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Abstract
Gaussian Graphical Models (GGMs) have been used to construct genetic regulatory networks
where regularization techniques are widely used since the network inference usually falls into a
high–dimension–low–sample–size scenario. Yet, finding the right amount of regularization can be
challenging, especially in an unsupervised setting where traditional methods such as BIC or cross-
validation often do not work well. In this paper, we propose a new method — Bootstrap Inference
for Network COnstruction (BINCO) — to infer networks by directly controlling the false
discovery rates (FDRs) of the selected edges. This method fits a mixture model for the distribution
of edge selection frequencies to estimate the FDRs, where the selection frequencies are calculated
via model aggregation. This method is applicable to a wide range of applications beyond network
construction. When we applied our proposed method to building a gene regulatory network with
microarray expression breast cancer data, we were able to identify high-confidence edges and
well-connected hub genes that could potentially play important roles in understanding the
underlying biological processes of breast cancer.
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1. Introduction
The emergence of high-throughput technologies has made it feasible to measure molecular
signatures of thousands of genes/proteins simultaneously. This provides scientists an
opportunity to study the global genetic regulatory networks, shedding light on the functional
interconnections among the regulatory genes, and leading to a better understanding of
underlying biological processes. In this paper, we propose a network building procedure for
learning genetic regulatory networks. Our work is motivated by an expression study of

Correspondence to: Pei Wang, pwang@fhcrc.org.

AMS 2000 subject classifications: Primary 62F40; secondary 62H20

SUPPLEMENTARY MATERIAL
Supplement to “Bootstrap Inference for Network Construction with an Application to a Breast Cancer Microarray Study”
(doi: ???http:/lib.stat.cmu.edu/aoas/???/???; .pdf). This supplement contains additional simulation results, details of the hub genes
detected by BINCO on the breast cancer data, and examples of pij and p̃ij being close.

NIH Public Access
Author Manuscript
Ann Appl Stat. Author manuscript; available in PMC 2014 February 20.

Published in final edited form as:
Ann Appl Stat. 2013 March 1; 7(1): 391–417. doi:10.1214/12-AOAS589.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http:/lib.stat.cmu.edu/aoas/???/???


breast cancer (BC) that aims to infer the network structure based on 414 BC tumor samples
(Loi et al., 2007). The proposed method enables us to detect high-confidence edges and
well-connected hub genes that include both those previously implicated in BC and novel
ones that may warrant further follow-up.

In practice, dependency structures of molecular activities such as correlation matrix and
partial correlation matrix have been used to infer regulatory networks, (Pollack et al., 2002;
Kim et al., 2006; Varambally et al., 2005; Nie et al., 2006). Such dependency structures are
often represented by graphical models in which nodes of a graph represent biological
components such as genes or proteins, and the edges represent their interactions. These
interactions may be indirect (e.g., two genes are co-regulated by a third gene), or direct (e.g.,
one gene is regulated by another gene). For the latter case, Gaussian Graphical Models
(GGMs), which represent dependencies between pairs of nodes conditioning on the
remaining of nodes, are often used.

For the data obtained from high-throughput technologies, the number of nodes is typically
much larger than the number of samples, which is where the classical GGM theory
(Whittaker, 1990) generally fails (Friedman, 1989; Schäfer and Strimmer, 2005). This large-
p-small-n scenario is usually addressed by assuming that the conditional dependency
structure is sparse (Dobra et al., 2004; Li and Gui, 2006; Meinshausen and Bühlmann, 2006;
Yuan and Lin, 2007; Friedman et al., 2007; Rothman et al., 2008; Peng et al., 2009).
However, like many high-dimensional regularization problems, finding the appropriate level
of sparsity remains a challenge. This is particularly true for network structure learning, since
the problem is unsupervised in nature. Traditional methods, such as Bayes information
criteria (Schwarz, 1978) and cross-validation, aim to find a model that minimizes prediction
error or maximizes a targeted likelihood function. They tend to include many irrelevant
features (e.g., Efron, 2004b; Efron et al., 2004, Meinshausen and Bühlmann, 2006 and Peng
et al., 2010), and thus are not appropriate for learning the interaction structures.

Choosing the amount of regularization by directly controlling the false positive level would
be ideal for structure learning. Recently, a few model aggregation methods have been
proposed, and some of them provide certain control of false positives. For example, Bach
(2008) proposed Bolasso, which chooses variables that are selected by all the lasso models
(Tibshirani, 1996) built on bootstrapped datasets. In the context of network reconstruction,
Peng et al. (2010) proposed choosing edges that are consistently selected across at least half
of the cross-validation folds. More recently, Meinshausen and Bühlmann (2010) proposed
the stability selection procedure to choose variables with selection frequencies exceeding a
threshold. Under suitable conditions, they derived an upper bound for the expected number
of false positives. In the same paper, they also proposed the randomized lasso penalty, which
aggregates models from perturbing the regularization parameters. Combined with stability
selection, randomized lasso achieves model selection consistency without requiring the
irrepresentable condition (Zhao and Yu, 2006) that is necessary for lasso to achieve model
selection consistency. In another work, Wang et al. (2011) proposed a modified lasso
regression — random lasso — by aggregating models based on bootstrap samples and
random subsets of variables. All these works have greatly advanced research in model
selection in the high-dimensional regime. However, none of these methods provide direct
estimation and control of the false discovery rate (FDR).

