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Introduction

Approximately half of all patients with heart
failure have an ejection fraction greater than
40–50% and may be diagnosed as having
Heart Failure with preserved Ejection
Fraction (HFpEF). Diastolic dysfunction is
central to the pathophysiology of HFpEF
(Borlaug & Paulus, 2011), and describes
the slowing of ventricular relaxation and
increased diastolic stiffness which ultimately
impairs ventricular filling. The mechanistic
basis of this impairment is complex and not
yet well understood. Structural remodelling
undoubtedly plays an important role
in increasing left ventricular stiffness.
However, the acute worsening of diastolic
dysfunction during stress or exercise
characteristic of HFpEF suggests an
important contribution from dynamic
changes in left ventricular (LV) functional
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properties. Frequency-dependent elevation
of diastolic tension and intracellular
Ca2+ ([Ca2+]i) has been observed in
cardiac muscle strips from patients with
left ventricular hypertrophy and diastolic
dysfunction, or heart failure (Sossalla et al.
2008; Selby et al. 2011), implying that
dysregulation of [Ca2+]i homeostasis of
the cardiomyocyte contributes to diastolic
dysfunction.

Intracellular Ca2+ regulation is closely
linked to intracellular Na+ homeostasis,
through the Na+–Ca2+ exchanger (NCX).
Intracellular Na+ of cardiomyocytes from
failing hearts is increased and associated
with elevated diastolic tension (Pieske et al.
2002). An important mechanism under-
lying this observation may be an increase
in the late sodium current (INa,L). The
Na+ conductance responsible for rapid
depolarization of cardiomyocytes does not
completely inactivate during the action
potential. (Noble & Noble, 2006; Maier,
2012) Some channels continue to conduct,
or even reactivate at relatively positive
membrane potentials during the plateau
and repolarization phases. This is INa,L (Zaza
et al. 2008). Consequently, about half of the
myocyte Na+ entry occurs during the initial
2–3 ms, and about half during the remainder
of the action potential (Makielski & Farley,
2006). At the molecular level, INa,L results
from channel reopening during sustained
depolarization by two different modes of
gating: burst openings and late scattered
openings (Maltsev & Undrovinas, 2008).

As outlined in Fig. 1, increased Na+ entry
through INa,L increases intracellular Na+

([Na+]i), which reduces the driving force
for extrusion of Ca2+ and favours Ca2+

influx via the Na+–Ca2+ exchanger (NCX).

This leads to increased [Ca2+]i. Elevated
[Ca2+]i eventually increases actin–myosin
filament interaction during diastole and
thus increases diastolic tension. This
mechanism of Ca2+ overload has been
demonstrated in numerous animal studies,
and in strips of ventricular muscle or myo-
cytes isolated from patients with failing
hearts (Valdivia et al. 2005; Makielski &
Farley, 2006; Maltsev & Undrovinas, 2008;
Sossalla et al. 2008; Selby et al. 2011; Coppini
et al. 2013). Further, specific augmentation
of INa,L with the sea anemone toxin ATXII
in isolated myocytes and perfused hearts
results in Na+ and Ca2+ overload (Fraser
et al. 2006; Sossalla et al. 2008) and impaired
diastolic function. Diastolic dysfunction
with preserved systolic function has also
been described in LQT syndrome type 3
patients, where INa,L is enhanced due to a
Na+ channel mutation (Moss et al. 2008;
Hummel et al. 2013).

We propose that a pathological increase in
Na+ influx through cardiac Na+ channels,
specifically due to enhanced INa,L is a major
contributor to Ca2+ overload and diastolic
dysfunction in HFpEF. Key evidence to
support this hypothesis is outlined below.

In pathological conditions with
diastolic dysfunction, cardiomyocyte
INa,L is enhanced up to 5-fold

This has been characterized in cardio-
myocytes isolated from patients with
hypertrophic cardiomyopathy (Coppini
et al. 2013), from human (Maltsev et al.
2007; Sossalla et al. 2008) and dog failing
hearts (Maltsev et al. 2007), in rat (Xi
et al. 2009; Aistrup et al. 2013) and
mouse (Toischer et al. 2013) models of
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pressure overload and in numerous species
following hypoxia, ischaemia or metabolic
stress (Shryock et al. 2013); all factors
of relevance to the genesis of diastolic
dysfunction in heart failure. Elucidation
of the underlying mechanisms whereby
INa,L is enhanced is incomplete. Single
channel studies on myocytes isolated
from failing human hearts suggest that
functional changes such as slowing of the
two modes of gating comprising INa,L (late
scattered and bursting modes) contribute
to enhanced INa,L (Maltsev & Undrovinas,
2008). Evidence has also been gathered
that Na+ channel isoform expression (Xi
et al. 2009) and functional regulation (Zaza
et al. 2008) differs in diastolic dysfunction.
There is considerable evidence that under
pathological conditions INa,L can, in a
rate-dependent manner, induce Ca2+

overload and consequently ventricular
dysfunction and arrhythmogenesis
(Valdivia et al. 2005; Maltsev & Undrovinas,
2008; Zaza et al. 2008; Shryock et al. 2013).

