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Abstract
We present a practical method for simplifying Markov chains on a potentially large state space
when detailed balance holds. A simple and transparent technique is introduced to remove states
with low equilibrium occupancy. The resulting system has fewer parameters. The resulting
effective rates between the remaining nodes give dynamics identical to the original system’s
except on very fast timescales. This procedure amounts to using separation of timescales to
neglect small capacitance nodes in a network of resistors and capacitors. We illustrate the
technique by simplifying various reaction networks, including transforming an acyclic four-node
network to a three-node cyclic network. For a reaction step in which a ligand binds, the law of
mass action implies a forward rate proportional to ligand concentration. The effective rates in the
simplified network are found to be rational functions of ligand concentration.
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1. Introduction
Markov chain models (MCM) have numerous important applications in biology, chemistry,
computer science, and engineering systems (Norris, 1997). In biology for example, Markov
models have contributed a great deal towards understanding the function and structure of ion
channels, enzymes, ligand-binding proteins, and population process. A common problem
with Markov chains is the large state space that these models span in many applications.
State aggregation is perhaps the most straight forward way to deal with such large chains
when some sets of states can be treated as indistinguishable (Stewart, 1991; Deng et al.,
2009). Spectral methods have become popular for aggregating states and model
simplification (Huisinga et al., 2004). However, the requirement to compute eigenvectors of
the Markov transition matrix for a large dimensional space makes spectral methods hard to
implement, and results in a complex mapping between the original states and the resulting
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aggregated states. This motivates a simpler method for model simplification, the subject in
this paper.

In many cases, Markov chains contain states that have relatively low probability of being
occupied, but may serve as important transition gateways between high occupancy states.
We show that it is possible to simplify these models so that low-occupancy states do not
appear in the simplified chain, but their effect is included in the model. The elimination of
the low occupancy states affects the rates between the remaining states. This reduction can
yield complicated reaction rates that reflect the physics of the eliminated states. For
example, it can introduce non-trivial ligand dependence into the rates of the reduced model.

Understanding this class of simplified models can be important for interpreting results of
fitting data with Markov chains. Colquhoun has argued that one should never fit data to the
Hill equation (defined below) because it represents a “physical impossibility” (Colquhoun,
2006), in that integer Hill coefficients greater than unity suggest simultaneous binding of
multiple ligands, with no intermediate steps. We agree that there is no physical justification
for a priori fits to the usual Hill equation, but we show that the Hill equation with any
positive integer coefficient does represent a physical situation. It might happen that the
statistical best fit (based on, for example, the AIC (Akaike, 1974) or BIC (Schwarz, 1978)
criteria which penalize for overfitting) of the ligand dependent probability of occupancy, p,
of some state of interest yields a Hill equation with coefficient four: p = d L4/(1 + d L4)
where L is the concentration of the ligand. Uncovering such a Hill equation does not imply
that four ligands bind simultaneously. Rather we will show that it implies the intervening
states with 1 – 3 ligands bound have relatively low occupancy compared to the states with 0
and 4 ligands bound. That is, although the “true” occupancy might be given by p = dL4/(1 +
aL + bL2 + cL3 + dL4) it can happen that using nonzero values for a, b, and c does not
improve the statistical quality of the fit. Colquhoun did not address the question of how to
proceed if one uncovers a Hill equation during the fitting process but we suspect he would
agree that one ought not to introduce parameters for which there is no statistical evidence
(such as a, b, c).

This raises a question. If a Hill equation with a Hill coefficient greater than one is found to
provide the statistical best fit for the ligand concentration dependence of the equilibrium
occupancy of some observable state, what ligand dependent rates should be used to connect
the unbound and fully bound states? A maximum likelihood fit to time series data keeping
all the states will be found to have neutral directions in the space of parameters because the
model is over-parameterized relative to what the experimental data can constrain. One might
try to resolve the issue experimentally by collecting more data, but this will likely be time-
consuming, expensive, and not practicable. The low-occupancy states can add unnecessary
complexity to Markov models. However, completely ignoring the low occupancy states is
not appropriate either as they can introduce non-trivial ligand dependence for the
experimentally inferred rates. The ligand dependence of the rates can provide crucial insight
into the structure and function of the system under consideration. In essence we are
disgarding processes with fast time scales. The mathematics of “multi-scale” methods goes
back at least to the late 19th century (Lindstedt, 1882). The purpose of the current
manuscript is simply to point out that for reversible Markov chains a nonstandard
parameterization renders the elimination of the fast processes trivial. We show that in many
cases, it is easy to write down the correct ligand-dependent rates, essentially by inspection.

The rest of this paper is organized as follows. In the next section, we discuss detailed
balance and reversible Markov chains and show how to simplify a 3 state reversible Markov
chain with a low occupancy state to a two state Markov chain. We also discuss the energy
landscape of the full and simplified chains. We then show that reversible Markov chains are
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equivalent to resistor-capacitor networks, and that our simplification amounts to neglecting
small capacitances. We show how to construct the equivalent circuit for the general problem
using a known result from circuit theory. In section “Examples” we work through several
cases that we think ought to be of general interest, one a linear 5-state chain which runs from
0 to 4 ligands bound, a chain with multiple ligands dependence, the simplification of a 4
state model with no cycles to a 3 state model connected in a loop, and finally the well-
studied Monod, Wyman, and Changeux (hereafter referred to as MWC) model (Monod et
al., 1965) in the Hill equation limit. We simplify the MWC model to a two state chain and
compare the distribution of first passage times to go from one high occupancy state to
another in both the full model and in the simplified 2-state model. The approximation is
singular; at any finite time the probability of making the transition converges for the two
models but for infinitesimal times the distributions do not converge. The details of these
calculations are addressed in the Appendices. Finally, we summarize the main findings of
the paper in the conclusions section.

