
infected individuals evaluated the ability of RevM 10 to extend
the survival of transduced CD4+ T cells in vivo [27]. Despite
showing limited and transient duration of engraftment, the
study was followed by another one, which evaluated a retro-
virus delivery vector for RevM10. Survival of T cells express-
ing RevM10 was improved relative to that of T cells trans-
duced with a negative control vector [28] (Table 1). A recent
study of conditionally-replicating lentiviral vector expressing
a long antisense to HIV-1 targeting HIV-1 env showed that
CD4 T cells (VRX496-T) have been safely infused into HIV-
l-infected patients with well-controlled viremia (discussed
above [35¢]). Autologous transfer of these cells was safe in
chronic viral infection and 6 out of 8 patients who underwent
ATT experienced a significant decrease in viral load (P=0.08).

Gene therapy strategies that aim to prevent or disrupt
expression of chemokine receptors that facilitate HIV-1 entry
into the target cell are particularly attractive. They obstruct the
very first step in HIV-1 infection (ie, entry into the target cell),
rather than blocking a viral event that occurs after the estab-
lishment of the proviral DNA into the cellular genome. The
survival advantage of chemokine receptor-modified cells has
been demonstrated in animal studies [15¢], and has started to
demonstrate survival advantages in vivo in HIV-1-infected
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individuals [46]. Clinical studies attempting to mimic the
impact of the natural CCRS deletion on HIV-1 infection are
ongoing (NCT01252641 and NCTO01044654). These
studies evaluate CD4+ T cells modified using zinc finger
nucleases to edit the CCRS5 gene [16] and successful impact of
this gene-therapy approach has been recently announced [46].

Clinical Trials of Gene Therapy Using Autologous HSCT

Despite the demonstration of HIV-1 cure using allogeneic
hematopoietic stem cell transplant (HSCT) [4e, 5S¢, 6°], the
complexity of the method, including the requirement for tissue
matching, the prolonged use of immunosuppressive medica-
tions to suppress graft vs host disease, and the cost, severely
limits its current use. Autologous HSCT, if successful, would
restore and maintain CD4 levels after a single treatment, and
this has motivated the search for a method using genetically-
modified HSPC (HSPC-GT). Two landmark studies of this
type have been discussed, namely those of Mitsuyasu et al
[22¢¢] and DiGiusto et al [25¢¢] (Table 1). These studies
established feasibility, but showed that new methods were
needed if levels of gene modification likely to have an anti-
HIV-1 effect were to be attained.

The field is now at the point where the first use of busulfan-
based conditioning therapy will be used in HIV/AIDS pa-
tients. A Calimmune-sponsored trial (NCT01734850) will
use a lentivirus vector, encoding 2 HIV-1 entry inhibitors, to
transduce both autologous CD4+ T cells and HSPCs in pa-
tients who are unable to continue ART due to intolerance or
treatment fatigue. The study will test the safety and efficacy of
no busulfan vs low dose (4 mg/kg) and high dose (8 mg/kg)
busulfan used as conditioning therapy. A study from City of
Hope (NCT01961063) will test the triple anti-HI'V-1 lentivirus
used by DiGiusto et al [25¢¢] to determine if a busulfan
regimen can be safely used in HIV/AIDS after successful
treatment for non-Hodgkin lymphoma. Finally, a study
from the Fred Hutchinson Cancer Research Center
(NCT01769911) will test whether HSCT-GT, modified to
contain an entry inhibitor, can be combined with a
methylguanine methyltransferase [MGMT]-based selection
method to expand gene-modified progeny cells.

Obstacles Preventing the Application of Gene Therapy
to Curing HIV-1 Infection

There are serious barriers that need to be overcome if gene-
therapy is to succeed. The main obstacles that currently pre-
vent the application of gene therapy to curing HIV-1 infection
are (a) the difficulty of applying a rare disease therapy, such as
gene transfer, to the large AIDS population; (b) resolving the
safety of cytotoxic conditioning required for cell-based gene
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therapy; (c) clinical trial design issues, including: 1, correct
identification of the target population based on thorough risk-
benefit analysis, and 2, the lack of validated cell-based end-
points defining efficacy; (d) development of a safe method for
selection of gene-modified cells; and (e) the restrictive cost of
manufacturing and technology.

