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Abstract
A study was conducted to test the hypothesis that instruction with graphically integrated
representations of whole and sectional neuroanatomy is especially effective for learning to
recognize neural structures in sectional imagery (such as MRI images). Neuroanatomy was taught
to two groups of participants using computer graphical models of the human brain. Both groups
learned whole anatomy first with a three-dimensional model of the brain. One group then learned
sectional anatomy using two-dimensional sectional representations, with the expectation that there
would be transfer of learning from whole to sectional anatomy. The second group learned
sectional anatomy by moving a virtual cutting plane through the three-dimensional model. In tests
of long-term retention of sectional neuroanatomy, the group with graphically integrated
representation recognized more neural structures that were known to be challenging to learn. This
study demonstrates the use of graphical representation to facilitate a more elaborated (deeper)
understanding of complex spatial relations.

Neuroanatomy is a scientific discipline that describes the structure and operation of nervous
systems. It is a fundamental discipline with applications in many areas of biological, social,
and clinical science. Expertise in neuroanatomy includes recognition of parts of the human
brain in sectional representation. Sectional representation is the two-dimensional (2-D)
spatial representation of a three-dimensional (3-D) structure in terms of planar slices
sampled from its interior. Images from computed tomography (CT) and magnetic resonance
imagery (MRI) are familiar examples (Mai, Paxinos, & Voss, 2007). Neuroanatomy is a
challenging topic to learn, and sectional neuroanatomy is particularly challenging (Chariker,
Naaz, & Pani, 2011, 2012; Drake, McBride, Lachman, & Pawlina, 2009; Oh, Kim, & Choe,
2009; Ruisoto, Juanes, Contador, Mayoral, & Prats-Galino, 2012).

Learning to recognize neural structures in sectional representation can be described as an
effort to establish a mapping between different sets of representations. Briefly, the neural
structures can be understood as a set of whole structures, with 3-D form, and as sets of
planar samples taken in a coronal (frontward), sagittal (sideways), or axial (horizontal)
orientation. As illustrated in Figure 1, sectional samples generate representations with a
great deal of variation in how individual structures appear. A primary challenge for the
learner is to develop a coherent understanding of the mapping among the various spatial
representations. The present research tested the hypothesis that learning sectional
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neuroanatomy in more challenging cases would be facilitated by the explicit illustration of
the spatial relations between whole and sectional anatomy, as illustrated in Figure 2.

The context for this hypothesis is a project aimed at developing effective methods of
computer-based instruction of human neuroanatomy (Chariker et al., 2011, 2012; Pani,
Chariker, & Naaz, 2013). The project has been guided by an effort to develop instructional
methods appropriate for the unique challenges presented by this domain. In the first place,
the human brain is a complex spatial structure, and its anatomy will be learned most
efficiently through study of spatial representations that present critical concepts directly
(e.g., Felten & Shetty, 2010; Mai et al., 2007; Nolte & Angevine, 2007). Modern computer
graphics have become an excellent platform for representing spatial structures, and they are
being incorporated into instruction in a variety of STEM disciplines, including geoscience,
astronomy, and chemistry (e.g., Reynolds, 2001).

Two further considerations have been critical to the development of computer-based
learning environments. The first is a goal to incorporate graphics into an active learning
environment in which study, test, and feedback can be cycled quickly and repetitively (see
also Koedinger & Corbett, 2006). Adaptive exploration was developed to be a method that
incorporates flexible graphical exploration in the context of repeated testing and feedback
(Chariker et al., 2011; Pani et al., 2013). The second consideration is that neuroanatomy is a
very large and complex domain that requires extensive self-study. The capabilities for
information management provided by computers are well suited to support self-study in a
large domain.

Specific hypotheses about how to design computer-based instruction of neuroanatomy have
come from an effort to incorporate into instruction the general principles of organization and
integration of knowledge that have been explored in the study of learning and memory
(Bower, Clark, Lesgold, & Winzenz, 1969; Bransford, 1979; Tulving & Donaldson, 1972).
A basic hypothesis was that 3-D whole anatomy is a form of representation that can be used
efficiently to construct a unified understanding of sectional representations (Chariker et al.,
2011). If whole anatomy is mastered first, learners will have a mental model(s) of the brain
that will support transfer of learning to mastering sectional anatomy.

In general, this hypothesis was confirmed. When experimental participants learned the
anatomy of the human brain from computer graphical models, whole anatomy was learned
relatively efficiently (Chariker et al., 2011). Later learning of sectional anatomy began at a
high level of performance, compared to a control group that began learning with sectional
anatomy. Moreover, when participants learned whole anatomy first, they learned sectional
anatomy in fewer trials, demonstrated superior long-term retention, and were better able to
generalize knowledge to biomedical images not seen before (Chariker et al., 2012). In a later
study, interleaving learning trials for whole and sectional anatomy further increased the
efficiency of learning sectional anatomy (Pani et al., 2013).