2. Reversible Markov Chains
Finite state Markov chains obey an evolution equation of the form:

(1)

where p is a vector with pi(t) being the probability that state i is occupied at time t. The
generator matrix Q contains the transition rates from state i to state j. The diagonal entries of
Q satisfy Qii = −Σj≠i Qij. We assume that there is a unique equilibrium vector of steady state
occupancies, w which satisfies:

(2)

Note also that the vector containing all ones, which we denote by u, satisfies Qu = 0. Our
primary goal in the present work is to show how to construct an approximate chain to the
“true chain” that obeys an evolution equation:

(3)

where p̃ and Q̃ are the reduced probability vectors and generator matrices. This is
straightforward for reversible Markov chains in the case that some of the states have very
low equilibrium probabilities (or occupancies). In particular we will show that reduced
generator, Q̃ can be constructed using known methods from circuit theory.

In this work we are considering only the important special case of chains which obey
“detailed balance” or microscopic reversibility, also known as “reversible” chains. If one
starts from an arbitrary rate matrix and tries to impose this condition loop by loop, detailed
balance seems to introduce great complexity. Detailed balance reflects time reversal
symmetry, and if the system is expressed in a way that manifestly satisfies detailed balance
(Yang et al., 2006; Fredkin et al., 1985; Kolmogorov, 1936; Onsager, 1931) then the
equations become simpler rather than more complex. A chain is reversible if and only if
wiQij = wjQji for all i, j. We define a diagonal matrix W by

(4)

in terms of which the reversible condition can be written WQ = (WQ)T.
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The matrix WQ gives the directional probability flux at equilibrium from state i to state j, by
which we mean the equilibrium occupancy of state i times the rate from state i to j. For

example for the two state chain , where wA = 1 and wB = kf /kr
are the unnormalized occupancies of states A and B relative to A. Z = wA + wB and

 so that . At equilibrium, there are equal and
opposite fluxes of magnitude kf /Z between the two states.

2.1. Equilibrium Flux
Because of its fundamental importance we denote the symmetric matrix WQ by

(5)

where Jij (i ≠ j) is the equilibrium flux of probability between states i and j and Jii = −Σj≠iJij.

In the remainder of this paper we use “state occupancy” and “equilibrium flux” parameters
to parameterize the Markov chain as suggested in (Yang et al., 2006) instead of reaction
rates. The two approaches are mathematically equivalent but the occupancy-equilibrium flux
parameter approach automatically satisfies detailed balance and is more intuitive because it
separates thermodynamic quantities (equilibrium occupancies, or state energies) from
kinetic quantities (equilibrium reaction fluxes, or transition state energies). Thus we can
write:

(6)

so that Eq. (1) can be written:

(7)

We will see that states for which the occupancy is very low can be eliminated by taking the
limit wi → 0 while maintaining finite fluxes through state i.

2.2. Reduction of a 3 state chain to 2 states and the energy landscape
To explain our approach, we reduce the following 3-state chain to a 2-state chain by
discussing the energy landscape of this reaction.

(8)

where kAB is the reaction rate from state A to state B, etc. If the occupancy of B is
vanishingly small, one would expect that replacing the full chain by an effective chain:

(9)

with effective rates should be legitimate on time scales long compared to the equilibration of
the B state. In the low occupancy limit1, the rates out of B become fast and the B
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equilibration time goes to zero. As the limit is approached, the time spent in B becomes
negligible compared to the mean time to go between A and C. If the effective chain is to
approximate the full chain, the mean times to make the transitions from A to C and C to A
should agree in the two chains.

Energetically, low occupancy states are local minima high in the energy landscape. In Figure
1 we show the energy landscape corresponding to the reaction given by equation 8. Our
parameterization does not require Arrhenius temperature dependence for the reaction rates
but Arrhenius kinetics allows for a more intuitive understanding of the equilibrium flux/
occupancy parameterization. We write:

for the rates where kB is Boltzmann’s constant and T is the absolute temperature. The energy

EA is the energy of state A etc. The energy  is the energy of the unstable transition state
between A and B (which can be defined as the state with maximum energy state along the
most probable trajectory connecting A with B, as illustrated in Figure 1). The rate, k0, is the
number of attempts to cross a barrier per unit time. For simplicity, we take this to be the
same for all reactions, but differences could be absorbed into the transition state energies.

Denoting the flux at equilibrium from A to B by JAB etc., and the occupancies for state A, B,
and C, by wA = e−EA/(kBT)/Z, etc., with Z = e−EA/(kBT)+e−EB/(kBT)+ e−EC/(kBT) we have:

for the fluxes. The fluxes are confirmed to be symmetric: JAB = JBA, JBC = JCB, which
shows that Arrhenius kinetics on an energy landscape obey detailed balance, as expected.
The generator matrix is:

1Note that the term “low occupancy” does not imply that the occupancy of a low occupancy state is less than that of all the high
occupancy states under all conditions. Rather, it means that the occupancy of low occupancy states is negligible compared to at least
one of the main states under all conditions. See Figure 5 inset for an illustration.
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(10)

Note the separation between thermodynamic quantities (EA,EB,EC) and kinetic ones (k0 and
transition state energies). The generator matrix for other topologies takes this same general
form, with the inverse occupancy of state i being proportional to eEi/(kBT) and the flux

between states i and j being proportional to . The exact mean first passage time
to go from A to C, τAC, is given by (Fredkin et al., 1985):

where  represents the two states A and B aggregated together, and Q A denotes that part
of Q that connects states within  to each other (in this case  is the first two columns of
the first two rows of Q), so that:

