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Abstract

Attempts to detect genetic population substructure in humans are troubled by the fact that the vast majority of the total
amount of observed genetic variation is present within populations rather than between populations. Here we introduce a
new algorithm for transforming a genetic distance matrix that reduces the within-population variation considerably.
Extensive computer simulations revealed that the transformed matrix captured the genetic population differentiation better
than the original one which was based on the T1 statistic. In an empirical genomic data set comprising 2,457 individuals
from 23 different European subpopulations, the proportion of individuals that were determined as a genetic neighbour to
another individual from the same sampling location increased from 25% with the original matrix to 52% with the
transformed matrix. Similarly, the percentage of genetic variation explained between populations by means of Analysis of
Molecular Variance (AMOVA) increased from 1.62% to 7.98%. Furthermore, the first two dimensions of a classical
multidimensional scaling (MDS) using the transformed matrix explained 15% of the variance, compared to 0.7% obtained
with the original matrix. Application of MDS with Mclust, SPA with Mclust, and GemTools algorithms to the same dataset
also showed that the transformed matrix gave a better association of the genetic clusters with the sampling locations, and
particularly so when it was used in the AMOVA framework with a genetic algorithm. Overall, the new matrix transformation
introduced here substantially reduces the within population genetic differentiation, and can be broadly applied to methods
such as AMOVA to enhance their sensitivity to reveal population substructure. We herewith provide a publically available
(http://www.erasmusmc.nl/fmb/resources/GAGA) model-free method for improved genetic population substructure
detection that can be applied to human as well as any other species data in future studies relevant to evolutionary
biology, behavioural ecology, medicine, and forensics.
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Introduction

At what degree genetically homogeneous groups of human

individuals exist is a long-standing and yet unsolved debate in the

scientific community [1]. Answering this question is important for

better understanding recent human evolutionary history [1], for

reducing the amount of false positives in gene mapping studies [2]

and other medical issues [3], and for inferring the bio-geographic

origin of unknown persons in forensic investigations [4]. In

general, for any species, detecting genetically homogeneous groups

can be of relevance in answering questions in evolutionary biology

and behavioural ecology. Previously developed methods for

estimating average genomic ancestry and detecting genetic popu-

lation substructure can be broadly classified into two types: model-

based ancestry estimation and algorithmic ancestry estimation [5].

The former type aims to estimate the contribution of hypothetically

existing ancestral populations to the genome of each specimen

tested; popular implementation methods include STRUCTURE

[6], ADMIXTURE [5], and FRAPPE [7]. The latter type uses

hypothesis-free multivariate techniques, such as Principal Compo-

nent Analysis (PCA; [8]), classical multidimensional scaling (MDS),

or principal coordinates analysis [9], to position each specimen

tested in a reduced Euclidean space [10], so that the proximity

between specimens can be interpreted as genetic affinity [8]. The

coordinates proposed by algorithmic ancestry methods tend to

correlate with the geographic sampling location of the tested

individuals when applied to human genetic data [11]. Recently, a

method called SPA [12] was proposed; it exploits the geographic

dependency between allelic frequencies and space to infer the

coordinates in a 2D/3D space of a given set of individuals.

However, detecting genetic population substructure can be

complex depending on the evolutionary history of the species in
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question, and certainly in the case of humans. Certain processes

such as isolation by geographic distance [13], local genetic

adaptation to environmental factors [14], and other factors

including cultural ones [15], all impact on the amount of genetic

differences observable between individuals within and between

populations [16]. In particular, the recent origin of the human

species and the even more recent dispersal out of the African

continent [17] played a major role in shaping the neutral variation

of the human genome with dramatic consequences for the detec-

tion of genetic population substructure. Due to our single recent

origin, the vast majority (,85%) of the total genetic differences is

explained by variation between individuals within populations [1].

Moreover, the genetic differences between populations usually

follow clinal geographic patterns [18], which typically are in

agreement with major past migration routes [19], rather than

showing sharp discontinuities. For instance, within the European

continent, the genetic differentiation between European subpop-

ulations (with exceptions such as European Romani, [20]) is small

[21] compared to that found among worldwide populations,

and even smaller when sampling within specific sub-regions of

Europe [22]. Furthermore, long identical-by-descendent (IBD)

genomic tracks that are shared between geographically distant

European individuals have been found, suggesting a recent

common ancestry of European populations [23]. Finally,

individuals from one population tend to have their best genetic-

matching partner (as defined by the Best Overall Match (BOM))

far away from their sampling population [24]. Nevertheless, a

remarkable correlation between genetic and geographic distance

as well as a clinal distribution of genetic diversity on the con-

tinental [21,25] and sub-regional level (i.e., [22]) have been

observed within Europe.

