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Abstract

Ectopia lentis (EL) is a condition that can

either herald underlying systemic conditions,

or be isolated. The recent expansion in the

genetics of these conditions has furthered the

understanding of the underlying molecular

aetiology. It is becoming apparent that novel

genes, and in particular the ADAMTS

(a disintegrin and metalloproteinase with

thrombospondin motifs) family, are

important in ocular development. The

common link in these genes seems to

be EL. The clinical management of EL is

challenging. In particular, the options for

addressing surgically induced aphakia in the

context of an ectopic capsule are varied. Little

evidence exists to direct management of

these issues. This review summarises the

molecular pathogenesis of EL and conditions

associated with it, using the genetic aetiology

as a framework. Furthermore, it summarises

some of the issues involved in its clinical

management.
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The Austrian ophthalmologist Karl Stellwag1 is

credited with coining the term ectopia lentis

(EL) in 1856. It describes abnormal movement of

the crystalline lens from within its natural

position (Figure 1). Although trauma is a

common cause, a genetic predisposition was

first proposed by Williams,2 in 1875, by

describing a family with EL in two generations.

The genetic aetiology of EL is an ever growing

topic.

Anatomy

The critical structures for maintaining the

crystalline lens in its natural position are the

zonular filaments (ZF). These form a circular

structure between the equatorial lens and the

ciliary body through a triangular structure with

the apex of the triangle on the equatorial margin

of the lens covering an area of up to 55 nm23 that

is rich in fibrillin fibres.4 They were first

described as being part of the family of

microfibrils in 19715 and the most important

macromolecular component of ZF are fibrillins.

The three distinct fibrillins are fibrillin-1, -2,

and -3, which are encoded by the genes FBN1

(OMIM 134797), FBN2 (OMIM 612570), and

FBN3 (OMIM 608529), respectively. FBN1 is a

237-kb gene consisting of 65 exons located at

15q21.1.6 It encodes fibrillin-1, the most

abundant macromolecule in ZF. This protein

consists of 47 epidermal growth factor domains,

43 of which are calcium binding (cbEGF) and

two cysteine rich domains (transforming

growth factor-binding protein-like domain).7

The latter of these are unique to this family of

proteins, and their specific function is unclear,

although they may have a role in integrin

binding.8 cbEGF domains, in particular, form

intradomain disulphide bonds and also contain

a calcium-binding consensus sequence. When

calcium binds to these bonds, the molecule

strengthens and is more resistant to

degradation. It is these structures that are

crucial to the extracellular matrix (ECM)

function of these proteins. It is proposed that

fibrillin-1 provides force-bearing structural

support, whereas fibrillin-2 acts mostly in the

early process of fibre assembly.9

The structure of the fibrillin microfibril is of a

‘beads on a string’ of 10–15 nm diameter with

beads 50 nm apart.10 The bead-like structures

1Vitreoretinal Department,
Royal Victorian Eye and Ear
Hospital, Melbourne,
Victoria, Australia

2Vitreoretinal Department,
Moorfields Eye Hospital,
London, UK

Correspondence:
D Charteris, Vitreoretinal
Department, Moorfields Eye
Hospital, City Road, London
EV1V 2PD, UK.
Tel: +44 (0)20 7566 2285;
Fax: +44 (0)20 7566 2283.
E-mail: david.charteris@
moorfields.nhs.uk

Received: 16 October 2013
Accepted in revised form:
14 November 2013
Published online: 10 January
2014

Eye (2014) 28, 162–168
& 2014 Macmillan Publishers Limited All rights reserved 0950-222X/14

www.nature.com/eye

C
A

M
B

R
ID

G
E

O
P

H
T

H
A

L
M

O
L

O
G

IC
A

L
S

Y
M

P
O

S
IU

M

http://dx.doi.org/10.1038/eye.2013.274
mailto:david.charteris@moorfields.nhs.uk
mailto:david.charteris@moorfields.nhs.uk
http://www.nature.com/eye


are mostly encoded for by exon 24 of FBN1.11 Mutations

in this exon lead to severe Marfan syndrome (MFS).

Other constituents of ZF include elastin, proteoglycans,

and GAGs. The most important associated glycoprotein

is MAGP-1, which probably has a role in cross linking the

microfibrils.10

FBN1 and Marfan syndrome

Heterozygous mutations in FBN1 lead to

haploinsufficiency of fibrillin-1. This results in disrupted

microfibrillar architecture in the ECM.12 Mutations in this

gene result in classical MFS, neonatal MFS, autosomal

dominant ascending aortic aneurysms, familial

arachnodactyly, Shprintzen–Goldberg syndrome and

severe progressive kyphoscoliosis, the ‘MASS’

phenotype (myopia, mitral valve prolapse, borderline

aortic root enlargement, skin and skeletal findings),

mitral valve prolapse syndrome, and autosomal

dominant EL. There may be significant overlap between

these conditions.