(11)

and  = (1, 1)T is just u confined to the subspace , and (1, 0) is the initial state. So,

(12)

Similarly, the exact mean time to go from C to A, τCA is given by:

(13)

The low occupancy limit (of the B state) obtains when EB − EA ≫ kBT and EB − EC ≫ kBT.
In this case, the mean times to go from A to C and C to A simplify to:

(14)

(15)
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These are the approximate mean transition times. Thus we define effective (approximate)
rates

(16)

(17)

and effective fluxes:

(18)

Note that

(19)

This is an important general result that applies whenever a low occupancy state connects to
only two other states, as will become clear in section “Reversible Chains are Equivalent to
RC networks”. We can interpret equation 18 in terms of an effective barrier height between

states A and C, , such that:

(20)

by defining

(21)

which simplifies in two limits. If  then  to good approximation. In

words, this limit simply means that if the difference in the barrier heights  and  is
large compared to kBT, then the presence of the lower barrier has negligible effect.

The other simplifying limit is when  in which case we find

 which at first glance might not appear particularly intuitive.

However, noting that the effective flux is written:  we find that
 which says that the fluxes from A to B and from B to C are equal, and

the effective flux from A to C is half as much. The mean number of A–B transitions the
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system makes while transitioning from A to C is 2 in this case because once the sytem is in B
it has equal odds of hopping to A or C.

The exact distribution of first passage times to go from A to C, f(t) can be shown to be:

(22)

for small wB the fast and slow decays (λf and λs respectively) are given by:

 and . Note that as wB → 0 we have λs
→ kAC and λf ~ ∞. At t = 0 the exact distribution function is identically zero:f exact(0) = 0
while the approximate distribution function, kACe−kACt is simply kAC at t = 0. At any finite
time the exact and approximate distributions converge as wB → 0.

2.3. Reversible Chains are Equivalent to RC networks
Equation 7 is formally equivalent to Kirchoff’s law for an RC circuit in which a collection
of capacitors are connected to ground on one side and to each other via a network of
resistors on the other side with pi the charge on the ith capacitor which has capacitance wi
and Jij is the conductivity between the ith and jth nodes (which is symmetric) (Figure 2). The
condition Jii = −Σj≠i Jij is Kirchoff’s junction rule which states that the sum of the currents
into a node must be zero. Detailed balance follows from the fact that the conductivity of a
passive resistor is the same in either direction which follows from Ohm’s law. At steady
state no current flows in an RC circuit. The voltage across the ith capacitor is qi/Ci where qi
is the charge on the ith capacitor (which has capacitance Ci). As an initial charge distribution
relaxes to equilibrium, current flows until the voltage across each capacitor is the same. This
voltage is the total charge ( ) over the total capacitance ( ), /C which we take to be one
volt. The analog to voltage in the Markov case is pi/wi. The energy stored in the capacitors

initially is . As time goes by this is dissipated via joule heating in
the resistors until it reaches 1/2 Σi qi ×1 volt = 1/2  × 1 volt. In the Markov case with initial

probability pi for being in the ith state, the “energy” is initially  which

dissipates until it reaches . In the Markov case, as an initial
probability distribution relaxes to equilibrium, probability flows until the “voltage” for each
state is unity. Note that, provided all the capacitors in the RC network are actually
connected, the final charge distribution is independent of the network. For the Markov case,
the final probability distribution is independent of the network. One cannot use equilibrium
probability distributions to infer the network and one cannot use the final charge distribution
to infer the connectivity of the capacitors. Just as information on the time dependent flow of
charge is required to make inferences regarding the resistor network, information on the
time dependent flow of probability is required to make inferences regarding the connectivity
of reversible Markov chains.

The crux of this paper is that small capacitors (small occupancies) can be neglected. Any
node that has a very small capacitance can be removed from the network. After these
capacitors are removed, the low capacitance nodes can be removed by connecting the
remaining nodes with resistors having the correct resistances. Equation 19 is a corollary
based on the fact that the resistances of resistors in series add. I.e., the inverse of the
effective flux through a linear chain is just the sum of the inverse node to node fluxes along
the chain, since flux is analogous to electrical conductance (or inverse resistance). Another
corollary is that for parallel paths the fluxes add, just as conductances do for parallel
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resistors. Although this approximation may cause large errors on very short timescales, the
duration of the errors is often so short as not to be noticed. For example, any connection
between two resistors can hold some tiny amount of charge and therefore has some
capacitance relative to ground. Yet, formulas for adding resistors in series or parallel are
taught without concern for the violations that must be present on very short time scales.

We will see later that the flux matrix, J̃ for the simplified chain (equation 3) can easily be
constructed by a series of “Y − Δ” transformations that have been used in circuit theory since
the late 19th century (Kennelly, 1899; Akers Jr, 1960; Knudsen and Fazekas, 2006; Van Lier
and Otten, 1973). The resulting network can then be simplified so that some links are
replaced by combinations of rates (or flux parameters). With the states ordered so that the
high occupancy ones come first followed by the low occupancy ones the reduction can be
achieved by the following sequence of transformations which in essence removes the low
occupancy states one state at a time (the transformations will be explained further with
examples in section 3.2).