Overall, the fact that the vast majority of human genetic

variation exists among individuals within populations [21] limits

the capacity of existing methods to resolve genetic population

substructure at a fine geographic scale and asks for the deve-

lopment of alternative methods for detecting population substruc-

ture and genetic ancestry in humans that can also be applied to

other species. Recently, a new algorithm implemented in the

fineSTRUCTURE software [26] analyzes the shared haplo-

blocks between previously phased pairs of individuals. However,

genome phasing can be computational intensive [27], especially

when a large number of individuals and markers is used. More-

over, despite the current state-of-art of phasing algorithms [27],

errors are unavoidable, especially when considering variants at

low frequency [28]; furthermore, some prior population infor-

mation is usually desired [27]. Finally, genomic SNP density is

only considerable in the case of humans (and not for all the

geographic regions [29])), whereas in other species, such as cattle,

a relatively limited number of markers have been described thus

far [30].

In the present study, we propose a new matrix distance trans-

formation with the aim to reduce the within-population variation.

We conducted extensive computer simulations under two

demographic models to test if this aim is achieved. We addi-

tionally implemented a genetic algorithm which, in combina-

tion with AMOVA statistics, allows searching for the optimal

genetic clustering configuration of specimens and populations.

We practically test the performance of this new, model-free

approach using a genome-wide dataset comprising 2,457

individuals from 23 geographically dispersed subpopulations of

Europe. We make this new method for improved genetic po-

pulation substructure detection publically available as software

package for free use.

Materials and Methods

Quantifying the amount of genetic differentiation
between populations

Our algorithm starts with a genetic distance matrix D

computed for each possible pair among N individuals, which in

this study is derived from the T1 statistic [31]. The T1 statistic

has been shown to be informative for detecting hidden genetic

relatedness [32], independently of the (unknown) allelic frequencies

in each population [31]. T1 is defined for a given pair of individuals

i and j as:

T1i,j~
n01,01

n00,11zn11,00zn01,01
ð1Þ

where nxx,yy denotes the number of SNPs of a particular genotype

pattern (i.e. n00,11 refers to SNPs where the first individual is

homozygous for one allele (0) and the second individual is

homozygous for the alternative allele (1)). Under Hardy-Weinberg

equilibrium (HWE), the expectancy E(T1) = 2/3 if both individ-

uals are unrelated from the same population, E(T1) , 2/3 if the

individuals are from different populations and E(T1) . 2/3 if they

are more related than by chance. We define the distance matrix as

D = 1-T1. That is, we set di,j = 1-T1i,j in order to obtain a genetic

distance between individuals i and j.

Individuals can then be classified into populations, and the

genetic differentiation between populations quantified using this

individual distance by applying the Analysis of Molecular

Variance (AMOVA [33]) framework. In analogy to the Analysis

Of Variance (ANOVA), the AMOVA framework decomposes the

total sum of squares (SS(T)) from the individual distance matrix in

sum of squares among populations (SS(AP)) and sum of squares

within populations (SS(WP)), so that:

SS(AP)~SS(T){SS(WP) ð2Þ

Author Summary

Understanding genetic population substructure is impor-
tant in evolutionary biology, behavioral ecology, medical
genetics and forensic genetics, among others. Several
algorithms have recently been developed for investigating
genetic population substructure. However, detecting
genetic population substructure can be cumbersome in
humans since most of the genetic diversity present in that
species exists among individuals from the same popula-
tion rather than between populations. We developed a
Genetic Algorithm for Genetic Ancestry (GAGA) to over-
come current limitations in reliably detecting population
substructure from genetic and genomic data in humans,
which can also be applied to any other species. The
method was validated by means of extensive demographic
simulations. When applied to a real, human genome-wide
SNP microarray dataset covering a reasonable proportion
of the European continent, we identified previously
undetected fine-scale genetic population substructure.
Overall, our study thus not only introduces a new method
for investigating genetic population substructure in
humans and other species, but also highlights that fine
population substructure can be detected among European
humans.

GAGA Clustering Algorithm for Genomic Inference
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SS(T)~
1

2N

XN

j~1

XN

i~1

d2
ij ð3Þ

SS(WP)~
XK

k~1

PNk

j~1

PNk

i~1

d2
ij

2Nk

ð4Þ

where K is the number of groups.