As fibrillin is a significant element of the ciliary

zonules, it is unsurprising that EL manifest in up to 60%

of MFS cases.13 MFS is an autosomal dominant disorder

encompassing characteristic features of the

cardiovascular, skeletal, and ocular systems.14 The ocular

features include EL, flat corneal curvature, glaucoma,

and axial myopia.15 The former of these (EL), with the

genetic and cardiovascular features form the major

components of the diagnostic Ghent criteria.14

The Ghent criteria for MFS were updated in 2010,14

emphasising the importance of the aortic root diameter in

this syndrome. Diagnostic dilatation of the aortic root in

the presence of either a diagnostic FBN1 mutation, or EL

or seven points of skeletal features results in the

diagnosis of MFS. The update in 2010 to the Ghent

criteria had important implications for ophthalmologists

and geneticists. Specifically, this was in relation to

patients with EL and a FBN1 mutation with no aortic root

dilatation. If the particular mutation had been previously

described in classical MFS, these patients’ diagnosis is

now MFS. A summary of this is shown in Figure 2.

Over 800 pathogenic mutations in FBN1 have been

described.16 It is suggested that a significantly higher

proportion of missense mutations involving cysteine

residues (responsible for the structurally critical

disulphide bonds) and mutations at the 50 end are

causative in EL,16,17 in particular within the first 15

exons. These exons encode the N-terminus of fibrillin-1.

This portion of the protein is thought to be integral to

homodimer formation of the fibrillin-1 molecules, which

eventually leads to polymers of fibrillin-1 and thus

microfibrils.18

The mutations in FBN1 result in abnormal distribution

and structure of microfibrillary bundles in the capsule of

MFS patients, particularly at the site of zonule

attachment,4,19 conjunctiva,20 and zonules themselves.21

Alternative genetic causes of EL

It became apparent in the intervening years since MFS

was first described that numerous other genetic

conditions are associated with EL. Although no clear

epidemiological data is available, it has been suggested

that congenital EL may have a prevalence of six per

100 000.22 It is probable that the second most common

cause of EL is a condition termed isolated ectopia lentis

(IEL).22,23 As the term suggests, this condition does not

manifest features of other conditions, ocular or systemic;

in particular MFS. It is thought to be inherited in an

autosomal dominant (OMIM 129600) or autosomal

recessive (OMIM 225100) manner.

Autosomal dominant EL

There are many reports of pedigrees in which the

classical features of MFS are not reported, but EL

segregates in an autosomal dominant fashion.17,24,25

Heterozygous mutations in FBN1 cause this condition,

and it has thus occasionally been termed autosomal

dominant isolated ectopia lentis (OMIM 129600).

Figure 1 Ectopia lentis—note attenuated zonules offering very
limited capsular support.
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Figure 2 Summary of the importance of the Ghent criteria 2010
in those without diagnostic cardiovascular features of MFS. ELS,
ectopia lentis syndrome; FBN1, fibrillin-1 gene.
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However, these patients are likely to represent part of a

phenotypic spectrum of MFS,26 and the exclusion of MFS

in these patients must be undertaken carefully and in

view of the most recent Ghent criteria for MFS,14 as

described above. In particular, detailed understanding of

the history of any FBN1 mutation found must be gained

before MFS can be excluded.

Examples of the importance of this recent alteration

include a report by Edwards and colleagues,27 who

presented a family with autosomal dominant EL with

some mild skeletal features but no cardiological features

of MFS, hence diagnosing IEL. However, the mutation

they found in FBN1 (R240C) was subsequently described

in a family with classical MFS.28 Because of the report of

this mutation in MFS, the diagnosis would alter in the

family to MFS. Further examples of such misdiagnoses

continue,29,30 suggesting that the updated Ghent criteria

should be highlighted to those involved in an EL

research. Furthermore, it has been demonstrated that

patients with EL secondary to FBN1 mutations may

progress to develop cardiovascular features of MFS.31,32

It is thus recommended that these patients have long-

term cardiology follow-up.14 The authors of the 2010

Ghent criteria14 therefore suggested that those with EL

and a previously unreported FBN1 mutation should be

termed ectopia lentis syndrome, to illustrate the potential

for cardiovascular complications. This may be somewhat

misleading, as these patients may never develop

extraocular features of fibrillin-1 dysfunction. We would

therefore simply recommend the term ‘isolated’ not be

used in the context of FBN1 mutations. We suggest

simply ‘dominant ectopia lentis’ in this situation.