In this paper, we address the problem of finding the right amount of regularization in the
context of high-dimension GGMs learning. In a spirit similar to the aforementioned
methods, we first obtain selection frequencies from a collection of models built by
perturbing both the data and the regularization parameters. We then model these selection
frequencies by a mixture distribution to yield an estimate of FDR on the selected edges,
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which is then used to determine the cut-off threshold for the selection frequencies. This
framework is rather general, as it only depends on the empirical distribution of the selection
frequencies. Thus, it can be applied to a wide range of problems beyond GGMs.

The rest of this paper is organized as follows. In Section 2, we describe in detail the
proposed method. In Section 3, an extensive simulation study is conducted to compare the
method with the stability selection procedure and then evaluate its performance under
different settings. In Section 4, the method is illustrated by building a genetic interaction
network based on microarray expression data from BC study. The paper is concluded with
some discussion in Section 5.

2. Method
2.1. Gaussian Graphical Models

In a Gaussian Graphical Model (GGM), network construction is defined by the conditional
dependence relationships among the random variables. Let Y = (Y1,…,Yp) denote a p-
dimension random vector following a multivariate normal distribution N(0, Σ), where Σ is a
p × p positive definite matrix. The conditional dependence structure among Y is represented
by an undirected graph G = (U, E) with vertices U = {1,2,…,p} representing Y1,…,Yp and
the edge set E defined as

where Y−{i,j} ≡ {Yk : k ≠ i,j, 1 ≤ k ≤ p}. The goal of network construction is to identify the
edge set E. Under normality assumption, the conditional independence between Yi and Yj is
equivalent to the partial correlation ρij between Yi and Yj given Y−{i,j} being zero. It is also
equivalent to the (i,j) entry of the concentration matrix (Σ−1) being zero, i.e., σij ≡ (Σ−1)ij =

0 (Dempster, 1972; Cox and Wermuth, 1996), since .

There are two main types of approaches to fitting a GGM. One is the maximum-likelihood-
based approach which estimates the concentration matrix directly. The other is the
regression-based approach, which fits the GGM through identifying nonzero regression
coefficients of the following regression

where ∊i is uncorrelated with Y−i = {Yk, k ≠ i, 1 ≤ k ≤ p}. The nonzero βij’s in the above
regression setting correspond to nonzero entries in the concentration matrix since it can be

shown that . In both approaches, there are O(p2) parameters to
estimate, which requires proper regularization on the model if p is larger than the sample
size n. This can be achieved by making a sparsity assumption on the network structure, i.e.,
assuming that most pairs of variables are conditionally independent given all other variables.
Such an assumption is reasonable for many real life networks, including genetic regulatory
networks (Gardner et al. 2003; Jeong et al. 2001; Tegner et al. 2003). Methods have been
developed along these lines by using L1 regularization. For example, Yuan and Lin (2007)
proposed a sparse estimator of the concentration matrix via maximizing the L1 penalized
log-likelihood. Efficient algorithms were subsequently developed to fit this model with high
dimensional data (Friedman et al., 2007; Rothman et al., 2008). For regression-based
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approaches, Meinshausen and Bühlmann (2006) considered the neighborhood selection
estimator by minimizing p individual loss functions

(2.1)

while Peng et al. (2009) proposed the space algorithm by minimizing the joint loss

(2.2)

From objective functions (2.1) and (2.2), it is clear that the selected edge set depends on the
regularization parameter λ. Since the goal here is to recover the true edge set, ideally λ
should be determined based on considerations such as FDR and power with respect to edge
selection. Moreover, when the sample size is limited, a model-aggregation-based strategy
can improve the selection result compared to simply tuning the regularization parameter.
Thus, in the following section, we introduce a new model-aggregation-based procedure that
selects edges based on directly controlling the FDRs.

Throughout the rest of this paper, we refer to the set of all pairs of variables as the candidate
edge set (denoted by Ω), the subset of those edges in the true model as the true edge set
(denoted by E) and the rest as the null edge set (denoted by Ec). We denote the size of a set
of edges by | · |. Note that Ω = E ∪ Ec and the total number of edges in Ω is NΩ = |Ω| = p(p −
1)/2.

2.2. Model Aggregation
Consider a good network construction procedure, where good is in the sense that the true
edges are stochastically more likely to be selected than the null edges. Then it would be
reasonable to choose edges with high selection probabilities. In practice, these selection
probabilities can be estimated by the selection frequencies over networks constructed based
on perturbed data sets. In the following, we formalize this idea.

Let A(λ) be an edge selection procedure with a regularization parameter λ and Sλ(Y) ≡
Sλ(A(λ), Y) be the set of selected edges by applying A(λ) to data Y. The selection probability
of edge (i,j) is defined as

where I{·} is the indicator function. Let R(Y) be the space of resamples from Y (e.g., through
bootstrapping or subsampling). For a random resample Y′ from R(Y), we define

In many cases (see Section C in the supplemental article [Li (2012)]), pij’s and p̃ij’s are
close. For these cases, we can estimate pij by the selection frequency Xij, which is the
proportion of B resamples in which the edge (i,j) is selected:
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(2.3)

The aggregation-based procedures for choosing edges of large selection frequencies can be
represented as:

 is reasonable as long as most true edges have selection frequencies greater than or equal
to c and most null edges have selection frequencies less than c. Ideally we want to find a
threshold c satisfying

(2.4)

so that the corresponding procedure  is consistent, i.e., . In fact, if A(λ) is
selection consistent and , then

(2.5)

and thus any c ∈ (0,1] satisfies (2.4). Note that (2.4) is in general a much weaker condition

than (2.5), which suggests that we might find a consistent  even when A(λ) is not
consistent.