Application of a Therapy Originally Developed to Treat Rare
Diseases (ie, Gene Therapy, to a Large Volume Problem,
which is the Widespread Infection with HIV-1)

Gene therapy was conceived to treat rare diseases having
invariable poor outcome, such as severe combined immuno-
deficiency (SCID), chronic granulomatous disease (CGD),
thalassemia, storage diseases, and other inborn errors of me-
tabolism. It was not until its potential use in “intracellular
immunization” was recognized [47] that gene therapy was
applied to infectious diseases. Sophisticated processes re-
quired for gene therapy, such as efficient stem cell mobiliza-
tion and collection by leukapheresis, vectored gene delivery,
and cell transduction, are complex and expensive. Yet, these
technical and financial barriers are accepted in treatment of
rare diseases, where few other options are available, given the
potential for cure. But the question remains as to whether
similarly complex and costly therapy can be applied to the
large population of persons with HIV-1, many of whom have
restricted access to healthcare.

Lymphoma is probably the best example of a disease that
faced similar hurdles. In this disease, autologous HSCT
[aHSCT] is successfully used, but only when chemotherapy
fails or risk factors suggest a need for HSCT, and optimally
when debulking of disease is possible. When first proposed,
aHSCT was considered too technically challenging and ex-
pensive for wide application, but today aHSCT can be an
outpatient procedure, and there are an estimated ~30,000—
35,000 procedures being performed worldwide every year
[48]. More importantly, aHSCT will be curative in ~70 % of
lymphoma patients. Admittedly, at present, aHSCT is not an
economically viable solution to the general problem of HIV/
AIDS. But it is foreseeable that with an eventual HIV-1
vaccine [10e¢], when the incidence of HIV-1 infection has
declined perhaps to levels similar to lymphoma, aHSCT will
be not only feasible but desirable as a curative procedure for
this disease.

Resolving the Requirement for Cytotoxic Conditioning
for Cell-Based Gene Therapy

The first use of a conditioning regimen in patients receiving
gene-modified aHSCT was performed in the setting of salvage
therapy of AIDS-related lymphoma [25¢¢]. In this pilot clini-
cal study, patients undergoing high-dose chemotherapy and
aHSCT were infused with both gene-modified (aHSCT-GT)
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and non-modified HSPC. The study demonstrated the safety
and feasibility of the approach following myeloablative
conditioning, but clearly such a potentially lethal approach
could not be applied to HIV/AIDS patients without
lymphoma/leukemia.

An optimized conditioning regimen needs to be determined
and used for delivery of HSPC-GT for treatment of HIV/
AIDS. This regimen must balance safety in a nonmalignant
population with the requirement for efficient engraftment.
Busulfan-based conditioning regimens have been used in
clinical trials of gene therapy for the correction of human
genetic diseases, including adenosine deaminase deficiency
SCID [49, 50¢] and X-linked CGD [51]. The safety of busul-
fan in HIV/AIDS patients remains to be determined in 2
currently active trials (NCT01734850 and NCT01961063).
For CD4-based gene therapy, cytoreductive chemotherapy is
also under study, using cytoxan as the pre-conditioning ther-
apy (NCT01543152).

Clinical Trial Design Issues for Gene Therapy Strategies
Treating Chronic HIV-1 Infection

It is likely that the newly diagnosed HIV-1 infected population
will dichotomize into a group of early treated patients who do
very well and mimic elite nonprogressors and those with late
AIDS diagnosis who do much less well. We know that cur-
rently a large proportion of individuals get tested for HIV-1
infection and start ART very late after initial exposure
to the virus [52]. A subset of this latter group will do
poorly because of reduced compliance [53]. It is this
chronically infected patient population, having AIDS-
related co-morbidities or ART-related toxicities, which
will be initially targeted for gene therapy approaches.
However, targeting the most relevant patient population,
with the most balanced risk:benefit ratio in gene therapy
clinical trials, is a serious challenge [54].