The estimated values of population differentiation can be trans-

formed into Fst-like statistics, and reflect demographic parameters

such as migration rate or time of population split, among others

[34]. However, it has been suggested that within population

variance can be as high as the total variance for highly poly-

morphic markers, resulting in very low values of SS(AP) even if the

compared populations have no alleles in common [35]. Meirmans

[35] proposed a standardized version of the AMOVA under

different scenarios. However, several other genetic dissimilarity

statistics can also be used for estimating genetic relatedness

between diploid individuals [36,37].

Here we attempt to reduce the within-population variation and

maximize the between-population variation without a priori know-

ledge of the clusters (that is, only using individual pairwise

distances) and without any distance restriction. We do this by

transforming the genetic distance D matrix into a new dissimilarity

one V, where Vij = Vji = var[di.–dj.] taking into account that dii –

dij and djj – dji are excluded during the variance computation. The

rationale for proposing the V matrix transformation is as follows:

Following the AMOVA framework, individual relationships are

modelled using a list colouring of graph [38], so each vertex can be

either assigned to an individual, a non-admixed population, an ad-

mixed population, or a group of populations (see Figure 1 A); there-

fore, for a pair of individuals i, j, the distance di,j can be decomposed

in within- and between-population distances (see Figure 1B):

di,j~di,Izdj,JzdI,Jze ð5Þ

where di,I is the distance of individual i to his group I (i[I ), dj,J

is the distance of individual j to his group J (j[J ), dI,J is the

distance between group I and J and e is a random error in

the estimation of any d.,. which we assume follows a normal

distribution and is identical for all the individual pairwise distances

(e*N 0,s2
� �

). If i and j share the same adjacency vertex (i.e. i[I and

j[I ), then:

di,k{dj,k~di{djze0 ð6Þ

e0*N 0,2s2
� �

ð7Þ

for any individual k (k?i; k?j). The mean of the difference

between distances is then:

E½di,:{dj,:ji[I ; j[I �~di,1{dj,1 ð8Þ

with expected variance:

Vij~var½di,:{dj,:ji[I ; j[I �~2s2 ð9Þ

Therefore, the variance of the difference of distances for a

given pair of individuals from the same group to all the other

individuals becomes independent of the distance of each individual

to his group, and it is the same for all the elements of the group. In

contrast, it can be expected that the distances between individuals

from different populations will depend on the topology of the graph

and the number of individuals that belong to the same population.

For example, consider the simplest case of a graph of two

populations (Figure 1B); if i and j do not share the same adjacency

vertex (i.e. they are from a different populations), Vij becomes:

E½di,:{dj,:ji[I ; j[J�~ dI ,J nJ{nIð Þ
nIznJ{2

zdi,I{dj,J ð10Þ

Figure 1. A) Graph illustrating the AMOVA modelling of the
genetic relationships of individuals. Each individual, coloured as
black vertex, connects to a vertex of type population, which can be
either a non-admixed population if it is connected to a single group
vertex (black square) or an admixed population if the population vertex
is connected to more than one population/group. B) A simple two-
population model. The vertex group between the two populations has
been removed for clarity. The distance of each specimen to its own
population (d.) can be larger than the distance between populations
(DIJ) to the extent, that based on distances between individuals (Dij),
individual k would be a single node and individual i would be clustered
with individuals j and q.
doi:10.1371/journal.pcbi.1003480.g001
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And

Vij~var½di,:{dj,:ji[I ; j[J�~

d2
I ,J

nIznJ{2ð Þ3
nI{1ð Þ 2nJ{2ð Þ2z nJ{1ð Þ 2nI{2ð Þ2

� �
z2s2

ð11Þ

Where nI is the number of individuals that belong to population

I and nJ is the number of individuals that belong to population J.

In this case, the variance of the difference of distances includes an

additional term to the error in the estimation proportional to the

distance between the two groups and their respective sample sizes.

As previously, the within-population variance (i.e. the distance of

the individual to his population) is cancelled, which can therefore

improve the detection of population differentiation. If nI = nJ , it

can be seen that Vij = d2
I,J + 2s2. Also, notice that if nI = 1 or

nJ = 1, then Vij = 2s2. Therefore, in this example population dif-

ferentiation could only be detected by this statistic when there are

at least two individuals in each population so that the distance of

each individual to his population can be estimated.