For the finite data case, an aggregation-based procedure could also perform better than the
original procedure, as illustrated by the following simulation example (the simulation setup
is provided in Section 3). Fig 1(a) shows the empirical distribution of selection frequencies
based on a simulated data set and Fig 1(b) shows the empirical distributions of true edges
(green triangles) and null edges (red crosses). Note that most null edges have low selection
frequencies < 0.4 while most true edges have large selection frequencies > 0.6. This

suggests that with a properly chosen c (say, c ∈ [0.4, 0.6]),  will select mostly true edges

and only a small number of null edges. In fact, by simply choosing the cutoff c = 0.5, 
outperforms A(λ) in both FDR and power (Fig 2).

2.3. Modeling Selection Frequency
Now we introduce a mixture model, similar in spirit to Efron (2004a), for estimating the

FDR of an aggregation-based procedure . We will use this estimate to choose the optimal
c and λ by controlling FDR while maximizing power. Assume that the selection frequencies

, generated from B resamples, fall into two categories: “true” or “null”,
depending on whether (i,j) is a true edge or a null edge. Let π be the proportion of the true

edges. We also assume that  has density  or  if it belongs to the “true” or the

“null” categories, respectively. Note that both  and  depend on the sample size n but
such dependence is not explicitly expressed in order to keep the notation simple. The

mixture density for  can be written as:
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(2.6)

Based on this mixture model, the (positive) FDR (Storey, 2003) of the aggregation-based

procedure  is

(2.7)

Given an estimate  (which will be discussed below) from (2.7), the number of true

edges in  can be estimated by

(2.8)

which can be used to compare the power of  across various choices of c and λ, as the total
number of true edges is a constant. Consequently, for a given targeted FDR level α, we first
seek for the optimal threshold c for each λ ∈ Λ:

(2.9)

and then we find the optimal regularization parameter

(2.10)

such that the corresponding procedure  achieves the largest power among all
competitors with estimated FDR not exceeding α.

The above procedure depends on a good FDR estimate, which in turn requires good

estimates of the mixture density fλ and its null-edge contribution . A natural

estimator of  is simply the empirical selection frequencies, i.e.,

where NΩ = p(p − 1)/2 is the total number of candidate edges and  is
the number of edges with selection frequencies equal to k/B.

Before describing an approach to estimating π and , we note two observations from Fig
1(b). First, the contribution from the true edges to the mixture density fλ is small in the range

where the selection frequencies are small. Second, the empirical distribution of  is
monotonically decreasing. These can be formally summarized as the following condition.

Proper Condition: There exist V1 and V2, 0 < V1 < V2 < 1, such that as n → ∞,

C1:  on (V1, V2];

C2:  is monotonically decreasing on (V1, 1].

This proper condition is satisfied by a class of procedures as described in the lemma below
(the proof is provided in the Appendix).
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Lemma 1—A selection procedure satisfies the proper condition if, as the sample size
increases, p̃ij tends to one uniformly for all true edges and has a limit superior strictly less
than one for all null edges.

Remark 1—It is easy to verify that all consistent procedures applied to subsampling
resamples satisfy the condition in Lemma 1. Other examples are procedures that use
randomized lasso penalties (Meinshausen and Bühlmann, 2010). See Section 2.5 for more
details.

The proper condition motivates us to estimate π and  by fitting a parametric model gθ for
fλ in the region (V1, V2] and then extrapolating the fit to the region (V2, 1]. This is because if

C1 is satisfied then  can be well approximated based on the empirical mixture
density from the region (V1, V2]. If C2 is also satisfied, the extrapolation of gθ will be a good

approximation to  on (V2, 1] for a reasonably chosen family of gθ.

We choose the parametric family as follows. Given p̃ij, it is natural to model the selection
frequency by a (rescaled) binomial distribution, denoted by b1(·|p̃ij), due to the independent
and identical nature of resampling conditional on the original data. Moreover, we use a
powered beta distribution (i.e., the distribution of Qγ where Q ~ beta(a, b), a, b, r > 0) as the
prior for p̃ij’s, denoted by b2(·|θ) with θ = (a, b, r). This is motivated by the fact that the beta
family is a commonly used conjugate prior for the binomial family, and the additional power
parameter γ simply provides more flexibility in fitting. Thus, the distribution of selection
frequencies of null edges is modeled as

The null-edge contribution  can be estimated by fitting hθ to the empirical mixture
density f̂λ in the fitting range (V1, V2], which, in practice, is determined based on the shape

of f̂λ (details are given in Section 2.4). Specifically, we estimate π and  by π̂ and hθ̂, via

(2.11)

where L(f, g) ≡ − Σx∈(V1,V2][f(x) log g(x)], which amounts to the Kullback-Leibler distance.

2.4. Proper Regularization Range
Following what we propose in Section 2.3, we can evaluate the aggregation-based procedure

 for different choices of (λ, c) with regard to model–selection–based criteria: the FDR and
the number of selected true edges. For the range of λ, we consider those that yield “U-
shaped” empirical distributions of selection frequencies, that is, f̂λ decreases in the small-
selection-frequency range and then increases in the large-selection-frequency range (see Fig
1(a) and Fig 3 for examples of “U-shaped” distribution). The decreasing trend is needed for

the proper condition to hold while the increasing trend helps to control the FDR, since an 
with FDR≤ α implies, by (2.7), that

(2.12)
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Therefore, if f̂λ is not sufficiently large at the tail, FDR≤ α may not be achieved for a small
value of α. The increasing trend also helps to obtain decent power since it guarantees a

substantial size of . Based on our experience, the λ values chosen based on (2.9) and
(2.10) indeed always corresponds to a “U-shaped” empirical selection frequency
distribution.