The population of chronically HIV-1 infected individuals
ranges from poor responders, to ART-intolerant patients, to
those with treatment fatigue, and those with AIDS-related
malignancy. Each of these subpopulations has a risk:benefit
balance and thus a varying justification for gene therapy
approaches (Table 2). The principle of justice, as outlined in
ethical discussions of clinical research, implies that the popu-
lation at risk be the eventual population that would be treated
should the therapy be successful. Thus, the HIV-1 lymphoma
population, although used initially as an ideal design for
testing novel gene therapy, is appropriate. But this group is
less than optimal for HIV/AIDS gene therapy for several
reasons. At a practical level, patients receiving salvage therapy
are becoming less available due to improvements in front-line
therapy [55]. However, once in remission, these patients are at
some risk for myelodysplasia and secondary malignancy due
to the completed anti-lymphoma therapy, and this could bias

the observations needed to confirm research treatment safety.
Also, although useful as a test-of-concept, the results from the
HIV-related lymphoma population may not necessarily trans-
late to the treatment of other HIV/AIDS patients targeted for
studies testing gene therapy products and non-myeloablative
conditioning regimens.

The endpoint of anti-HIV-1 trials require an antiviral effect
measured by HIV-1 RNA plasma levels for demonstration of
efficacy. This can usually be done with relatively short dura-
tion studies. But what if the therapy provides reconstitution of
CD4 counts or has an effect on the HIV-1 reservoir that takes
months to years? For example, the recent studies with gene
modified autologous CD4+ T cells using a zinc finger nucle-
ase to disrupt the CCRS gene have reported a decrease in HIV-
1 proviral DNA at 12 months [46]. Admittedly, a profound
effect on the reservoir should affect the plasma HIV-1 RNA
level, but these studies are usually performed while the re-
search participant remains on ART. Thus, the cell-based ef-
fects could occur without an observable effect on HIV-1 RNA
plasma levels.

Demonstrating an effect on surrogate markers of outcome,
eg, restoration of CD4 count and reversal of inflammation
markers, will therefore be the challenge [18, 56]. This raises
the question of whether definition of efficacy in the context of
gene therapy for HIV-1 cure will need to be redefined as
stabilization of CD4+ T-cell count with or without eradication
of HIV-1 reservoir.

Development of a Safe Method for Selection of Gene
Modified Cells

The HSPC-GT trial of DiGiusto et al [25<¢], although safe
using lentivirus transduced HSCT, was used with
nontransduced HSCT for ethical reasons related to lymphoma
salvage therapy, and resulted in a level of marking that was
less than 0.35 % of the progeny PBMC. This low level of
marking points out the major limitation with the use of
aHSCT-GT, which is the requirement for engraftment of ade-
quate numbers of modified stem cells to overcome the endog-
enous pool of stem cells. In addition, these types of first-in-
human studies in HIV/AIDS require a back-up unit of HSPC
to manage potential hematopoietic complications, which
places a further practical challenge on the study to collect
sufficient stem cell numbers.

Thus, since non-myeloablative aHSCT-GT will always
face the problem of competing endogenous stem cells, a
method for selection of protected cells is necessary. Several
studies have suggested that HIV-1 itself could be used for
selection [15¢, 57, 58], and patients have undergone ATI
[229, 35¢, 46] for the purpose of selecting gene-modified cells
using the selective pressure put by the actual virus. An alter-
native is the use of chemical selection, for example with
MGMT, which has been used in humans with glioblastoma
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Table 2 Potential target populations for evaluation of gene therapy-based approaches (modified from [54])

Target population HIV-1 subgroup Risk vs benefit: Ready Relevant to product development
appropriate? availability
Optimal ART therapy HIV-1+ on cART No No Possibly
HIV load: low
CD4 count: high
Off ART therapy HIV-1+ off cART Yes Yes Ideal population to observe efficacy
HIV load: high
CD4 count: high
HIV infected, immune HIV-1+ on cART Yes Yes INR Population suited for needed therapy
nonresponder (INR) on ART HIV load: low
CD4 count: low
AIDS malignancy HIV-1+ on cART Yes No Can show test-of-concept, but less applicable for
With NHL translation to general AIDS population

HIV count: low
CD4 count: low or high

[59] and has recently been shown to protect macaques from
SIV infection [57¢¢]. This approach is moving rapidly to
clinical testing in HIV/AIDS [60—62], as there is also evidence
from animal studies that HIV-1 can induce an expansion of
gene-modified cells.