(23)

(24)

(25)

(26)

(27)

where nlow is the number of low occupancy states, nhigh is the number of high occupancy
states, and J̃0 = J. The diagonal entries at any point in the sequence are of course given by

. In the preceding, tk indexes the low occupancy states. The quantity

 is the “branching fraction” and denotes the fractional flux between state j and the
low occupancy state tk. In essence this transformation removes each low occupancy node
one at a time and interconnects all the states that were previously linked to the removed
node. If the high occupancy states are renormalized so that w̃i = wi/z̃ with z̃ set by the

normalization condition: , the transformed flux matrix must also be
renormalized J̃ → J̃/z̃. Finally the reduced system obeys:

(28)

A Mathematica program that performs this reduction on random flux matrices is in the
online supplement. While the reaction steps in the original process can be considered as
“elementary”, the reaction rates in the reduced process are not elementary. Consequently,
the reduction procedure can give complicated ligand dependence for reaction rates between
the remaining states. For example, in the full model discussed in section 3.1 (equation 29),
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the transition rates from E4 to S0 along the chain are ligand independent. However the
effective rate from E4 to S0 in the reduced 2 states system is ligand dependent.

3. Examples
In this section we perform 3 simplifications on models that we think might be of general
interest. We begin by discussing a 5 state linear chain in which the states have 0, 1, 2…4
ligands bound but only the unliganded and quadruply liganded states have high occupancy.
We then consider the MWC model for a tetrameric molecule which binds ligand. We
consider the MWC model in the Hill limit, for which only the states with 0 and 4 ligands
bound have high occupancy. Finally we consider a 4 state acyclic model in which three
states are all connected to the same low occupancy state. The resulting 3 state model has a
cycle but still automatically obeys detailed balance.

3.1. A linear chain
Here we consider the following chain:

(29)

As shown in (Yang et al., 2006), we have written the rate from state Xl to Xm equal to the
ratio of flux between Xl and Xm and occupancy of Xl where l and m is the number of ligands
bound in Xl and Xm respectively. The (unnormalized) flux between states Xl and Xm is
jlmLmax(l,m) and the (unnormalized) occupancy of state Xl is written as KlLl. Only energy
differences are relevant, so we can give unit unnormalized occupancy to the unliganded
state, S0 (i.e. K0 = 1). Denoting the normalized occupancies of state Xl by wl, we have wl =
KlLl/Z with Z = 1 + K1L + K2L2 + K3L3 + K4L4. If the occupancies of the intermediate states,
t1, t2, and t3 are negligible compared to max(w0, w4), then the mean times to go from S0 to
E4, τS0E4, and back, τE4S0 are given by:

Details of reaching these expressions using generator matrix theory are given in Appendix
A. In Appendix B, we demonstrate the simplification of an example where the states have
binding sites for multiple ligands.

3.2. Reduction of an Acyclic Model to a Cyclic Model: Application of the “Y − Δ”
Transformation

Next, we consider the case where the chain has more than one branch. An example of such
case is shown in Figure 3a. If the state labeled “t” represents a low-occupancy state then the
system can be simplified to the chain shown in Figure 3b via the “Y − Δ” transformation
discussed in section 2.3. We denote the (unnormalized) occupancies of the states (A, B, C)
by KA, KB, KC respectively. The effective probability flux from A to B, JAB, is the product of
probability flux from A to t, JAt, and the fractional probability flux flowing from t to B (see
equation 23). Notice that there are no direct fluxes between the high occupancy states in the
full scheme (Figure 3a) therefore, the first term on the right hand side of equation 23 is zero.
Thus, the effective fluxes between high occupancy states, A, B, and C are given by:
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(30)

where M, N = A, B, and C. The branching fraction of probability flux from state N to t given

by equation 24 is , i = A, B, and C. The denominator in BFNt is the total
probability flux out of t.

The effective rates from M to N (with M ≠ N), kMN, are given by: . For
example in Figure 3b,

(31)

The reader can check that detailed balance is satisfied.

In situations where the high occupancy states in the “Y” chain are linked directly in addition
to the links through the low occupancy state (see Figure 3c for an example), the first term on
the right hand side of equation 23 is non-zero (Akers Jr, 1960; Knudsen and Fazekas, 2006;
Van Lier and Otten, 1973). For example, the effective flux between the high occupancy
states after simplifying the chain in Figure 3c to a “Δ” loop is given by

(32)

where JMN(dir) is the probability flux for the direct link between high occupancy states M
and N.

Any complex network can be reduced by applying equation 23 to all branches involving low
occupancy states. The simplification would result in a fully connected (△, □, , , .....)
loop depending on the number of high occupancy states (3, 4, 5, 6, .....) in the original (Y, X,

, , .....) branch. Each state in the resultant loop would be directly connected to all other
states.

3.3. The Tetrameric MWC Model
The MWC model was developed by Monod, Wyman, and Changeux as a model for allostery
in hemoglobin (Monod et al., 1965). For historical continuity we use the original MWC
notation except that we use L for ligand concentration (instead of their F) and Λ (instead of
their L) for the occupancy of the “tense” state, T0, relative to the “relaxed” state R0. The
original MWC model considered only thermodynamics, not kinetics, so we must make a few
assumptions regarding the dynamics. For the usual tetrameric case, we write the MWC
model as follows:
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As in MWC KR and KT are the dissociation constants for ligand unbinding from the relaxed
and tense monomers and c = KR/KT. The flux parameters, jtt, jrr, and jrt, set the rates of
tense-tense, relaxed-relaxed, and tense-relaxed transitions respectively. MWC did not
discuss dynamics but only equilibrium and so had need for equilibrium constants but not for
flux parameters, or equivalently, reaction rates. MWC did not specify whether there are
transitions between Ri and Ti present for states i > 0. We assume there are such links. For
simplicity, we use a single flux parameter jrt for all Ri to Ti transitions. Relaxing the
previous assumption has little effect. Similarly we use the same flux parameters jrr and jtt for
each Ri to Ri+1 and each Ti to Ti+1 transition in the spirit of the original MWC model in
which the monomers are unaffected by ligand binding. The Hill limit corresponds to Λ →
∞, c → 0, and Λc4 → 0. The exact expected fraction of sites with ligand bound (MWC’s

ȲF),  is given by:

(33)

Which reduces to  in the Hill limit (large Λ and small c)2 i.e.