Thus, we propose the following simple procedure for identifying “U-shaped” f̂λ’s to
determine the proper regularization range in practice. An illustration for this procedure is
given in Fig 3.

U-shape Detection Procedure

1. INPUT f̂λ, the empirical density of selection frequencies. Set U = 1 (the U-shape indicator).

2. Check U-shape.

2.1. Check valley point.

2.1.1. Calculate v2 = argminx f̂λ(x), the valley point position, where f̂λ is a smooth curve fitted based on
f̂λ. (We use the R-function smooth.spline(), where the degree of freedom parameter is determined
such that the derivative of f̂λ has only one sign change.)

2.1.2. IF v2 > 0.8

Set U = 0, GOTO Step 3.

END IF

2.2 Calculate v1 = argmaxx<v2 f̂λ(x), the peak before v2.

2.3. Check if f̂λ is “roughly” decreasing on (v1, v2].

2.3.1. Calculate μ1 = (v1 + v2)/2, s1 = Σx∈[v1, μ1] f̂λ(x) and s2 = Σx∈[μ1, v2] f̂λ(x).

2.3.2. IF s1 < s2

Set U = 0, GOTO Step 3.

END IF

2.4. Check if f̂λ is “roughly” increasing on (v2,1].

2.4.1 Calculate μ2 = (v2 + 1)/2, s3 = Σx∈[v2, μ2] f̂λ(x) and s4 = Σx∈[μ2, 1] f̂λ(x).

2.4.2. IF s3 > s4

Set U = 0, GOTO Step 3.

END IF

3. RETURN v1, v2, U.

Remark 2—Step 2.1 is based on our extensive simulation where we find that a large value
of v2 often corresponds to a too-small λ, yielding too many null edges with high selection
frequencies, which makes (2.12) difficult to hold for reasonably small FDR levels α (see
Section D1 in the supplemental article [Li (2012)]). If f ̂λ is not recognized as “U-shaped” for

a large range of λ’s, we would consider the data as lack of signals where a powerful  is
not attainable. One example is the empty network (see Section 3.2 and Fig S-1 in the
supplemental article [Li (2012)]).

Sections 2.2–2.4 provide a procedure for network inference based on directly estimating
FDR. We name the procedure as BINCO — Bootstrap Inference for Network COnstruction,
as we suggest to use bootstrap resamples. The main steps are summarized below.
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BINCO Procedure

1. INPUT Λ = (λ1,…, λk) the initial range of regularization parameter values; Yn×p the dataset; and α the desired
FDR level.

2. FOR i = 1 TO k

2.1. λ = λi

2.2. Generate f̂λ the empirical density of selection frequencies.

2.3. Check whether f̂λ is U-shaped based on the output (v1, v2, U) from the “U-Shape Detection Procedure”.

2.4. IF f̂λ is U-shaped (i.e., U = 1)

2.4.1. Obtain the null density estimate

by (2.11).

2.4.2. Find the optimal threshold c* (λ) by (2.9), where the FDR is estimated based on (2.7) with fλ

and

replaced by f̂λ and

, respectively.

2.4.3. Obtain

and calculate

, the estimated number of true edges being selected, based on (2.8).

END IF

ELSE

,

.

2.5. OUTPUT

and

.

NEXT i

3. Determine the optimal regularization λ* through (2.10). The optimal selection is

.

2.5. Randomized Lasso
For an L1 regularized procedure A(λ), the proper condition (Section 2.3) is satisfied if A(λ)
is selection consistent, which usually requires strong conditions. For instance, the well-
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known irrepresentable condition under lasso regression setting (Zhao and Yu, 2006; Zou,
2006; Yuan and Lin, 2007; Wainwright 2009) or the so-called neighborhood stability
condition under GGM setting (Meinshausen and Bühlmann, 2006; Peng et al., 2009).
Recently, Meinshausen and Bühlmann (2010) proposed the randomized lasso which is a
procedure based on randomly sampled regularization parameters. For example, the
randomized lasso version of space would be

(2.13)

where wij’s are randomly sampled from a probability distribution p(w) supported on (l,1] for
some l ∈ (0,1] (note that l = 1 corresponds to the ordinary L1 penalty). The advantage of this
randomized lasso procedure is that, by perturbing the regularization parameters, the
irrelevant features may be decorrelated from the true features in some configurations of
randomly sampled weights such that the irrepresentable condition is satisfied. Therefore, it
selects all true features with probability tending to 1 and any irrelevant feature with a
limiting probability strictly less than 1. As a result, a consistent aggregation-based procedure
can be achieved under conditions “typically much weaker than the standard assumption of
the irrepresentable condition” (Meinshausen and Bühlmann, 2010, Theorem 2). For this
case, based on Lemma 1, the proper condition is also satisfied.