The present hypothesis, that a more explicit graphical integration of whole and sectional
anatomy will improve learning, arises from two additional points. One concerns data from
these prior studies, and the other concerns theory. In regard to data, there was large variation
in the success with which neural structures were learned (Chariker et al., 2012). Several
structures were mastered in the first trial of learning. Other structures consistently required
many more trials to learn, and this disadvantage carried over to long-term retention and to
generalization. The most consistent set of difficult structures included six items:
hypothalamus, mammillary body, nucleus accumbens, subthalamic nucleus, substantia nigra,
and red nucleus. In a hierarchical cluster analysis of patterns of error over learning trials,
these structures formed the single most differentiated cluster. Early in learning, these
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structures were omitted from test answers. Later in learning, they were confused with each
other.

In regard to theory, the basic task to master in learning sectional neuroanatomy is visual
recognition of structures that have unique names, properties, and concepts associated with
them. A neurologist, for example, must be able to look at an MRI image and say, “This is
the tail of the caudate nucleus.” In achieving perceptual recognition, the cognitive system
often can use categorical spatial terms, such as surrounds, curved, runs through, thin,
nodular, and behind (e.g., Biederman, 1987; Kosslyn, 1994; Stevens & Coupe, 1978;
Tversky, 1981). Such categorical terms are very often applicable to basic knowledge in
neuroanatomy. The putamen, for example, is a medium-sized ovoid shape flattened in a
sideways direction located just inside the cortex near the middle of the brain.

It was implicit in the prediction of transfer of learning from whole to sectional
neuroanatomy that there is invariance of categorical spatial descriptions across these
representations. For example, the cerebral cortex is a large convoluted surface running
around the outside of the brain both in whole and in sectional representations (Figure 1).
Small structures at the middle of the brain in whole anatomy are small structures at the
middle of the brain in sectional anatomy.

Of course, this invariance across whole and sectional anatomy does not apply to all spatial
properties of the brain. Thus, a movement from front to back through a series of coronal
sections maps to a movement from left to right within a single sagittal section. However,
knowledge of whole anatomy in conjunction with a global knowledge of spatial
transformations will provide a clear basis for organization and integration of sectional
anatomy. Moving through coronal slices and finding the amygdala at the front, the putamen
in the middle, and the cerebellum at the back should be easy to map to a sagittal image
where the amygdala is seen to the left, the putamen is at the middle, and the cerebellum is at
the right. Spatial reasoning is involved in understanding the relationship, but it would seem
to be fairly simple if knowledge of whole anatomy can be used to guide and reinforce the
reasoning.

With these ideas made explicit, it becomes clear why certain anatomical structures presented
a challenge to learning. They are similar to each other in being small, ovoid, and relatively
near to each other in the middle of the brain. Simple categorical descriptors such as “small”
or “near the middle” do not differentiate them. If such descriptors do not uniquely
characterize the anatomical structures, they also cannot be used in integrating knowledge of
whole and sectional anatomy. Moreover, confusion among similar structures would have
increased the uncertainty in reasoning about global spatial relations among the different
sectional views of the brain (e.g., coronal and sagittal views). Easier structures to learn, such
as the amygdala, the putamen, and the cerebellum, have different shapes and sizes that help
to guide and constrain spatial reasoning about them. If individual structures are not
confidently recognized, it is a more complex problem to discover how they are spatially
related across different views.

These challenges for learning may be significantly reduced by providing an explicit
illustration of the spatial relations between whole and sectional anatomy. The information
provided in a sectional sample is a small subset of the spatial information that comprises the
structure of the brain. If identifiable parts of the 3-D brain remain visible while the section is
viewed, the information in the section can be related more explicitly to the whole brain than
would be possible with application of a mental model retrieved from memory. With the
additional perceptual support, the sectional information could be related more completely, in
greater detail, and more confidently to the whole brain. It could be seen, for example, that a
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coronal section occurs toward the front of the brain, just ahead of the hippocampus, with the
brainstem located a certain distance behind. If the individual also is able to move the plane
at which sectional information is sampled while parts of the 3-D anatomy remain visible, it
should be possible to develop an understanding of the ordering of sectional samples from
front to back, top to bottom, and side to side. The individual can learn to describe the
structure of the brain in terms of a spatial matrix of sectional samples that is well defined in
relation to the structure of the whole brain (consider Novick & Hurley, 2001).

Such integration of whole and sectional information would clarify the spatial relations of the
neural structures and their sectional samples to each other. At the same time, the additional
cognitive context for individual structures should further differentiate them. It should
become more obvious, for example, how the hypothalamus and the red nucleus are different.
Both of these outcomes should be valuable in later recognition of sectional representations.
From the point of view of research on memory (Craik & Tulving, 1975), this method
encourages a more elaborated encoding of critical spatial relations among the
neuroanatomical structures and the various representations of them.

In turning to the larger experimental literature, an argument can be made that explicit
illustration of the relations between whole and sectional anatomy might not improve
learning. Several studies have demonstrated cases in which sophisticated graphics do not
facilitate learning (Mayer, Hegarty, Mayer, & Campbell, 2005; Tversky, Morrison, &
Betrancourt, 2002). In direct comparisons between methods of computer-based learning, the
more compelling graphics are often not the most effective method for learning (Chariker et
al., 2011; Pani, Chariker, Dawson, & Johnson, 2005). Another body of work suggests that
people with low spatial ability do not always benefit from computer graphics made available
during learning (Keehner, Hegarty, Cohen, Khooshabeh, & Montello, 2008; Levinson,
Weaver, Garside, McGinn & Norman, 2007).