The pseudocode for computing V is provided in Text S1.

Genetic algorithm for exploring the solution space
The AMOVA framework has been previously applied to iden-

tifying the best genetically homogeneous sets of geographically

related populations [39] by trying to maximize the amount of

genetic differentiation among groups of populations (conversely

minimizing the variance within groups of populations). Since ex-

ploring the entire solution space is unfeasible even for a reduced

number of populations, Dupanloup et al. [39] applied a simulated

annealing algorithm. The method was devised to detect spatial

barriers between already defined populations. However, a similar

heuristic approach can also be applied for clustering individuals

into populations, rather than populations into groups of popula-

tions. In particular, we propose to use a continuous genetic algo-

rithm [40] with Crossover Pair SubClusterSwap_TWO_NEW

[41] movement in order to explore the space of possible com-

binations and recover the optimal (or suboptimal) combination

that maximizes the SS(AP) statistic (conversely minimizes SS(WP);

see Text S1).

Computer simulations
In order to test the V matrix transformation in a known graph

model, we performed simulations on four populations of 10

individuals each, modelling a situation of three parental popula-

tions and one admixed population (see Figure S1). In each simu-

lation, we varied at random the distance of each individual to its

population, the distances between populations, and whether the

distances of the individuals to their populations were larger than

the distances between populations. We performed 1000 simula-

tions for each of the 8 possible combinations, and for each simu-

lation computed the distance between each pair of individuals

according to formula (5), including an error term following a

normal distribution with mean = 0 and standard deviation = 0.05;

for each simulation the D and V matrix and the percentage of

SS(AP) explained was computed.

We also conducted two sets of simulations of increasing demo-

graphic complexity to check whether V is more sensitive for

detecting population substructure than D and to analyse to what

extent the use of V improves the geographic sampling location

prediction compared to the use of D. Both demographic models

were implemented with the ms software [42] and simulated 25

populations, 10 diploid individuals per population (that is, 20

chromosomes per population) and either 10,000 or 100,000 inde-

pendent SNPs sampled from fragments of 50 kb and assuming a

mutation rate of 2.5*1028 per nucleotide and generation [43]. In

the first demographic scenario, we model the colonization of a

one-dimensional space from a starting founder population by

splitting the youngest population in two new ones every t gen-

erations [44] (see Figure 2A and Text S1 for details). The second

scenario considers spatial structure and migration between neigh-

bour populations following an isolation by distance model [13] (see

Figure 2B and Text S1). For each simulated dataset, the sensitivity

of D and V towards the real sampling location was quantified by

means of SS(AP)/SS(T). We further analysed the performance of

V for improving the percentage of best genetic-matching partners

in the same population by computing the percentage of BOM.

European genetic dataset
We used a previously published dataset comprising 309,790

SNPs and 2,457 individuals from 23 European subpopulations

genotyped with the Affymetrix 250K Xba and 250K Sty SNP

microarrays, [21] (see Table S1). Previous data cleaning of that

dataset included removing individuals showing a higher or smaller

genetic differentiation compared to the rest of the individuals from

the same subpopulation, and excluding SNPs showing a statisti-

cally significant HWE deviation in at least one subpopulation (see

[21] for a complete description of the data cleaning procedure).

Since most of the applied methods assume linkage equilibrium

among SNPs, a Linkage Disequilibrium (LD) pruned SNP subset

of 133,363 was computed with plink software [45] with the default

plink --indep 50 5 2 command, and was used for method-comparison

analyses. Also, since multivariate techniques such as PCA have

shown that unequal sample size can affect the outcome [46], all

analyses were performed twice, once considering the original

sample size and once considering 19 sample sites or subpop-

ulations with a sample size of 40 individuals (after excluding

Lisbon-Portugal, Dublin-Ireland, Budapest-Hungary and Bu-

charest-Romania) polymorphic at 124,134 SNPs. We attempted

to apply five of the previously proposed methods for inferring

groups of genetically homogeneous individuals (for example, see

[47]) to this dataset. When not included in the original

algorithm, we applied the algorithm Mclust [48] to obtain the

clusters. This algorithm assigns individuals to clusters by fitting

multivariate normal distributions using the coordinates of the

proposed dimensions and proposes the best clustering based on

the Bayesian Information Criterion (BIC). Mclust has been put

forward as a clustering algorithm for the output of Principal

Component Analysis using genetic data [49].