If (2.13) is used as the original (non-aggregated) procedure, an additional parameter l, which
controls the amount of perturbation of the regularization parameter, needs to be chosen. A
small l guards better against false positives but damages power, while a large l may result in
a liberal procedure. Here we provide a two-step data-driven procedure for choosing an
appropriate l in BINCO. We first fix l = 1, i.e. the ordinary L1 penalty, to find a proper range
Λ* for λ that corresponds to the “U-shaped” empirical mixtures. Then for each λ ∈ Λ*, we

consider a set of pairs Λ2 = {(λi, li), i = 1,…, m} such that , i.e., keeping the
average amount of regularization unchanged. For example, in the simulation study, we use li
= i/10, i = 1,…, 9. We then pick the pair (λ*, l*) ∈ Λ2 such that l* is the smallest among
those l’s that yield U-shaped empirical mixture distributions. Our simulation shows that such
a choice of (λ*, l*) ensures good power for BINCO while controlling FDR in a slightly
conservative fashion.

3. Simulation
In this section, we first compare the performance of BINCO with stability selection
(Meinshausen and Bühlmann, 2010), and then investigate the performance of BINCO with
respect to various factors, including the network structure, dimensionality, signal strength
and sample size.

We use space (Peng et al., 2009) coupled with randomized lasso (2.13) as the original non-

aggregate procedure, where the random weights ’s are generated from the uniform
distribution U[1, 1/l] for l ∈ (0,1]. The selection frequencies are obtained based on B = 100
resamples. Since subsampling of size [n/2] is proposed for stability selection, we use
subsampling to generate resamples when comparing BINCO and stability selection. For
investigating BINCO’s performance, we use bootstrap resamples because that it yields
slightly better performance (see Remark 4).

The performance of both methods are evaluated by true FDRs and power since for
simulations we know whether an edge is true or null. In addition, we define ideal power,
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which is the best power one can achieve for  given the true FDR≤ α (in simulation we
consider α = 0.05 and α = 0.1). Based on ideal power, we can evaluate the efficiency of the
methods under different settings. For each simulation setting, results are based on 20
independent simulation runs.

3.1. Comparison between BINCO and Stability Selection

Stability selection procedure selects  , a set of edges
with the maximum selection frequency over a pre-specified regularization set Λ exceeding a
threshold t. Assuming an exchangeability condition upon the irrelevant variables (here the
null edges), Mein-shausen and Bühlmann (2010, Theorem 1) derived an upper bound for the
expected number of falsely selected variables for each choice of t > 0.5. Specifically, under

suitable conditions, the expected number of null edges selected by the set , denoted by
E(V), satisfies

(3.1)

where NΩ = p(p − 1)/2 is the total number of candidate edges and qΛ is the expected number
of edges selected under at least one λ ∈ Λ. In practice, qΛ can be estimated by

. Dividing both sides of (3.1) by , we obtain

(3.2)

Although stability selection is intended to control E(V), for an easier comparison with

BINCO, we use  to approximate FDR and obtain the optimal  by finding
the smallest threshold t such that the upper bound on the right hand of (3.2) is less than or
equal to α.

For data generation, we first consider a power-law network with p = 500 nodes whose
degree (i.e., the number of connected edges for each node) distribution follows P(k) ~ k−γ.
The scaling exponent γ is set to be 2.3, which is consistent with the findings in the literature
for biological networks (Newman, 2003). There are in total 495 true edges in this network
and its topology is illustrated in Fig 5(a). The sample size is n = 200. Two settings with
different signal strengths are considered: (1) strong signal, the mean and standard deviation
(SD) of nonzero |ρij|’s are 0.34 and 0.13, respectively; (2) weak signal, the mean and SD of
nonzero |ρij|’s are 0.25 and 0.09, respectively. Note both positive and negative correlations
are allowed in this network.

We compare the performance of BINCO and stability selection at a targeted FDR level of
0.05. For BINCO, we consider Λ0 = {40, 50,…, 100} as the initial range for λ and then
obtain the optimal final selection following the steps at the end of Section 2.4. For stability
selection, since no specific guidance was provided for choosing Λ and l (the randomized
lasso regularization perturbation parameter), we consider three different values for l ∈ {0.5,
0.8, 1} and a collection of intervals Λ = (λmin, λmax) with λmin varying from 40 to 100 and
λmax = 100. This choice of Λ is due to the fact that the upper bound in (3.2) can not be
controlled at 0.05 for any t for λmin < 40, and the performance of stability selection is largely
invariant for λmax.
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When the signals are strong, BINCO gives a conservative FDR= 0.026 but still maintains
good power= 0.801 (Fig 4(a) and 4(c)). The performance of stability selection varies for
different choices of λmin and l. The FDRs are larger than the targeted level 0.05 for some
λmin’s when l = 0.8 and for all λmin’s when l = 1. For other cases (some λmin’s when l = 0.8
and all λmin’s when l = 0.5), the FDR control is very conservative and the corresponding
power is consistently lower than BINCO. When the signals are weak, stability selection is
much more conservative than BINCO and results in much lower power (Fig 4(b) and 4(d)).
In Table 1, we report the ideal power, the power for BINCO and the best power for stability
selection (among different choices of λmin) under l=0.5, 0.8 and 1. We also calculate the
power efficiency as the ratio of the power for the method over the ideal power, for BINCO
and stability selection, respectively. It can be seen that the power of BINCO is close to the
ideal power for both levels of signal strength while stability selection is too conservative
when the signal strength is weak. For more detailed results, see Section A1 in the
supplemental article [Li (2012)].