It has been important to show that the new computer-based technologies are not a panacea.
In the long term, however, there will be domains in which computer-based learning
environments are especially valuable for instruction. The domains are very likely to include
disciplines such as neuroanatomy, where physical demonstration and graphical illustration
have long been mainstays of instruction. It is a question for research as to which
instructional designs will be effective in the deployment of computer-based technology.

Whether individuals with low spatial ability are disadvantaged in the use of computer
graphics will depend on the instructional system that is used (see Keehner et al., 2008; Stull,
Hegarty, & Mayer, 2009). Moreover, in a complex spatial domain such as neuroanatomy,
there is a question whether people with low spatial ability are at a disadvantage for every
form of demonstration or illustration (Lufler, Zumwalt, Romney, & Hoagland, 2012).
Indeed, it is possible that computer graphics will disadvantage this group least of all,
depending on how the system is designed (Hegarty, 2004). Finally, most studies of spatial
ability and learning have focused on learners’ initial contact with spatial material, but
outcomes in the short term may not predict outcomes in the long term (see Uttal & Cohen,
2012). In longitudinal studies of computer-based learning of neuroanatomy, people with low
spatial ability begin in the first trial of learning at a lower level of test performance
(Chariker et al., 2011; Pani et al., 2013). However, their learning takes place at a rate
comparable to other individuals. Across all of learning, they require only a few additional
trials.

Overall, it was an empirical question whether explicit illustration of the relations between
whole and sectional neuroanatomy would improve learning. The possibility was tested with
an experimental condition in which the learner could move a cutting plane continuously
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through the brain to generate either a coronal, sagittal, or axial sequence of sectional views.
As the cutting plane was moved with a slider, the part of the brain in front of the plane
disappeared, while the part behind the plane remained visible (Figure 2). Learning began
with mastery of whole anatomy, shown on the left side in Figure 3, as that has been shown
to be an efficient method for gaining basic expertise in neuroanatomy. Thus, instruction with
the moving cutting plane was a way to learn sectional anatomy in the context of familiar
whole anatomy. A control group also learned whole anatomy first. They then learned
sectional anatomy with a more standard presentation, shown on the right side in Figure 3.
For this group, movement of the slider changed the section through the brain that was
displayed on the screen. There was no further display of whole anatomy. Due to the critical
importance of testing and feedback in the instructional method, both of the experimental
groups were tested and were provided feedback only with sectional anatomy. Thus, the
difference in the instructional method between the two groups was in the graphical tools
available for study of sectional anatomy.

Because the control group used a method that was known to lead to efficient learning
(Chariker et al., 2011), we did not expect that the experimental group would learn more
efficiently. As discussed earlier, it was also known that many neural structures would be
learned well with either method. Questions for research concerned whether the experimental
group would have better performance in long-term retention and in generalization to new
sectional imagery for neural structures that were known to be difficult to learn.

Method
Participants

Sixty-four volunteers between 16 and 34 years of age were recruited for the study through
paper and online advertisements posted throughout the University of Louisville campus. A
detailed survey assessed knowledge of neuroanatomy. Only volunteers with minimal or no
knowledge of neuroanatomy were included in the study.

Participation in the study required coming to the laboratory for an hour session at least twice
a week. Sixteen participants did not complete the study due to unanticipated scheduling
conflicts, because they did not comply with instructions, or because they dropped out
without explanation. On average, participants took 12 hours to complete the study. On
completion, participants were compensated 100 dollars.

Participants were randomly assigned to learning groups with the constraint that the means
and distributions of spatial ability were balanced between the groups (see Psychometric tests
in Materials section). After data were collected, a further balancing procedure was used to
match the groups on a pretest of sectional neuroanatomy identification. This pretest was
given after whole anatomy learning (in which individuals in the two groups were treated
identically) but prior to sectional anatomy learning. The balancing procedure was used
because it has been shown that in studies of learning in challenging domains there is extreme
variation in the performance of paid volunteers due to motivation and work habits (Pani,
Chariker, Dawson, et al., 2005). To better control this variability, participant data were
excluded from all statistical analyses if a participant’s combination of spatial ability and
pretest score did not match with individuals in the other experimental group. In particular,
spatial ability and pretest scores were treated as dimensions in a Euclidean space. The
standard Euclidean distance formula was used to calculate the distance between participants
in the space. A recursive algorithm was developed to find the best matching pair of
participants between the two experimental groups, the next best match, and so on. When the
worst matching pair of participants was identified, their data were removed from the sample
of participants. This process was repeated until the differences between the two groups on
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both spatial ability and pretest performance had p > .5. Several papers have suggested that
two groups should be considered matched on a variable when the p obtained from
comparing the groups is above .5 (Frick, 1995; Mervis & Klein-Tasman, 2004). After
application of the matching algorithm, twenty participants were included in each group.

Materials
Psychometric tests—Before learning neuroanatomy, participants were tested on their
spatial ability and the capacity of their short-term memory for visuospatial patterns. The
Differential Aptitude Test: Space Relations (DAT: SR; Bennett, Seashore, & Wesman,
1989) was used to measure spatial ability. The DAT: SR is a multiple-choice test of mental
paper folding. Short-term memory for visuospatial patterns was measured with the Designs I
test for immediate recall from the Wechsler Memory Scale IV (Wechsler, 2009). The test of
visuospatial memory did not yield results relevant to the main topic of this article and will
not be discussed further.