(34)

(35)

where x ≡ L/KR is MWC’s “α”. Thus a Hill equation with coefficient greater than one can
be physically meaningful. But we can also make use of these equations without taking the
Hill limit. We consider parameter values that are in a physically plausible range: Λ = 104

and c = 10−6 with KR = 1nM and KT = 1mM. In Figure 4 we plot  and . The

(unnormalized) occupancies of the relaxed and tense states, are given by  and

Ullah et al. Page 12

J Theor Biol. Author manuscript; available in PMC 2014 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



 respectively (see Appendix C). For small x, T0 is the only state with
significant occupancy and for large enough x R4 is the only significantly occupied state. T0
and R4 have equal occupancy at x = Λ1/4 = 10. At this value of x, the (unnormalized)
occupancy of R3 is 4, 000 while that of R4 and T0 are each 10, 000 which gives a normalized
probability for R3 (at x ≈ 13) of about .18 so if one were able to glean this from observation
one could keep the state R3 and reduce the system to a “Δ” loop involving T0, R3, and R4
using the “Y − Δ” transformation. We show this towards the end of Appendix C. But first we
reduce the full MWC model to a two-state model involving T0 and R4 states.

To find the effective rates between T0 and R4 in the reduced two-states MWC model, one
can perform the matrix algebra (as done in Appendix C). Here we point out that for large Λ
and sufficiently small c using the analogy with RC circuits and the definition of flux
(occupancy x rate) gives the effective flux from T0 to R4 by inspection. Since the tense states
T1, T2, T3, T4 have negligible occupancy for small enough c we simply have a chain from T0
⇌ R0 ⇌ R1 ⇌ R2 ⇌ R3 ⇌ R4 with (unnormalized) occupancies of Λ, 1, 4x, 6x2, 4x3, x4

respectively. Unnormalized means we drop the normalization factor Z. The normalized
fluxes are the unnormalized fluxes divided by Z, and the rates work out the same as long as
the fluxes and the occupancies are both unnormalized or both normalized. By inspection we
find (in the small c limit):

(36)

The mean transition time from T0 to R4 is the occupancy of T0 (Λ) times 1/JT0R4 and the
transition time from R4 to T0 is the occupancy of R4 (x4) times 1/JT0R4. That is for small c

(37)

2Here we show that the Hill limit corresponds to c → 0, Λ → ∞, and Λc4 → 0 so that . For finite x both 

and  go to zero as c → 0, Λ → ∞. If x diverges in the Hill limit it either diverges slower, the same as, or faster than Λ1/4. We
treat these cases one by one.

If x diverges slower than Λ1/4 we write  where 0 < α < 1. Then  and . If cx

remains finite as Λ → ∞ then  so that  does not converge to  thus we must have cx → 0. If cx → 0 then

.

If x diverges as Λ1/4 we write . Then . If cx remains finite as Λ → ∞ then  so that

 does not converge to  unless cx → 0. If cx → 0 then cΛ1/4 → 0 ⇒ Λc4 → 0.

If x diverges faster than Λ1/4 we write  where 0 < α. Then  and . If cx diverges as

Λ → ∞ then . Note that c goes to zero faster than Λ−1/4 so that if Λc3 diverges it must diverge slower

than Λ1/4. Since x is diverging faster than Λ1/4, it follows that Λc3/x → 0. Thus we have that .

Thus  for all x if and only if Λc4 → 0.
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In Figure 5 we plot the exact and effective (approximate) transition rate from T0 to R4, (the
inverse of τT0R4 given by equation 37), as a function of x, for jrr = jrt = jtt = 10 (in arbitrary
time units). The exact rate is given by the inverse of equation C.12. There are 3 distinct
regimes: small x in which the rate goes as x4, intermediate x in which the rate goes as x, and
large x in which the rate becomes constant and equal to jrt. As clear from Figure 5, the exact
transition rate converges to the approximate rate as we decrease the value of c. In Figure 6,
we compare the exact and approximate cumulative probabilities that the MWC model has
reached the state R4 given that it was in state T0 at time 0 for three different values of x. The
exact and approximate cumulative probabilities are given by equations C.16 and C.17
respectively. The dotted curves show the approximate solution and the solid curves show the
exact solution. We notice that for short times there can be significant deviation between the
two, but that the probabilities begin to converge in all three cases by the time that the
probability exceeds roughly 0.001.

4. Conclusions
In this paper we developed a rigorous technique for simplifying reversible Markov chains in
the case that some of the states have very low occupancy relative to the other states. Using
the analogy between reversible Markov chains and RC-networks we showed that analytic
formulae for the reduced models can be obtained by inspection in many cases including
linear chains, the Hill equation limit of the tetrameric MWC model, and the 4 state acyclic
model which reduces to 3 states connected in a loop.

The motivation behind our study was to develop a simple and transparent procedure for
reducing Markov chains with low occupancy states in order to (1) avoid over-
parameterization when fitting a model to a given data set and (2) acquire a better
understanding of the underlying dynamics of the system from which the data is collected.
Nevertheless, our simplification procedure would also enhance the computational efficiency
when simulating such systems. The reduction in computational time would depend on the
number of low occupancy states eliminated and the probability flux between low and high
occupancy states. We illustrate the improvement in computational time by considering the
following example.