The first analysis consisted of a Classical Multidimensional

Scaling (MDS;[9]) performed using either the D or the V distance

matrix between pairs of individuals using the cmdscale function of

R statistical package [50], and adding a constant to avoid negative

eigenvalues [51]; Mclust clustering was performed using the first

10 dimensions, and setting the number of clusters from 1 to 60.

The second analysis consisted of a spatial ancestry analysis

(SPA)[12] conducted to infer the geographic ancestry of each

individual in two spatial dimensions. Clusters of individuals were

then inferred by means of Mclust using the proposed SPA

coordinates, also ranging from 1 to 60. The third analysis was

performed with the clusterGem algorithm implemented in the

GemTools package which uses spectral graph theory to propose

clusters of individuals [52]. Recently, a new software called LOCO-

LD [53] has been proposed for estimating the geographic locations

of a set of individuals. Similar in essence to SPA (i.e. for each SNP it

is assumed that there is an allelic gradient), LOCO-LD additionally

GAGA Clustering Algorithm for Genomic Inference
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incorporates LD patterns into the model, which has been

suggested to improve ancestry detection. However, the fact that

it necessarily requires a training dataset where the localization of

some individuals is known a priori (personal communication with

the authors) has precluded its use for comparative purposes, as

all the other used algorithms are unsupervised. We also aimed

to run fineSTRUCTURE, another software that uses LD

patterns [26], on the same dataset, after phasing it with the

Beagle software [54]. However, computing the shared chunk

matrix of all individuals with the default parameters of

ChromoPainting [26] turned out to be extremely computation-

ally intensive, even after splitting the genome into chromosomes

for parallel computing. As an example, chromosome 22, the

smallest human chromosome comprising only 3,698 SNPs in

this dataset, has a computational complexity according to the

ChromoPainter manual of 96,589,584,000 steps for only one E-

M iteration. The authors of this software reported in the

ChromoPainter manual computation times of 2-3 hours for a

computational complexity of 115,543,296 steps using a com-

puter of similar characteristics as the one we used here (8 cpus,

24 GB of RAM). Therefore, it can be expected that the

computational time for this chromosome is going to be ,83*(2

to 3) hours. Given that the authors suggest to run Chromo-

Painter considering different numbers of E-M iterations and

parameters, running all 22 chromosomes of this dataset appears

beyond reasonable practicability with the computer resources

available. Because of this, we decided to exclude this software

from comparison.

Pie map plots were constructed for each method and each

proposed clustering using the R packages map and mapplots.

Estimation of the sampling site differentiation based on
proposed genetic clusters

The Cramer’s V value [55] was used for summarizing the

goodness of fitness between the proposed clusters and the labelled

population origin of the individuals. Cramer’s V is a classical

measure of association of two variables in a contingency table and

is defined as:

Cramer0s V~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

N(k{1)

s
ð12Þ

where x2 is the chi-squared value from Pearson’s chi-squared test, N

is the total of observations, k is the number of rows or the number of

columns if less than the number of rows. Cramer’s V ranges from 0,

which corresponds to random assignment of the individuals of each

population to the different clusters, to 1, meaning that each

proposed individual cluster perfectly matches one population.

Also, in order to quantify how well the genetic clusters pro-

posed by each method differentiate each sampling location or

subpopulation from all the others, we computed the Informative-

ness of Ancestry (In) statistic [37] between each pair of sampling

locations using the obtained frequency of the proposed clusters by

Figure 2. Demographic scenarios used to test the performance of V and D matrices. Each simulation consists of 100,000 randomly
ascertained SNPs (see Figure S3 for simulations with 10,000 SNPs) simulated with ms software in 25 populations (10 diploid individuals in each
population). A) A.1) 2-D stepping stone demographic model implemented in the simulations. Each population exchanges a fraction of m migrants
with the neighbour populations each generation. A.2) Amount of variation explained among populations by using either the D or V matrix in
simulated against the inverse of the scaled amount of migrants by generation [57]. A.3) Percentage of best genetic-matching partners (best overall
match (BOM)) in the same (sub)population depending on whether the matrix V or D is used. The red dashed line indicates the simulation when the
BOM computed from V matrix . BOM computed with D matrix. B) B.1) A sequential split demographic scenario. Each t generations the youngest
population (at the right of the plot) splits into two. One remains in the same place and the new one moves to a new position at the right, decreasing
its effective population size proportionally to the number of already conducted sequential splits. B.2) Percentage of SS(AP) respect to SS(T) by using
either the D or the V matrix against the scaled time of split by Ne. B.3) Percentage of best genetic-matching partners (best overall match (BOM)) in the
same (sub)population depending on whether the matrix V or D is used. The red dashed line indicates the simulation when the BOM computed from V
matrix . BOM computed with D matrix.
doi:10.1371/journal.pcbi.1003480.g002