Neuroanatomical model—An accurate 3-D computer graphical model of the human
brain (Figure 3) was adopted from Chariker et al. (2011). The model consisted of 19 major
neuroanatomical structures, including amygdala, brainstem, caudate nucleus, cerebellum,
cortex, fornix, globus pallidus, hippocampus, hypothalamus, mammillary body, nucleus
accumbens, optic tract, pituitary, putamen, red nucleus, subthalamic nucleus, substantia
nigra, thalamus, and ventricles. Dense sectional representation of the 3-D model was
available in the three standard planes for use in the sectional anatomy learning programs
(Figure 3). There were 60 coronal sections, 50 sagittal sections, and 46 axial sections.

Learning programs—Three computer programs were used for instruction in this study:
one for learning whole anatomy and two for learning sectional anatomy. The basic structure
of learning trials was the same across all three programs. During an initial 4-minute study
period, participants could freely explore the brain model using the graphical tools available
for that program. Clicking on a structure with a computer mouse highlighted the structure,
and its name appeared prominently at the bottom of the screen. In a self-timed test period,
participants named the structures they had learned by clicking on each structure and
selecting its name from a virtual button panel that represented all 19 structures. Participants
could omit naming structures if they wished, and a name could be used more than once.
After a structure was named, it turned blue to help the participant keep track of what already
had been named. Immediately after the test, there was a 2-minute feedback period. This had
two parts: a numerical feedback screen and subsequent graphical feedback. The numerical
feedback indicated the number of structures that were named correctly, the number of
structures named incorrectly, and the number of structures omitted. The graphical feedback
consisted of a color coding of the brain model: the structures that had been named correctly
appeared in green, the structures named incorrectly appeared in red, and the structures that
were omitted appeared in their original color. During the feedback period, participants could
interact with the color-coded structures using the same tools available in study. Participants
could click on structures, highlight them, and see their correct names. The feedback stage
ended with the appearance of an exit screen, which displayed the participant's percentage
correct score on the test.

Whole anatomy program: The program for learning whole anatomy featured the 3-D
model of the brain (Figure 3). Both of the groups learned whole anatomy using this program.
During the study period, participants could explore the model freely with the help of tools
provided for rotation, zooming, and virtual dissection. As described earlier, clicking on
structures highlighted them and displayed their names. Participants engaged in virtual
dissection of the brain by selecting structures and removing them one by one, using buttons
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on the button panel at the right side of the screen. Participants also could restore the
structures that had been removed, either one by one or all at once. The brain model initially
appeared from a front, side, or top view, but participants could rotate the brain by any
amount.

In testing, the orientation of the brain model was restricted to angles within 45 degrees of the
view in which the brain was first presented in the study period. The tools for exploring the
brain remained available. Participants were asked to name as many structures as they could
by selecting structures and clicking on their names in the button panel. With 19 structures in
the 3-D model of the brain, this test of whole anatomy recognition consisted of 19 items.

Sections only program: After learning whole anatomy, one experimental group, called the
whole then sections group, learned sectional anatomy using a program that permitted
exploring the series of 2-D sections taken from the 3-D model of the brain (Figure 3).
During the study period, the participants saw thin sections of the brain in a single view
(coronal, sagittal, or axial). The participants could move from one section to another by
using the computer mouse to move a slider at the bottom of the screen. In the coronal view,
for example, moving the slider successively displayed all of the coronal sections of the brain
from front to back. At each section, participants could click on individual structures to
highlight them and learn their names. Structures remained highlighted during navigation
through the sections.

In testing of sectional anatomy recognition, a subset of the available sections (12–15) was
used in each test. Between one and five structures were indicated by arrows in each of the
sections. The participants were to name each structure indicated by an arrow. They did this
by clicking on the structure, selecting its name from the button panel, and submitting the
answer. The arrows were adopted for testing because asking for the names of all structures
in multiple sections would have comprised a test that was too long. Numbers were displayed
on the screen to show the number of structures to be named in a section, how many
structures had been named in that section, and the number of test sections remaining.
Participants moved from one test section to the next by clicking on a button. They could not
go back to a previous test section. Sectional samples of structures were varied across tests,
and longer structures were sampled twice in each test. There were 29 test items for the
coronal and sagittal views of sectional anatomy and 27 test items for the axial view.

The graphical feedback for sectional anatomy was similar to the presentation during the
study period. All of the sections of the brain were available to be explored. The test sections
were clearly marked as "Test Section," and the arrows indicating the test items remained.
The test items again were color coded to reflect the performance on the test. The feedback
stage allowed participants to go freely through all of the sections and to locate the test
sections among them. Participants could select structures and see their correct names.