(38)

where A and B are the high occupancy states with occupancy 1 and KL2 respectively, and t is
the low occupancy state having occupancy εL. jAt and jBt are the flux parameters for A ⇔ t
and t ⇔ B transitions respectively. After eliminating the low occupancy state t, the chain in
equation 38 reduces to

(39)

kAB and kAB are the effective transition rates from A to B and vice versa. In Appendix D, we
calculate the expected number of random numbers, Nrand, needed to perform a Gillespie
simulation (Gillespie, 1976) of the full model for one transition from A to B and back to A.
We find Nrand = 3(pA/pB + pB/pA + 2), where pA and pB are the probabilities of transition
from t to A and t to B respectively. The minimum value of Nrand = 12. As the ligand
concentration, L, varies, pA/pB or pB/pA will become large so Nrand can increase arbitrarily.
For the reduced model, only two random numbers are ever required to simulate a transition
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from A to B and back to A. Thus for this simple example the amount of computational work
required to simulate the full model is at least 6 times (and potentially much more than) that
needed for the reduced model.

Any Markov chain can be reduced by applying the “Y − Δ” transformation (equation 23) and
other simplification methods from circuit theory. There is a large body of work, both
ongoing and older, for performing these transformations efficiently on large circuits (see for
example (Akers Jr, 1960; Knudsen and Fazekas, 2006; Van Lier and Otten, 1973)). These
techniques carry over directly to the important case of reversible Markov chains.

Nodes with very small occupancy compared to all of the remaining nodes can certainly be
removed for the purposes of longer time dynamics. It can be desirable to keep some small
occupancy nodes, if they correspond to initial states or only have small occupancy for a
certain range of ligand concentration or other parameter. In this case it can happen that other
nodes can be removed that don’t have small occupancy compared to these nodes. This will
still be a good approximation if the equilibration time for the latter nodes is short compared
to the time-scales of interest (typically, the equilibration times of the high occupancy nodes).
More generally the early time dynamics could be treated via matched asymptotics but this
would require additional parameters while our primary goal in this paper is the elimination
of parameters that are difficult to estimate from data.

We have attempted to use the ideas sketched here to help with the development of a data-
driven model of the IP3 receptor/Ca2+-channel(Ullah et al.). The standard approach to fitting
single molecule data with Markov chains involves first selecting a chain and then
maximizing the likelihood of a data set by varying the parameters in the selected chain.
However, there are an enormous number of possible chains and one is unlikely to guess the
correct chain. Our approach allows one to construct models that have as many decay
constants as can be distinguished by experiments, yet can also give correct dependence on
ligand concentration. Ideally the data-driven construction of reaction networks would
proceed iteratively from data collection to model construction, analysis, and refinement and
ultimately additional data collection. During the course of the modeling process the modeler
could gain the ability to provide estimates of some of the missing parameters. Even so the
approximations discussed here provide a useful arrow for the modeler’s quiver.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A
In this Appendix we use generator matrix theory to reduce the 5-state chain to 2-state chain
discussed in section “A linear chain”. The 5-state chain has 2 high occupancy states, S0 and
E4 and 3 low occupancy states, t1, t2, and t3. The goal is to aggregate this 5 state model into
a 2 state model by eliminating the 3 low occupancy states. We will derive the mean time to
go from one state to another. The effective transition rates between the high occupancy
states are simply the inverse of mean times to transition between those states. To simplify
this chain we first write it in terms of probability fluxes

(A.1)

W in the generator matrix Q (equation 6) is the diagonal matrix whose entries are the
unnormalized equilibrium occupancies of the five states, S0, t1, t2, t3, and E4.

(A.2)
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where K1L, K2L2, K3L3, and K4L4 are the occupancies of states t1, t2, t3, and E4 respectively
relative to state S0 having an occupancy of 1. J in equation 6 is the symmetric generator
matrix with element Jxy corresponding to the equilibrium probability flux from state x to y.
The diagonal entries of J are given by Jxx = −Σy≠x Jxy which is an expression of conservation
of probability (Bruno et al., 2005).

(A.3)

Putting equations A.2 and A.3 in equation 6 gives

(A.4)

We first aggregate S0, t1, t2, and t3 states and represent the aggregated state by . The exact
distribution of first passage time to go from  to E4 is given by

(A.5)

where  = (1, 0, 0, 0) is the row matrix whose elements are initial probabilities of states S0,
t1, t2, and t3 and uE4 is a unit column matrix with dimension equal to the number of final
states to which the system is about to transition, in this case one state (E4). , and  are
the sub-matrices of Q

(A.6)

(A.7)

We can calculate the exact mean time to go from aggregated state  to E4, , by
integrating equation A.5 and is given by

(A.8)
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(A.9)

(A.10)

The last expression is the approximate mean transition time to go from  to E4 and is
reached by assuming that the occupancies of the states t1, t2, and t3 are negligible as
compared to states S0 and E4. If the low occupancy states have small but finite occupancy
then the mean transition time to go from aggregated state  to E4 is given by equation A.9.