Of course, in addition to providing the means for virus-
based selective pressure, ATI is used to determine if a new
treatment actually has antiviral activity [22¢¢]. The aHSCT-
GT trial of Mitsuyasu et al was the first Phase 2 trial of an
aHSPC-GT-based therapy in HIV/AIDS and provided a novel
design for testing efficacy using ATIL. The safety of ATI is
critical, and an example of appropriate design for such treat-
ment is shown in Figure 1. The ATI should not begin prior to
demonstrating evidence that a minimal, pre-determined level
of CD4 gene modification has been achieved. Then, during
the ATI, participants should be monitored closely and with
stopping rules based on changes in HIV-1 RNA level in

Fig.1 Sample of schema for ATI
design in anti-HIV gene therapy
trials

Eligibility Criteria:

-- 6-12 months after
investigational drug

-- Aviremia (<50gc/mL)
-- Detectable gene

plasma, significant reduction in CD4 counts, and clinical signs
and symptoms of viremia.

The Restrictive Cost of Manufacturing and Availability
of Technology

The high cost associated with gene therapy, whether T-cell- or
HSPC-based, challenges the economic viability of this ap-
proach. As with aHSCT for lymphoma, in which high initial
costs were lowered with experience in the method, it is likely
that aHSCT-GT will be inordinately expensive at first and
then, as the cost of goods decreases, it will become affordable.
At present, it is the cost of goods and services that contributes
the major portion of cost to aHSCT-GT, and when there are
more providers of these goods, they should become less
expensive. In the current context of HIV-1 treatment, where
the cost of lifelong ART therapy is estimated to be
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$420,000-$755,000 USD per individual, with 73 % of the
cost going toward ART [63, 64], and even the conversion to
generic once daily ART, estimated to only reduce lifetime
costs by~$42,000/patient [65], successful gene therapy for
HIV-1 could be cost effective [18, 54].

This obviously would be driven by the efficacy of
the therapy, but if aHSCT-GT could favorably impact
outcome in those HIV/AIDS patients with increased
health risks, then aHSCT-GT could result in a signifi-
cant reduction of the AIDS-related healthcare spending.
Admittedly, this is a significant hurdle, but a one-time
intervention with a gene therapy approach, which is
practical in implementation and could cure HIV-1 infec-
tion, would be a viable alternative, both economically
and medically.

Conclusions

Despite the sustained success of ART against HIV-1 infection
and the significant improvements made to this regimen, as
long as it must be taken daily for a lifetime, there will be a
desire to cure HIV-1 infection using a single treatment. It is
precisely in this aspect—of showing an impact on the viral
reservoir and, therefore, potential for a cure—that the dream
of gene therapy continues. Better anti-HIV targets and im-
proved vectors, delivery systems, and cellular processing will
contribute to the continued progress of gene therapy ap-
proaches against HIV-1 infection. Ideally, gene therapy will
eventually rely on a single injection of genetic material that
will prevent or control HIV-1 infection. A delivery system,
which would result in production of protective humoral im-
munity, might ultimately fulfill the promise of intracellular
immunization [47]. With current breakthroughs [66°e, 67],
antibodies that recognize and block evolutionarily conserved,
but essential structures of the HIV viral envelope, could
reinvigorate the search for antibody based HIV vaccines
[10ee]. Current progress with neutralizing antibodies adminis-
tered with novel gene delivery highlight the applicability of
gene therapy strategies in curing HIV-1 infection [9, 68-70].
One can also anticipate new multiplexed anti-HIV-1 vector
combinations that include host restriction factors [71], direct-
ed expression of HIV-1 neutralizing antibodies [11¢], as well
as improved conditioning regimens for T cell and HSPC gene
transfer.
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