Remark 3—In some cases we find that stability selection fails to control FDR. We suspect
this may be due to the violation of the exchangeability assumption in Theorem 1 of
Meinshausen and Bühlmann (2010). We examine the impact of the exchangeability
assumption by simulation and find that when it is violated, the theoretical upper bound in
(3.1) for E(V) may not hold (see Section D2 in the supplemental article [Li (2012)] for
further details).

3.2. Further Investigation of BINCO
Now we investigate the effects of the network structure, dimensionality, signal strength and
sample size on the performance of BINCO.

Network Structure—We consider four different network topologies: empty network,
power-law network, empirical network and hub network. In each network, there are five
disconnected components with 100 nodes each. Below is a brief description of the network
topologies.

1. Empty network: there is no edge connecting any pair of nodes.

2. Power-law network: the degree follows a power-law distribution with parameter γ
= 2.3 as described in Section 3.1 (Fig 5(a)).

3. Empirical network: the topology is simulated according to an empirical degree
distribution of one genetic regulatory network (Schadt et al., 2005) (Fig 5(b)).

4. Hub network: three nodes per component have a large number of connecting edges
(> 15) and all other nodes have a small number of connecting edges (< 5) (Fig
5(c)).

We set the sample size n = 200. The signal strength for all networks except for the empty
network is fixed at the strong level as in Section 3.1.

For the empty network, the empirical mixture distributions of selection frequencies
monotonically decrease on a wide range of λ (Fig S-1) and are not recognized by BINCO as
“U-shaped”. Thus, we reach the correct conclusion that there is no signal in this case. In
contrast, datasets from the other three networks produce the desired “U-shaped” mixture
distributions for some λ (Fig S-2).

We compare BINCO results across networks 2–4 with FDR targeted at level α = 0.05 and
0.1. BINCO gives slightly conservative control on FDR and achieves reasonable power for
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all three networks (Table 2). The comparison to the ideal power shows that the network
topologies investigated here have only a small effect on BINCO’s efficiency (Table 3).

Dimensionality—We investigate the impact of dimensionality on the performance of
BINCO. We consider the power-law network and let the number of nodes p vary from 500,
800 to 1000. To keep the complexity of each component the same across different choices of
p, we set the component size constant, being 100, and the number of components C = p/100.
Again the sample size n = 200 is used for all three cases and the signal strength is fixed at
the strong level as in Section 3.1.

For all three choices of p, BINCO performs similarly (Table 4), with slightly conservative
FDR and power around 0.8. The dimensionality does not demonstrate a significant impact
on BINCO. measurements of expression levels of 44928 BINCO’s result is also largely
invariant when we compare networks of differing numbers of components with p fixed (such
that component size varies, see Section A3 in the supplemental article [Li (2012)]).

Signal Strength—We consider three levels of signal strength: strong, weak and very
weak. The corresponding means and SDs of nonzero |ρij|’s are (0.34, 0.13), (0.25, 0.09) and
(0.21, 0.07), respectively. The network is the power-law network with p = 500 and sample
size is n = 200 for all settings.

BINCO provides good control on FDR, however the power decreases from 0.8 to 0.3 as the
signal weakens (Table 5). Comparing the power of BINCO with the ideal power (Table 6),
we see that BINCO remains efficient and the loss in power is largely due to reduction of
signal strength.

Sample Size—Now we consider the impact of sample size n by varying it from 200, 500
and 1000, while keeping the signal strength at the “very weak” level as in the previous
simulation. The network structure is again the power-law network with p = 500.

With an increased sample size, the power of BINCO is significantly improved from 0.3 to
nearly 0.9 while the FDRs are well controlled (Table 7).

In summary, BINCO has good control for FDR under a wide range of scenarios. Its
performance is shown to be robust for networks with different topologies and
dimensionalities, and its efficiency is not influenced much even when the signal strength is
weak. As the sample size increases, the power of BINCO is improved significantly.

Remark 4—We propose to use bootstrap over subsampling as the former appears to give
slightly better power. Intuitively, bootstrap contains more distinct samples (0.632n, Pathak,
1962) than [n/2] subsampling (0.5n). However, the difference we have observed is rather
small. For example, we compare the power over 20 independent samples between bootstrap
and [n/2] subsampling under the power-law network setting. For FDR=0.05, the power is
0.810 for bootstrap and 0.801 for subsampling (compare Table 3 and Table 1); while for
FDR=0.1, the power is 0.845 for bootstrap and 0.835 for subsampling (compare Table 3 and
Table S-7). This observation is in agreement with the conclusions of several others
(Menshausen and Bühlmann, 2010; Freedman, 1977; Bühlmann and Yu, 2002).

4. A Real Data Application
We apply the BINCO method to a microarray expression dataset of breast cancer (BC) (Loi
et al., 2007) to build a gene expression network related to the disease. The data (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532) contains measurements of
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expression levels of 44928 probes in tumor tissue samples from 414 BC patients based on
the Affymetrix Human Genome U133A, U133B and U133 plus 2.0 Microarray platforms.

We preprocess the data as follows. First, a global normalization is applied by centering the
median of each array to zero and scaling the Median Absolute Deviation (MAD) to one.
Probes with standard deviation (SD) greater than the 25%-trimmed mean of all SDs are
selected. We further focus on a subset of 1257 probes for genes from cell cycle and DNA-
repair related pathways (http://peiwang.fhcrc.org/internal/papers/
DNArepair_CellCircle_related.csv/view), as these pathways have been shown to play
significant roles in BC tumor initiation and development. Clinical information including age,
tumor size, ER-status (positive or negative) and treatment status (tamoxifen treated or not) is
incorporated in the analysis as “fake genes” since we are also interested in investigating
whether gene expressions are associated with these clinical characteristics. Finally we
standardize each expression level to have mean zero and SD one. The resulting dataset has p
= 1261 genes/probes (including four clinical variables) and n = 414 tumor samples.