2-D/3-D program: After learning whole anatomy, a second experimental group, called the
explicit 2-D/3-D group, learned sectional anatomy using a program that permitted moving a
cutting plane through the model of whole neuroanatomy (Figure 2). During the study period
of a trial, participants could explore the 3-D model using all the tools they used earlier in the
whole anatomy program, including tools for rotation, zooming, and virtual dissection. In
addition, the 3-D model could be sliced to view sectional anatomy by using the computer
mouse to move a slider at the bottom of the screen. On moving the slider from left to right, a
virtual cutting plane appeared to move through the brain and to remove the part of the brain
in front of the plane. This exposed the 2-D cross-sections of the 3-D structure from one end
of the brain to the other. In the axial view, for example, moving the slider from left to right
made a horizontal cutting plane move from the top of the brain to the bottom, removing the
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part of the brain above the plane. Beyond the cutting plane, the 3-D structures remained
visible, allowing the participants to see the transformation from 3-D to 2-D. Participants
could move the slider back and forth to see how these 3-D structures would appear in
sections from different depths in the brain. The test and feedback stages were identical to the
test and feedback stages of the sections only program.

Tests of generalization—Three tests of generalization were created using biomedical
images to test the transfer of knowledge to new representations of sectional neuroanatomy.
The biomedical images were MRI images (from the SPL-PNL Brain Atlas; Kikinis et al.,
1996) and color photographs from the Visible Human 2.0 dataset (Figure 4; Ackerman,
1995). Compared to the Visible Human (VH) images, MRI images have low resolution, low
contrast, and relatively few clear boundaries between structures. Both sets of images showed
many structures, such as bones, muscles, additional neural structures, and blood vessels that
were not shown during learning. Both sets of images were presented from all three standard
anatomical views. Tests of generalization were always blocked by image type (VH or MRI)
and anatomical view. Test items were selected to match the testing in the sectional anatomy
learning programs. Thus, there were 29 test items for coronal and sagittal views, and 27 test
items for the axial view. No feedback was given for the tests of generalization.

In a test of generalization called Global Cues, participants were asked to name all
recognizable structures in each image. The participants received two global cues to orient
them for this test. A visual cue consisted of a brain icon at the upper left corner of the screen
with a line going through it to indicate the orientation and position of the plane of section. A
numeric cue was presented below the brain icon to indicate the number of identifiable
structures in the image. The participant indicated the location of a learned structure in the
image by clicking on it with the mouse. A red dot appeared on the image at that location.
The participant then indicated the name of the structure by selecting the name from the
standard button panel. When the participant was confident he had his best answer, he
submitted it by clicking on a virtual button.

In a test of generalization called Submit Structure, the name of a single neural structure
appeared at the bottom of the screen for each image. The participant’s task was to indicate
the location of the named structure by clicking it with the mouse. Clicking on the image
caused a red dot to appear at that location. When the participant was confident he had his
best answer, he submitted it by clicking on a virtual button. He then proceeded to the next
image.

In a test of generalization called Submit Name, a red arrow on each image indicated a single
structure. The participant named the indicated structure by selecting the name from the
button panel and submitting the answer.

Sections pretest and test of long-term retention—The sections pretest and test of
long-term retention were tests of knowledge of sectional anatomy with the same format as
those in sectional anatomy learning trials. However, the tests were administered without
study or feedback periods.

Instruction programs—Practice programs were created for learning the options for user
interaction with each of the learning programs and the generalization tests. A mock brain
model was created for use in the practice programs. The mock brain model contained several
geometric structures in a variety of shapes and spatial relations. The structures were given
pseudobiological names. Demonstration videos were created for the practice programs.
These included visual demonstration of user interaction along with simultaneous verbal
descriptions. After watching a video, the participant used a practice program with the mock
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brain to demonstrate to a member of the research team an understanding of how to use the
program. The experiment did not proceed until the participant could successfully
demonstrate complete use of the relevant programs in study, test, and feedback. The practice
programs for the generalization tests used biomedical images (MRI and VH images) that
were not part of the actual tests.

Apparatus
The study was conducted using individual workstations with high capacity graphics cards
and sufficient RAM for smooth presentation of the neuroanatomical models and images. The
programs were displayed on 24-inch LCD color monitors at a resolution of 1920×1200
pixels. The participants were seated approximately 60 cm from the monitors (arm’s length).
Participants used the learning programs by themselves in quiet rooms. They were provided
with headphones for use with the instructional videos.

Design and Procedure
The primary hypothesis of the study was evaluated using two learning groups: whole then
sections (WtS) and explicit 2-D/3-D (2-D/3-D). The participants in the two learning groups
received identical treatment except for the program used to learn sectional anatomy.

The psychometric tests were conducted immediately after informed consent was obtained.
Participants were then assigned to a learning condition and were given instruction videos to
watch in a quiet room with headphones. After watching the videos, the participants used the
practice programs until they could demonstrate to an experimenter a competent use of the
interactive tools.

All participants learned whole anatomy first. Whole anatomy was learned from the three
different views (front, side, and top) in alternating trials. The order of presentation of the
views was counterbalanced over participants. Participants continued cycling through trials
until they reached at least 90% correct test performance on three successive trials.

After participants completed learning whole anatomy, they were given the sectional
anatomy pretest for all three views of sectional anatomy (coronal, sagittal, and axial). After
taking the pretest, participants learned sectional anatomy using one of the two learning
programs (sections only or 2-D/3-D), based on their group assignment. Participants learned
sectional anatomy in the three standard views in alternating trials. Participants continued
learning until they reached at least 90% correct test performance on three successive trials.