Inhibiting INa,L in isolated cardiac
tissue improves relaxation and
diminishes Ca2+ accumulation

One pivotal early study demonstrated that
the INa,L inhibitor ranolazine effectively pre-
vented the frequency-dependent increase
in diastolic tension in tissue strips from
failing human hearts (Sossalla et al. 2008).
This observation is key in understanding
the role of INa,L in HFpEF, characterized
by exercise intolerance in part due to the
worsening of diastolic function at elevated
heart rates. Similar observations were

Figure 1. A pathological enhanced INa,L contributes to Na+-dependent Ca2+ overload,
diastolic dysfunction

made in myocytes isolated from dog failing
hearts and from patients with hypertrophic
cardiomyopathy. Diastolic Ca2+ became
elevated at high pacing rates compared
to healthy cells, and this effect could be
diminished by ranolazine (Undrovinas
et al. 2010; Coppini et al. 2013). Although
selective for INa,L over peak INa, ranolazine
has multiple pharmacological targets of
potential relevance to diastolic dysfunction.
However, similar to ranolazine, other
INa,L inhibitors including the specific
Na+ channel inhibitor tetrodotoxin
(TTX) attenuate INa,L induced-
Na+-dependent Ca2+ overload in
failing ventricular myocytes, and in
myocytes exposed to H2O2 or ATXII
(Undrovinas et al. 2010; Qian et al. 2012;
Belardinelli et al. 2013). Although Na+

channel knockout mice studies have shed
light on mechanisms of arrhythmia, they
did not specifically investigate the role of
INa,L on relaxation and diastolic calcium
(Derangeon et al. 2012; Yang et al. 2012).

Inhibiting INa,L improves diastolic
function in experimental heart
failure

Early insights into the potential
contribution of INa,L to diastolic dysfunction
were gained from studies that examined the
effects of INa,L inhibition in heart failure.
In 2002, the effect of ranolazine to acutely
improve heart function was examined in
dogs with chronic heart failure. Whereas
ranolazine had no significant effects in
normal dogs, ranolazine both decreased
end-diastolic pressure and improved

systolic functional parameters in dogs
with heart failure (Sabbah et al. 2002).
In a follow-up experiment, 3 months’
treatment with ranolazine decreased
end-diastolic pressure and circumferential
wall stress whether alone, or combined
with beta blockade or ACE inhibition in
dogs with heart failure (Rastogi et al. 2008).
Interestingly, all treatment regimens also
diminished the pathological LV remodelling
that occurred relative to placebo.

With increased recognition of the unique
pathology of HFpEF relative to heart
failure with a reduced ejection fraction,
studies are being performed in models
that more specifically reproduce the
phenotype of diastolic dysfunction (Doi
et al. 2000; LeGrice et al. 2012). In
a recent study Aistrup et al. (2013)
demonstrated that INa,L is elevated in
the spontaneously hypertensive rat and
that 3 months’ treatment with ranolazine
prevented progression of LV hyper-
trophy, disruption of t-tubule architecture,
and improved intracellular Ca2+ cycling.
Combined, these data suggest that sustained
inhibition of enhanced INa,L and sub-
sequent Ca2+ overload may improve
diastolic function not only by improving
dynamic Ca2+ regulation, but also inter-
rupting the aberrant structural remodelling
characteristic of diastolic heart failure.

The INa,L inhibitor ranolazine
improves diastolic function in
patients

When ranolazine was administered
acutely to 15 patients with ischaemic
heart disease the regional peak filling
rate and wall lengthening increased
in ischaemic regions and the diastolic
pressure volume relation was shifted
downward, suggesting improvement of
diastolic function (Hayashida et al. 1994).
In a cohort of 22 patients with angina,
ranolazine treatment for a mean of 65 days
improved both systolic and diastolic
parameters assessed by echocardiography
(Figueredo et al. 2011). Systolic and
diastolic left ventricular wall synchrony
was also increased by 4 weeks’ ranolazine
treatment in patients with coronary artery
disease (Venkataraman et al. 2012). While
ranolazine has multiple mechanisms of
action, in long QT syndrome type 3 patients
with a specific enhancement of INa,L, acute
infusion of ranolazine improved parameters
of relaxation (Moss et al. 2008). In the recent
RALI-DHF trial studying HFpEF patients,
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acute intravenous ranolazine was found
to improve measures of haemodynamics
including LV end-diastolic pressure and
pulmonary artery pressure, but did not alter
the LV relaxation rate. Oral treatment was
extended for a further 13 days. Although no
improvements in diastolic function were
apparent by echocardiography at this time,
this clinical study was underpowered to
address this hypothesis (Maier et al. 2013).

Conclusion

Taken together, experimental data suggest
that INa,L is enhanced in many conditions
and is an important contributor to Ca2+

overload and diastolic dysfunction.

Call for comments

Readers are invited to give their views
on this and the accompanying CrossTalk
articles in this issue by submitting a brief
comment. Comments may be posted up to
6 weeks after publication of the article, at
which point the discussion will close and
authors will be invited to submit a ‘final
word’. To submit a comment, go to http://jp.
physoc.org/letters/submit/jphysiol;592/3/
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