We generate selection frequencies by applying the space algorithm with randomized lasso
regularization to B = 100 bootstrap resamples. The initial range of the tuning parameter λ is
set to be Λ = (100, 120, …, 580). We then apply the BINCO procedure and find that the
optimal values for the regularization parameters are λ = 340 and l = 0.9. The empirical
distribution of selection frequencies of all edges and the null density estimation are given in
Fig 6. When the estimated FDR is controlled at 0.05, 0.1 and 0.2, BINCO identifies 125, 222
and 338 edges, respectively. The estimated network for FDR=0.2 is shown in Fig 7. In this
figure, two components of large connectivity structure are observed. They contain most of
the genes that are connected by a large number of high-selection-frequency edges. This
constructed network can help to generate useful biological hypothesis and design follow up
experiments to better understand the underlying mechanism in BC. For example, BINCO
suggests with high confidence for the association between MAP3K4 and STAT3. MAP3K4
plays a role in the signal transduction pathways of BC cell proliferation, survival, and
apoptosis (Bild and Johnson, 2001), and the constitutive activation of STAT3 is also
frequently detected in BC tissues and cell lines (Hsieh et al., 2005). Interestingly, both
MAP3K4 and STAT3 play roles in the regulation of c-Jun, a novel candidate oncogene
whose aberrant expression contributes to the progression of breast and other human cancers
(Tront et al., 2006; Shackleford et al., 2011). The association between MAP3K4 and STAT3
detected by BINCO suggests their potential cooperative roles in BC. It is also worth noting
that for the four clinical variables, the only edge with high selection frequency is the one
between age and ER-status (selection frequency = 0.96). All edges between clinical
variables and the genes/probes are insignificant (selection frequencies < 0.12).

Networks built on perturbed datasets can also be used to detect hub genes (i.e., highly
connected genes), which are often of great interest due to the central role these genes may
play in genetic regulatory networks. The idea is to look for genes that show consistent high
connection in estimated networks across perturbed datasets. Here, we propose to detect hub
genes by the ranks of their degrees based on the estimated networks using λ = 340 and l =
0.9. The ten genes with the largest means and the smallest SDs of the degree rank across 100
bootstrap resamples (see Fig S-3, in black dots) are MBD4, TARDBP, DDB2, MAP3K4,
ORC3L, CDKN1B, REL, ATR, LGMN and CDKN3. Nine out of these ten genes have been
reported relevant to BC, while the remaining one (TARDBP) is newly discovered to be
related to cancer (Postel-Vinay et al., 2012), although its role in BC is not clear at present.
The neighborhood topologies of these hub genes in the network estimated by BINCO are
illustrated in Fig 7. More details of these hub genes are given in the supplemental article [Li
(2012)], Section B.
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5. Discussion
In this paper we propose the BINCO procedure to conduct high-dimensional network
inference. BINCO employs model aggregation strategies and selects edges by directly
controlling the FDR. This is achieved by modeling the selection frequencies of edges with a
two-component mixture model, where a flexible parametric distribution is used to model the
density for the null edges. By doing this, BINCO is able to provide a good estimate of FDR
and hence properly controls the FDR. To ensure BINCO works, we propose a set of
screening rules to identify the U-shape characteristic of empirical selection frequency
distributions. Based on our experience, a U-shape corresponds to a proper amount of
regularization such that the FDR is well controlled and the sample from the set of selection
power is reasonable. Extensive simulation results show that BINCO performs well under a
wide range of scenarios, indicating that it can be used as a practical tool for network
inference. Although we focus on the GGM construction problem in this paper, BINCO is
applicable to a wide range of problems where model selection is needed because it provides
a general approach to modeling the selection frequencies.

We use a mixture distribution with two components, one corresponding to true edges and the
other corresponding to null edges, to model the selection frequency distribution. This two-
component mixture model is adequate as long as the distribution of the null component is
identifiable and can be reasonably estimated, as formalized in the proper condition. Note
that the proper condition holds for a wide range of commonly used (non-aggregation)
selection procedures (Lemma 1, Remark 1). To further ensure the FDR can be controlled at
a reasonable level, we propose a U-shape detection procedure and only apply BINCO if the
empirical distribution of selection frequencies passes the detection. These rules for U-shape
detection are empirical but appear to work very well based on our extensive simulations.

BINCO works well despite the presence of correlations between edges (see Section D1 in
the supplemental article [Li (2012)]), because we use the independence of edges only as a
working assumption. It is well known that if the marginal distribution is correctly specified,
the parameter estimates are consistent even in the presence of correlation. This is similar to
the generalized estimating equations, where if the mean function is correctly specified, the
parameters will be consistently estimated (Liang and Zeger, 1986). Towards this end, we use
the three-parameter power beta distribution to allow for adequate flexibility in modeling the
marginal distribution of selection frequencies.