Autosomal recessive IEL

This has been established for over 70 years.33,34

al-Salem,35 in 1990, was the first to describe detailed

ocular phenotypes of two consanguineous families

from Iraq and Jordan with recessive IEL. Ahram and

colleagues36 19 years later described a homozygous

nonsense mutation in ADAMTSL4 on 1q21.2 in the

Jordanian family. Further mutations in this gene have

been described causing autosomal recessive IEL37–40 and

ectopia lentis et pupillae (EL&P).40–42 The genotype/

phenotype similarity of IEL and EL&P most likely

represents a spectrum of anterior segment dysgenesis.

The role of this protein and gene are unclear, and it has

been suggested to interact with fibrillin-1 in microfibril

biosynthesis.43 However, recessive mutations in

ADAMTSL4 result in a more severe ocular phenotype

with earlier onset of EL and greater axial length, than

dominant mutations in FBN1.40 In addition, the gene and

protein are found throughout the human eye.44 It is

therefore probable that this gene may have a role in

ocular development, independent of an interaction with

fibrillin-1.

Other autosomal recessive mutations resulting in EL

Weill-Marchesani syndrome (WMS: OMIM 277600) is a

very rare condition characterised by short stature,

brachydactyly, and joint stiffness.45 The characteristic

ocular features include myopia and EL (commonly

manifesting as microspherophakia). Although causative

heterozygous mutations in FBN1 has been described,46 it

is more commonly inherited in an autosomal recessive

manner, caused by mutations in ADAMTS1047,48 on

19p13.2. EL is described in the majority of both dominant

and recessive cases.49

In 2009, Morales and colleagues47 described

homozygous mutations in ADAMTS17 on 15q24 in a

consanguineous family causing EL and short stature.

This family did not fulfil the diagnosis of WMS. The

authors therefore coined this condition as ‘Weill-

Marchesani-like syndrome’ (OMIM 613195) (WML).

Distinguishing this from WMS is challenging. The only

further report to date of a mutation in this gene causing

this condition was later published by the same group in

2012.50 Finally, mutations in LTBP2 on 14q24.3 have been

described to cause EL, both in the context of WMS51 and

isolated with other ocular features.52 Unlike other

members of its protein family, LTBP2 does not bind to

latent transforming growth factor, and instead its

C-terminus has high affinity for the N-terminus of

fibrillin-1. An ocular phenotype including EL caused by

mutations in this gene may therefore not be surprising.

Homocystinuria (OMIM 236200) is a rare metabolic

disorder of sulphur metabolism, owing to recessive

mutations in cystathionine beta-synthase (CBS) on 21q22.

Systemic manifestations include mental retardation,

hypopigmentation of skin and hair, thromboembolic

events, and marfanoid habitus. Ocular manifestations of

untreated homocystinuria include myopia and EL.53,54

Although congenital vitreoretinopathies commonly

cause lenticular changes55 Knobloch syndrome (OMIM

267750, 608454) (KNO) is the only one in which EL is

commonly a feature. This is an autosomal recessive

condition first described in 1971,56 with the cardinal

features consisting of high myopia, vitreoretinopathy,

and occipital defects. Mutations in COL18A1 on 21q22.3

are causative of this condition.57 The encoded protein

COL18A1 predominates in basement membranes,

including the inner limiting membrane of the neural

retina.58,59 Mutations in this gene therefore

understandably contribute towards the preponderance

for rhegmatogenous retinal detachment in KNO.

A similar disruption of the basement membrane of the

lens capsule, particularly at the insertion of the zonules,
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may contribute to EL being the most common further

ophthalmic feature of this condition. Very recently, a

proband was described with features similar to KNO

including EL, smooth irides, high myopia, and cone-rod

dystrophy.60 This patient was found to have a

homozygous mutation in VSX2, a gene on 14q24.3.

Although this protein has a role in retinal development,61

its potential role in EL is a yet unexplained.

It must be remembered that mutations in PAX6,

causing aniridia, can also manifest with EL.62 In addition,

it may be expected that pseudoexfoliation and high

myopia, both of which are known to manifest weakening

of the ZF, may result in EL. However, spontaneous EL

has rarely been reported in these conditions. A summary

of the genetic aetiology of EL is presented in Table 1.

The continual discovery of genes causing EL has led to

the recent interest in the apparent role of the ADAMTS

family in ocular disease and development. This is a

group of 19 proteases which have roles in ECM

degradation, connective tissue structure, cell migration,

and angiogenesis.63 Included in this family are the seven

ADAMTS-like proteins that lack the catalytic domain of

the ADAMTS family and are thus thought to have a

regulatory role of the ADAMTS enzymes.64 To date four

members of this superfamily of genes have been

described to cause ocular phenotypes (Table 2), with EL

as a common feature. The specific role of the ADAMTS

family in ocular development remains to be clarified.