Similarly, the exact distribution of first passage time to go to S0 from , which represents
the aggregate of t1, t2, t3, and E4 states is given by

(A.11)

where  = (0, 0, 0, 1) is the row matrix having the initial probabilities of states t1, t2, t3, and
E4 respectively, uS0 is a 1 × 1 identity matrix, , and  are the sub-matrices of Q

(A.12)

(A.13)

Integrating equation A.11 gives us the exact mean time to go from state  to S0 as

(A.14)

(A.15)

(A.16)

where the last expression follows from the assumption that states t1, t2, and t3 have
negligible occupancies.
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Appendix B
In numerous cases we deal with the Markov chains where the state of the system depends on
multiple ligands. In this Appendix we simplify a chain that involves the binding of multiple
ligands. The simplification process for such chains is similar to what we have presented for
the single ligand case in section “A linear chain”. In Figure B1a we show a chain having
total number of 5 states. We wish to simplify this scheme to the one shown in Figure B1b so
that the low occupancy states are aggregated into the two high occupancy states. In the first
step, the system makes transition from state A00 to t20 by binding two molecules of ligand
L1. In the second step, the system makes transition from state t20 to B22 by binding two
molecules of ligand L2. We will use the electrical circuit analogy to simplify the 5 states
chain into 2 states chain (see equation 19).

The effective probability flux from state A00 to B22, JA00B22, is

(B.1)

Note that the exponents of ligands L1 and L2 in the individual probability fluxes in equation
B.1 are equal to the maximum of the number of corresponding ligand molecules bound to
the two states involved in the transition.

The probability flux from one state to another is simply the ratio of the occupancy of the
initial state and the mean transition time from initial to final state, i.e.

(B.2)

The occupancy of A00 = 1, giving the approximate mean transition time from A00 to B22 is

(B.3)

Similarly, the approximate mean transition time from state B22 to A00 is

(B.4)

Where  is the occupancy of B22 state. Equations (B.1 – B.4) can be easily
generalized for an arbitrary number of states in the chain.

Appendix C
In this Appendix, we simplify the tetrameric MWC model so that the final model is only
composed of T0 and R4 states. Towards the end of this Appendix, we will discuss the case of
x = Λ1/4 = 10 where state R3 is not a low-occupancy state. Before writing the matrices W and
J used in generator matrix Q (equation 6), we first calculate the unnormalized occupancies
of all states in MWC model. Consider the following reaction
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(C.1)

Where X can be either R or T and equilibrium constant . The forward rate of the

reaction is . At equilibrium the occupancy of Xi+1 state is

(C.2)

Thus the occupancies of Ri and Ti are given as

(C.3)

(C.4)

Where the occupancies of R0 and T0 are 1 and Λ respectively, . In

MWC language Λ = L and .

Thus the diagonal matrix W in equation 6 whose entries are the unnormalized equilibrium
occupancies of the all 10 states becomes

(C.5)

where w = (wR, wT). Vectors wR and wT contain the occupancies of all R and T states
respectively.

To write J, we calculate the probability fluxes between various states. Since

(C.6)

Thus

(C.7)
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(C.8)

If the time for Ti to make the transition to Ri is τ1 then

(C.9)

Using the notation , and  for flux parameters, the effective flux
matrix, J, in equation 6 becomes

(C.

10)

Where

F11 = −4jrrx − jrtΛ

F22 = −4jrrx − 12jrrx2 − 4cjrtxΛ

F33 = −12jrrx2 − 12jrrx3 − 6c2jrtx2Λ

F44 = −12jrrx3 − 4jrrx4 − 4c3jrtx3Λ

F55 = −4jrrx4 − c4jrtx4Λ

F66 = −4cjttx − jrtΛ

F77 = −4cjttx − 12c2jttx2 − 4cjrtxΛ

F88 = −12c2jttx2 − 12c3jttx3 − 6c2jrtx2Λ

F99 = −12c3jttx3 − 4c4jttx4 − 4c3jrtx3Λ

F1010 = −4c4jttx4 − c4jrtx4Λ.

Using equations 6, C.5, and C.10 we can write
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(C.

11)

Where

Q11 = −4jrrx − jrtΛ

Q22 = −jrr − 3jrrx − cjrtΛ

Q33 = −2jrr(1 + x) − c2jrtΛ

Q44 = −jrr(3 + x) − c3jrtΛ

Q55 = −4jrr − c4jrtΛ

In analogy with equation (A.8), we can write the exact mean transition time from T0 to R4 as

(C.12)

Where  represents the aggregate of all states in the MWC model other than R4  is a row
matrix of initial probabilities of all states in  (all states in  except T0 have 0 initial
probability, T0 has initial probability of 1),  is the sub-matrix of Q with entry ij equal to
the transition rate between i and j states in , column matrix  is the sub-matrix of Q with
entry i equal to the transition rate from i state in , and uR4 is a unit matrix.

(C.

13)
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(C.14)

In the limit (Λ → ∞, c → 0, Λc → 0), the mean time to transition from T0 to R4, given by
equation (C.12) simplifies to

(C.15)

For the full MWC model, the exact latency (first passage time) distribution for transition
from state T0 to R4 given by

(C.16)

For the simplified two state MWC model, the latency distribution becomes

(C.17)

Where the initial probability of the system being in T0 state, ΠT0= 1, and QT0R4 = kT0R4.

 is the transition rate from T0 to R4 in the simplified 2 state MWC model.

Mean transition time and latency distribution from R4 to T0 can be calculated in the same
manner.