The three tests of generalization of knowledge were given as soon as possible after learning
was completed (although not the same day). The order of the generalization tests was
counterbalanced over participants. Tests of long-term retention of sectional anatomy were
administered for all three anatomical views four to eight weeks after completion of the
learning trials, depending on the participant’s schedule.

Scoring—Two of the generalization tests (Global Cues and Submit Structure) required
manual scoring of the locations of mouse clicks on images. The scoring was done with
versions of the biomedical images that had explicit boundaries drawn for each structure. The
individual who scored the responses was blind to the participants’ identities and group
assignment.

Item difficulty—Because the primary hypothesis concerned learning neuroanatomical
structures that were particularly difficult to learn, the data were divided according to the
difficulty of individual test items. This was done in two ways. First, on the basis of the prior
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work, the six neural structures discussed earlier were designated a priori to be difficult items
to learn. Three different sectional views of those structures generated 18 difficult test items.

The second method was a statistical procedure developed by Chariker et al. (2012). For each
of the two groups (WtS and 2-D/3-D), the mean proportion correct on each test and the
upper and lower bounds of the mean at the 95% confidence interval were determined by
binomial logistic regression applied over the complete set of tests (e.g., the three tests of
long-term retention). The next step was to define the raw measure of item difficulty as the
proportion of the participants in a group that identified an item correctly on a particular test.
Then, for each test, test items with proportions correct above the lower bound of the
confidence interval were categorized as typical. Test items with proportions correct below
the lower bound of the confidence interval were categorized as difficult. Items categorized
as difficult also had to have less than 75% of the sample identifying them correctly. For each
test, items identified as difficult in either of the two groups were categorized as difficult test
items. Finally, mean performance of each participant on the typical and the difficult test
items was calculated for each test.

Results
Long-Term Retention

The two methods for determining item difficulty led to statistical outcomes that were close
approximations to each other. The two sets of results were identical for the sets of
comparisons that were statistically significant, and the effect sizes were very similar. For
sake of brevity, we report here only the analyses from use of the statistical method for
identifying difficult test items.

The analysis of item difficulty in long-term retention of sectional neuroanatomy led to
categorization of 65 test items as typical (76.5% of the test items) and 20 as difficult (23.5%
of the items). Mean retention of the two learning groups on typical and difficult test items is
shown in Figure 5. A 2×2 mixed randomized ANOVA was conducted using item difficulty
as a repeated measure variable and learning condition as a between group variable. There
were significant main effects of item difficulty, F(1, 38) = 197, p < .001, np

2 = .839, and
learning condition, F(1, 38) = 5.396, p = .026, np

2 = .124. Most importantly, there was a
clear interaction between item difficulty and learning condition, F(1, 38) = 10.205, p = .003,
np

2 = .212. A planned pair-wise comparison showed a significant effect of condition for
difficult test items, t(1, 38) = 2.797, p = .008, Cohen’s d = 0.89. The 2-D/3-D group scored
16 percentage points higher than the WtS group in identifying difficult test items in the test
of long-term retention.

Spatial ability and long-term retention—Spatial ability did not correlate with
performance in long-term retention for either group (WtS: r = .332, p = .152; 2-D/3-D: r = -.
023, p = .922). To test more directly whether spatial ability affected learners’ ability to
benefit from the 2-D/3-D learning condition, the participants in each condition were divided
by spatial ability into two groups using a median split. The two higher ability groups had a
mean DAT: SR of 90.6, and the two lower ability groups had a mean DAT: SR of 58.2.
Because the mean percentile for the lower group was near 50, this group should be
considered average on spatial ability. A 2×2×2 mixed randomized ANOVA was conducted
to analyze the role of spatial ability in learning. Learning condition, item difficulty, and
DAT: SR were used as independent variables.

There was no interaction of spatial ability with learning condition, F(1, 36) = 0.209, p = .
650. All participants had similar performance on typical test items (accuracy of
approximately 93% for all four groups). Both the higher and lower spatial ability groups in
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the 2-D/3-D condition retained difficult test items at a numerically higher level than their
counterparts in the WtS condition (Higher spatial ability: WtS M = 58.5%, SD = 15.99; 2-D/
3-D M = 71.0%, SD = 16.80; Lower spatial ability, WtS M = 48.0%, SD = 11.83; 2-D/3-D M
= 65.5%, SD = 21.40).

Tests of Generalization to Interpreting Biomedical Images
There were no effects of learning group on any of the tests of generalization to interpreting
biomedical images. There also were no significant correlations between spatial ability and
generalization performance.

Effect of test order on generalization—Improvement in performance across the three
counter-balanced tests of generalization would suggest that the computer-based methods had
established a preparation for future learning (Bransford & Schwartz, 1999). To test for the
effects of test order on generalization, the score of each participant on each of the three
generalization tests was categorized according to the ordinal position in which the test
occurred (i.e., first, second, or third). A one-way repeated measure ANOVA revealed a
significant effect of test order, F(2,78) = 12.034, p < .001, np

2 = .236. As shown in Figure 6,
performance improved as participants moved through the tests (first test M = 56.0, SD =
12.77; second test M = 63.2, SD = 10.7; third test (M = 67.5, SD = 11.2). Pair-wise
comparisons of the three test positions were conducted with Bonferroni correction.
Performance on the second and third tests was significantly better than the performance on
the first test (first vs. second: t(39)= 3.51, p = .001, d = 0.62; first vs. third: t(39) = 4.50, p
= .001, d = 0.96).