Specific ophthalmic features of the different conditions

associated with EL have not been defined. Although

superior movement of the crystalline lens has been

suggested in MFS13 and anterior dislocation in

homocystinuria,53 these have not been convincingly

replicated. A recently devised clinical grading system65

Table 1 Genes confirmed to cause ectopia lentis

Gene Inheritance Condition Reference

FBN1 Autosomal dominant Marfan syndrome Dietz et al (1991)73

Dominant ectopia lentis Edwards et al (1994)27

Dominant Weill Marchesani Syndrome Faivre et al (2003)46

ADAMTSL4 Autosomal recessive Isolated ectopia lentis Ahram et al (2009)36

Ectopia lentis et pupillae Christensen et al (2010)41

Ectopia lentis and craniosynostosis Chandra et al (2012)40

CBS Autosomal recessive Homocystinuria Kraus (1994)74

ADAMTS10 Autosomal recessive Weill Marchesani Syndrome Daganeau et al (2004)48

ADAMTS17 Autosomal recessive Weill Marchesani Like Morales et al (2009)47

COL18A1 Autosomal recessive Knobloch Sertie et al (2000)57

PAX6 Autosomal recessive Aniridia Jin et al (2012)62

LTBP2 Autosomal recessive Weill Marchesani Syndrome Haji-Seyed-Javadi et al (2012)51

Megalocornea, spherophakia Desir et al (2010)75

VSX2 Autosomal recessive High myopia, EL, cone-rod dystrophy Khan et al (2013)60

Table 2 Ocular manifestations of recessive mutations in the ADAMTS genes

Gene Ocular phenotype Reference

ADAMTSL4 Isolated ectopia lentis (OMIM 225100) Ahram et al (2009)36

Greene et al (2010)37

Aragon Martin et al (2010)38

Neuhann et al (2010)39

Chandra et al (2012)40

Ectopia lentis et papillae (OMIM 225200) Christensen et al (2010)41

Chandra et al (2012)40

Sharifi et al (2013)42

Ectopia lentis and craniosynostosis (OMIM 603595) Chandra et al (2012)40

ADAMTS10 Weill-Marchesani (OMIM 277600) Dagoneau et al (2004)48

Kutz et al (2008)76

Morales et al (2009)47

ADAMTS17 Weill-Marcahasni-like (microsherophakia and short stature) (OMIM 613915) Morales et al (2009)47

Khan et al (2012)50

ADAMTS18 Microcornea, myopic chorioretinal atrophy and telecanthus (MMCAT) Aldahmesh et al (2013)77

Early-onset retinal dystrophy Peluso et al (2013)78
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may help characterise these features to clarify such

suggestions in the future.

Clinical management

Many cases of lens subluxation can be managed without

surgical intervention. Appropriate spectacle or contact

lens correction will for most individuals provide

adequate stable visual acuity.66 Patients should be

counselled that after childhood, lens displacement is very

unlikely to progress. Surgery may be indicated where

there is progressive lens subluxation, cataract formation,

lens instability or less commonly pupil block glaucoma,

or retinal detachment. Lens instability can easily be

overlooked as patients are frequently unaware that this is

the cause of their visual problems.

Subluxed lenses with limited zonular support may in

some cases be managed with phacoemulsification

surgery, however long-term stability following

phacoemulsification has not been consistently reported.

Pars plana lensectomy together with vitrectomy has

therefore often been utilised to provide stable long-term

results. We have previously reported successful outcome

from pars plana surgery for subluxed lenses in MFS,

initially leaving patients aphakic (many were previous

contact lens wearers).67

Various options exist for lens replacement following

pars lensectomy. Sutured posterior chamber lenses

can provide excellent visual results.68,69 We have

documented that late suture breakage (using 10/0

proline) is an important problem using this technique70

and have therefore moved away from suturing lenses

as a technique of choice. Modern designs of anterior

chamber lens implant generally have low levels of

complications71 and are suitable for this patient

population. Similarly newer designs of iris-supported

IOLs72 and intra-scleral fixation of IOL haptics have

been reported with good results recently, although

long-term follow-up for these techniques in aphakic

eyes has not yet been reported. Currently, there is no

consensus on which type of IOL is most suitable for

these patients,71 therefore decisions must be made on

individual cases.

Summary

Inherited EL is a condition that may herald numerous

syndromes or be isolated. Differentiating these

conditions is critical, and this review has summarised

some of the important genetic aetiologies involved.

Understanding these would help involved

ophthalmologists and eye scientists in the crucial role

they would have in this process.
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