BINCO is computationally feasible for high-dimensional data. The major computational cost
lies in generating the selection frequencies via resampling. For each resample, the
computational cost is determined by that of the non-aggregated procedure BINCO coupled
with. In terms of space, it is O(np2). The processing time for a dataset with n = 200, p = 500,
under a given λ and 100 bootstrap samples to generate selection frequencies is about 20
minutes on a PC with Pentium dual-core CPU at 2.8GHz and 1G ram. These selection
frequencies can be simultaneously generated through parallel computing for different λ’s
and weights. Fitting the mixture model takes much less time, which is about 2 minutes for
the above example on the same computer.

Although we use GGM as our motivating example, BINCO works well even if the
multivariate normality assumption does not hold. Note that, the multivariate normality
assumption only concerns the interpretation of the edges. Under GGM, the presence of an
edge means conditional dependency of the corresponding nodes given all other nodes.
Without the normality assumption, one can only conclude nonzero partial correlation
between the two nodes given the rest of nodes. The space method used in this paper is to
estimate the concentration network (where an edge is drawn between two nodes if the
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corresponding partial correlation is nonzero) and has been shown to work well under non-
normal cases such as multivariate-t distributions (Peng et al., 2009). We also generate data
from non-normal distributions and found that BINCO works well in this situation (see
Section D4 in the supplemental article [Li (2012)]).

BINCO is an aggregation-based procedure. In principle, it can be coupled with any selection
procedure. In this sense, it has a wide range of applications as long as the features are
defined (e.g., edges as in this paper, variables, or canonical correlations as in the example
below), and the selection procedure is reasonably good, e.g., producing probabilities that
satisfy the condition in Lemma 1. One application beyond GGM could be on the multi-
attribute network construction where the links/edges are defined based on canonical
correlations (Waaijenborg et al., 2008; Katenka and Kolaczyk, 2011; Witten et al., 2009).
Another interesting extension may be on the time-varying network construction (Kolar et
al., 2010) where appropriate incorporation of the time-domain structure across aggregated
models will be important. These are beyond the scope of this paper and will be pursued in
the future research.

The R package BINCO is available through CRAN.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: PROOF OF LEMMA 1

Proof
Suppose as the sample size n increases, an edge selection procedure A(λ) gives selection

probabilities  (with respect to resample space) which uniformly satisfy

(A.1)

and

(A.2)

Suppose B is large such that . Let X be a random sample from the set of selection

frequencies  generated by applying A(λ) on B resamples, i.e.,

. Also suppose X has density  if . Then the mixture
model (2.6) becomes
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(A.3)

with  and .

Because of the i.i.d. nature of resamples given the data,  is a binomial density with  as

the probability of success, i.e.,  for x = k/B, k = 0,1,…, B.
This binomial density is monotone decreasing for x greater than its mode

. By (A.2), given  and ∊ > 0 such that V1
+ ∊ < 1, ∃N such that for all n > N max(i,j) ∈ Ec (μij) < V1 + ∊ and hence for any null edge

(i,j) ∈ Ec,  is monotone decreasing on [V1 + ∊, 1], which implies C2 since

. Also, (A.1) implies, for (i,j) ∈ E,  uniformly
for x < 1, which implies C1 for any V2 < 1. Taking V2 such that V1 < V2 < 1 satisfies the
proper condition and completes the proof. □
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Fig 1.
The distributions of selection frequencies based on a simulated dataset. (a) The distribution
of selection frequencies of all edges. (b) Distributions of selection frequencies of null and
true edges, respectively (note that, these are not observable in practice). Simulation is based
on a power-law network with p=500, n=200, and the number of true edges is 495. The space
algorithm with λ=135 is used as the original non-aggregation procedure A(λ). For
illustrating the tail behavior of these distributions more effectively, we only show them on
the selection frequency range [0.06,1], as there are too many edges with selection frequency
less than 0.06.
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Fig 2.

Power and FDR of the aggregation-based procedure  with cutoff c = 0.5 and the original
procedure A(λ) for λ = 96, 114, 135, 160, with the rest of settings the same as in Fig 1.
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Fig 3.
An illustration for the proposed U-shape identification procedure. The empirical distribution
(f̂λ) is the same as the one in Fig 1. The smooth curve (f̃λ) is fitted by the R-function
smooth.spline with df = 4. Locations of v1, v2, μ1 and μ2 are found by following steps in the
U-shape detection procedure.
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Fig 4.
The FDR (top panels) and power (bottom panels) for BINCO and stability selection (Stab.
Sel.). (a) and (c) are for the strong signal setting; (b) and (d) are for the weak signal setting.
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Fig 5.
Different network topologies: (a) Power-law Network, number of true edges = 495; (b)
Empirical Network, number of true edges=633; (c) Hub Network, number of true
edges=587. All three networks have p = 500 nodes.
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Fig 6.
The empirical selection frequency distribution of all edges (dots) and the estimated selection
frequency distribution of null edges (solid line). The three vertical lines are drawn at the cut-
offs C1 = 0.98, C2 = 0.93 and C3 = 0.85 for FDR at 0.05, 0.1 and 0.2, respectively.
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Fig 7.
Inferred networks at FDR=0.2 from the BC expression data. A total of 338 edges (selection
frequencies ≥ 0.85) are identified. Among these 338 edges, those with selection frequencies
≥ 0.98 (corresponding to the set with FDR= 0.05) are colored in red while other edges are
colored in green. Genes with degree> 3 are labeled by their symbols; genes with degree> 4
are indicated by red nodes. In addition, the top ten genes with consistently high connection
across perturbed datasets are labeled in blue symbols.
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