Effect of test type (cues)—The mean test performances for the three tests of
generalization were 70% for Submit Name (SD = 9.09), 64% for Submit Structure (SD =
11.71), and 52% for Global Cues (SD = 9.17). A repeated measures ANOVA revealed a
significant main effect of test type, F(2, 78) = 52.589, p < .001, np

2 =.574. Performance on
the Submit Name test was significantly better than performance on both the Global Cues,
t(39) = 10.92, p = .00, d = 1.96, and the Submit Structure test, t(39) = 3.15, p = .003, d =
0.59. Performance on the Submit Structure test was significantly better than performance on
the Global Cues test, t(39) = 6.89, p = .00, d = 1.11.

Effect of image type—Replicating previous work, performance on VH images was
significantly better than performance on MRI images in all of the tests of generalization,
Submit Name: t(1,39) = 15.2, p < .001, d = 1.6; Submit Structure: t(1,39) = 14.9, p < .001, d
= 1.4; Global Cues: t(1,39) = 5.1, p < .001, d = 0.55. In the Submit Name test, for example,
mean generalization performance was 77.9% for VH images (SD = 9.6) and 62.6% for MRI
images (SD = 9.6).

Learning Efficiency
Mean percent correct test performance during learning is presented in Figure 7, broken
down by trial and learning condition. Participants learned whole neuroanatomy to criterion
in about five trials (M = 4.98 trials, SD = 1.48). The mean number of trials to complete
learning of sectional anatomy was 7.8 trials for the WtS condition (SD = 4.83) and 9.35
trials for the 2-D/3-D condition (SD = 3.82).

There were no statistical differences between the two groups in the efficiency of learning.
For sectional anatomy learning, comparisons were tested for mean percent correct in Trial 1,
t(38) = 1.30, p = .203, mean percent correct over the first five trials, F(1, 38) = 2.58, p = .
116, np

2 =.064, and the number of trials to complete learning, t(38) = 1.13, p = .267.
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Spatial ability and the efficiency of learning—There were clear effects of spatial
ability on the efficiency of learning neuroanatomy. There was a correlation of spatial ability
with the number of trials required to learn whole anatomy, r = -.581, p < .001, and with
performance on the sectional anatomy pretest, r = .345, p < .05. In addition, spatial ability
correlated with the number of trials to learn sectional anatomy for both learning groups,
although the statistical significance was marginal for the 2-D/3-D group (WtS: r = -.526, p
< .05; 2-D/3-D: r = -.404, p = .086).

Discussion
Neuroanatomy is a scientific discipline in which people learn a large amount of information
about a complex spatial structure. As a consequence, instruction in this discipline depends
on spatial representation and extended self-study. Methods of instruction that take advantage
of the capabilities of modern computer graphics are likely to be valuable in learning such a
discipline. This raises the question: how should instruction be designed so that the
technology is deployed effectively?

With a focus on learning sectional neuroanatomy, prior research has shown that a transfer of
learning from whole to sectional anatomy has many benefits for learning. However, there
was substantial variation in the difficulty of learning different neural structures, and this
variation persisted into tests of long-term retention and generalization.

To address this problem, the present study moved farther into the use of integrative
computer graphics for representing the relations between whole and sectional neuroanatomy.
It was shown that explicit graphical demonstration of the spatial relations between 3-D
whole anatomy and 2-D sectional anatomy improved long-term retention of sectional
neuroanatomy that was known to be challenging to learn. Spatial ability did not correlate
with levels of long-term retention, and the benefit of the integrative condition did not depend
on levels of spatial ability.

There are several ways in which such integrative graphics might improve learning of
sectional anatomy. For the materials in this study, we believe that the ability to view
sectional representations of the brain at the same time that much of the 3-D anatomy
remained visible permitted a more elaborated encoding of the spatial relations between the
sectional representations and the 3-D structure of the whole brain. This elaboration was no
doubt facilitated by the relatively easy recognition of whole structures during learning of the
sectional representations. It probably was facilitated also by the ability to move the sectional
planes continuously through the whole brain, allowing an exploration of spatial relations in
single episodes of learning. Overall, the improved understanding of spatial relations would
provide better cognitive differentiation of individual structures, including their sectional
samples, and this would facilitate recognition and retention.

If this account is correct, explicit illustration of spatial relations will be useful in many
instances where spatial material is difficult to learn (e.g., challenging rotational motions;
Pani, Chariker, Dawson, et al., 2005; Stull et al., 2009; see Mayer, 2005). We wish to
emphasize, however, that this graphical illustration of neuroanatomy was not just a mode of
illustration. It occurred in the context of detailed testing, immediate feedback, and
continuous learning that proceeded until a demanding performance criterion was met. It was
illustration that helped to meet the immediate cognitive goals of an active learner who was
focused on a particular set of learning outcomes.