Next we discuss the case where one could keep state R3 and reduce the MWC model to a
“Δ” loop involving T0, R3, and R4 states. We first rewrite the MWC model in terms of
probability fluxes (Figure C1a) where the double arrows represent the fluxes between states.
The probability fluxes between various states are given by equations C.7 – C.9 and are
excluded from Figure C1 for clarity. We use the “Y − Δ” transformation to perform the
simplification in the following steps. Step 1: eliminate states R0 and T4 from the two linear
branches T0 ⇔ R0 ⇔ R1 and T3 ⇔ T4 ⇔ R4 respectively (Figure C1b). The inverse of
effective probability flux between T0 and R1 is given by the sum of the inverses of fluxes in
T0 ⇔ R0 and R0 ⇔ R1 transitions (see equation 19). Similarly, the effective probability flux
between T3 and R4 is given by the fluxes involved in T3 ⇔ T4 and T4 ⇔ R4 transitions.
Step 2: eliminate state T1 using the “Y − Δ” transformation so that states T0, R1, and T2 form
a “Δ” loop (Figure C1c). In this and the following steps, the effective probability fluxes
between various states in the loop can be calculated by using equation 23. Step 3: follow
step 2 to eliminate state R2 so that R1, R3, and T2 states form a “Δ” loop (Figure C1d). Step
4: convert the “Y” branch composed of states T0, R1, R3, and T2 to a “Δ” loop involving T0,
R3, and T2 to eliminate R1 (Figure C1e). Step 5: eliminate T2 from the “Y” chain composed
of T0, T2, T3, and R3 (Figure C1f). Step 6: eliminate T3 by converting the “Y” branch
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involving states T0, R3, R4, and T3 to reach the final “Δ” loop having T0, R3, and R4 states
(Figure C1g). One can use this procedure for other complex networks.

Appendix D
In this Appendix, we calculate the expected number of random numbers required to simulate
one transition of the system from state A to B and back to A in the full and reduced models
using Gillespie’s Algorithm (Gillespie, 1976). If the system is in state t in the full model,
then the probability of transition from t to A, pA, and t to B, pB, are given by

(D.1)

and pB = 1 − pA. Transition from t to either A or B is a Bernoulli process. The probability of

making n transitions to A followed by one transition to B is . The expected number of
transitions from t to A before reaching B is

(D.2)

The number of transitions from A to t are NAt = NtA + 1. So <NAt>=<NtA> +1 = pA/pB + 1.
The total number of transitions out of t, Nt, is Nt = NtA + 1 (the final transition is to B). The
number of random numbers required to simulate the transition of the system from state A to
B through t is

(D.3)

Similarly the number of random numbers needed to simulate the transition of the system

from state B to A through t is . Thus the expected number of random
numbers, Nrand, needed to simulate one transition from state A to t to B and state B to t to A
in the full model is Nrand = 3(pA/pB + pB/pA + 2). The number of random numbers needed to
simulate one transition from state A to B and B to A in the reduced model is 2. The ratio of
the expected number of random numbers needed to simulate one transition of the system
from state A to B and back to A using the full and reduced models is 3(pA/pB + pB/pA + 2)/2,
which has a minimum of 6 and an infinite maximum.
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Highlights

• A simple technique for simplifying Markov chains on large state space.

• The approach is illustrated by several analogies from physics.

• The technique is presented by several examples.

• Our method works for multi-ligand dependent molecules as well.

• Our study will have a broad impact in the field of single-molecule dynamics.
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Figure 1.
Removal of a low-occupancy, high-energy intermediate state. The middle state has high
energy and therefore low equilibrium occupancy. The double barrier is replaced by a single,
slightly taller barrier (taller by an energy ranging from nearly zero to ln(2) * kBT). This
results in a very good approximation to the dynamics, if the intermediate state occupancy is
low and its relaxation dynamics are fast (barriers not too high) compared to the timescales of
interest.
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Figure 2.
RC circuit analogy of a 3-state Markov chain. The states and probability fluxes are
represented by nodes and resistors respectively. The simplification of 3-state model to a 2-
state model is equivalent to replacing the two resistors by a single resistor which has an
effective conductance of both resistors.
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Figure 3.
Simplification of acyclic to cyclic chain. (a) Full scheme with three high occupancy states,
A, B, and C and one low occupancy state, t. (b) Simplified three state scheme after
aggregation. (c) An example of modified “Y” chain where there are direct links between
high occupancy states in addition to the links through low occupancy state. jMN and kMN
stand for the flux parameter and transition rate between states M and N respectively. JMN(dir)
in panel (c) represents the direct flux between high occupancy states M and N.
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Figure 4.
Comparison between the exact (solid curve) and approximate (dotted curve) ȲF given by
equations 33 and 35 respectively.
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Figure 5.
The approximate (thick gray line) and exact transition rate from state T0 to state R4 in MWC
model for c = 10−6 (black solid line), c = 10−4 (red dotted line), c = 10−3 (green dashed line),
and c = 10−2 (blue dotted-dashed line). The gray dotted-dotted-dashed and dotted-dotted-
dashed-dashed lines are plotted to represent x and x4 behaviors of the transition rate
respectively. In the inset, we show the occupancies of all ten states in the MWC model and
are given by equation C.4 at c = 10−6. The occupancies of relaxed (tensed) states are shown
in black (blue). The thick (thin) lines represent the high (low) occupancy states.
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Figure 6.
Comparison between the exact (solid curves) and approximate (dotted curves) cumulative
probabilities that the MWC model has reached the state R4 given that it was in state T0 at
time 0. (a) x = 1, (b) x=100, (c) x=10,000. Λ = 104, c = 10−6, and jrr = jrt = jtt = 10 for all
panels.
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Figure B1.
Multiple ligand dependent chain. (a) Full scheme with low occupancy states (t10, t20, and
t21) included. (a) Simplified scheme after aggregation having only two high occupancy
states (A00 and B22). L1 and L2 stand for the ligands, and the subscript lm attached to various
states represent the l number of ligand L1 and m number of ligand L2 bound to the system in
the given state.
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Figure C1.
Using Y − Δ transformation to reduce the MWC model to 3 state model in case of x = Λ1/4 =
10. The reduced model consists of states T0, R3, and R4.
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