Although the integrative 2-D/3-D condition improved retention, it is important to consider
that it was not more effective for learning most of the neuroanatomical structures.
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Participants in the whole then sections condition tested at 79% correct in Trial 1 of sectional
anatomy learning. Moreover, long-term retention for typical test items was 92.7% correct for
this condition. It is also important to consider that the 2-D/3-D condition was not a more
efficient method of learning than the pure transfer of learning used in the whole then
sections condition. In contrast, a different study showed that interleaving trials of whole and
sectional anatomy was a more efficient method of learning, although it did not improve
retention (Pani et al., 2013). Anecdotally, we have seen two graduate students who were
using the learning programs for neuroscience coursework seek out a member of the lab and
request to use the sections only program (from the whole then sections condition) rather than
the 2-D/3-D program. Apparently these students found the rich graphics in 2-D/3-D to be
distracting when they were trying to learn sectional anatomy. The overall pattern of results
from several studies suggests that neuroanatomy learning should begin with whole anatomy
and then interleave trials of whole and sectional anatomy using the sections only program.
The explicit illustration in the 2-D/3-D method should be available to permit more
elaborated understanding of spatial relations when that is needed for structures that are
particularly challenging to learn. More generally, it seems likely that different interactive
methods of instruction will be best suited to individual domains, levels of expertise, tests of
performance, and sets of items to be learned.

The results of this study are relevant in several ways to more general considerations of
science instruction. First, we think it is important to note that when psychology has
considered spatial cognition, the primary emphasis has been on relatively simple and
abstract tasks, such as mental rotation (see Atit, Shipley, & Tikoff, 2013). Such tasks are
solved in seconds, while a biology or medical student will puzzle for weeks over the
surprising complexity of the human skull. Work on learning neuroanatomy will help to grow
a subdiscipline of educational science focused on real world problems of spatial learning
(Liben, Kastens, & Christensen, 2011; Pani, Chariker, & Fell, 2005; Stull, Hegarty, Dixon,
& Stieff, 2012). Such a focus will enable insights about learning and instruction in spatial
domains that cannot be obtained in simple laboratory studies.

In regard to an evaluation of interactive graphics in computer-based learning, there were
reasonable levels of generalization of knowledge to interpreting biomedical images. When
structures in VH images were cued with arrows, for example, mean recognition performance
was 78% correct. This occurred even though the biomedical images had a very different
appearance from the graphical models used in learning, and the images contained many
structures that were not in the models (for other tests of generalization from interactive
graphics, see Chariker et al., 2011; Pani, Chariker, Dawson et al., 2005). In addition,
generalization performance improved over testing, even though there was no explicit
feedback in the tests of generalization. Thus, computer-based instruction provided a
preparation for future learning (Bransford & Schwartz, 1999). Participants were able to use
their existing knowledge of neuroanatomy together with the cues provided in the tests of
generalization to work out recognition of structures that had not been possible when testing
began.

The results of this study also support recent statements that differences in spatial ability are
evident in the early stages of spatial learning but may diminish in later stages (Uttal &
Cohen, 2012). For example, spatial ability clearly correlated with the number of trials
required to learn whole anatomy at the beginning of the study, but it was not correlated with
long-term retention or generalization of sectional anatomy at the end of the study.

Finally, this study replicated work that points to a wide-ranging set of factors that will have
to be addressed by educational systems aimed at biomedical disciplines. The clear
superiority of recognition for VH images over MRI images demonstrated that problems for
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recognition could be due to the visual information in the images rather than the knowledge
of the person viewing the images. The superiority of image recognition with specific cues,
such as arrows pointing to structures, indicated that more should be done to help learners to
reason about what they see in the images.

In summary, this study investigated the use of interactive graphics in computer-based
learning of a complex spatial domain. It was found that explicit graphical illustration of the
spatial relations between 3-D whole neuroanatomy and 2-D sectional neuroanatomy
improved long-term retention of sectional representations of neural structures that were
known to be particularly difficult to learn. We interpret this finding to show that interactive
computer graphics can be designed to provide an opportunity for greater elaboration of
knowledge in an intrinsically spatial domain. On the other hand, the particularly rich
graphical displays in the present method should be reserved for times when simpler forms of
representation are not effective.
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Figure 1.
Illustration of the whole brain with three cutting planes and three sectional views of the
brain sampled at the cutting planes.
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Figure 2.
Screen images showing sectional representation of neuroanatomy as a cut through the whole
brain.
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Figure 3.
Screen images showing exploration of the whole brain and sectional imagery from the axial
view.
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Figure 4.
Examples of biomedical images used in the tests of generalization. A Visible Human image
is shown at the left and an MRI image is shown at the right. In the study, the Visible Human
image was in color.

Naaz et al. Page 20

Cogn Instr. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Mean percentage correct for the two learning groups on the test of long-term retention of
sectional anatomy, broken down by typical and difficult test items. Error bars show standard
error of the mean.

Naaz et al. Page 21

Cogn Instr. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Mean percentage correct for the tests of generalization, broken down by test order. Error
bars show standard error of the mean.
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Figure 7.
Mean percentage correct test performance for the two learning groups during the learning
phase of the study. The data are broken down by whole anatomy learning trials, the Sections
Test, and the sectional anatomy learning trials. Error bars show standard error of the mean.
Where some participants finished learning in fewer trials than are indicated, their
performance was extrapolated forward to contribute to the displayed means.
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