GAGA Clustering Algorithm for Genomic Inference
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each method:

Ins,t~Int,s~
XK

c~1

{
psczptc

2
log (

psczptc

2
)z

1

2
psc log (psc)zptc log (ptc)ð Þ

ð13Þ

Where K is the number of proposed clusters, psc is the frequency

of the cluster c in sampling location s and ptc is the frequency of

the cluster c in sampling location t.

In ranges between 0 (i.e. the proposed clusters cannot distinguish

individuals from the two populations) to log(2), indicating that the

two sampling locations are perfectly differentiable based on the

proposed clusters. Therefore, if a sampling location is perfectly

differentiated from any other sampling location based on the

proposed clusters, the minimum value that is going to be obtained

for all the possible (sub)population comparisons of that particular

sampling site is log(2). In contrast, if the sampling location is

identical based on the proposed clusters to at least one of the other

sampling locations, the minimum In value is going to be 0.

The complete methodological pipeline is depicted in Figure S2

Results/Discussion

In the present study, we propose the use of V, the variance in

the difference of distances between two individuals to all the other

tested individuals, in order to homogenize and minimize the

genetic distance within each (sub)population, thus enhancing the

between-(sub)population genetic differentiation. This matrix con-

version, coupled to a genetic algorithm that uses the AMOVA

framework, is then employed to highlight the presence of hidden

genetic relationships between individuals and provide clusters of

genetically related individuals. We have named this newly deve-

loped approach Genetic Algorithm for Genetic Ancestry (GAGA).

Testing the new approach by means of computer
simulations

We started comparing V and D matrices in explaining the

between-population variation in a simple case modelling four

populations under different scenarios of distances between indi-

viduals and populations. As can be seen in Figure S1, SS(AP)

computed with the D matrix strongly varies depending on which

distance model assumptions are applied. In contrast, the SS(AP)

values obtained with the V matrix are close to 1 in all cases, and

are in all the cases larger than those obtained for the same

simulation with the D matrix.

Next, we analysed the behaviour of the V and D matrix in

genetic data by means of extensive simulations using two of the

most commonly applied models in human populations, consider-

ing either 10,000 SNPs ( see Figure S3) or 100,000 SNPs (see

Figure 2). In the two-dimensional stepping-stone grid model the

amount of genetic differentiation between populations increased

proportionally to the decrease in the number of migrants among

neighbour populations when using either D or V matrix, re-

gardless of the number of considered SNPs (see Figure 2A.2).

Nevertheless, the between-population differentiation increased

much faster in the case of V than in the case of D and even

faster when simulating 100,000 SNPs (see Figure 2 and Figure S3;

Wilcoxon signed paired rank test p-value between SS(AP)

estimated from V matrix with either 10,000 SNPs or 100,000

SNPs = 0.001953). In contrast, SS(AP) values estimated with the

D matrix were similar, independently of the number of considered

SNPs (Wilcoxon signed paired rank test p-value between SS(AP)

estimated from D matrix with either 10,000 SNPs or 100,000

SNPs = 0.4316). A similar trend of results, both for the V matrix

and the D matrix, was observed when simulating the data under

the sequential split model and increasing the time of separation

between populations (see Figure 2B.2). Furthermore, the percent-

age of BOM from the same sampling population increases when

the migration rate decreases (in the case of the stepping-stone

model) and the time of split increases (in the case of the sequential

split model), independently of the number of SNPs or type of

considered distance matrix (see Figure 2A.3 and 2B.3). However,

the percentage of BOM from the same sampled population

increases faster when using V than when using D after a certain

parameter threshold in both models (see Figure 2.A.3 and Figure

2.B.3). Furthermore, this threshold depends on the number of

considered SNPs (see Figure S3): a smaller migration rate for the

sequential split model and a larger time of population split for the

stepping stone model is required in order to detect differences in

the percentage of BOM from V or D matrix using 10,000 SNPs

compared to when using 100,000 SNPs.

Overall, our simulation experiments demonstrate that V can be

used to detect further genetic-geographic population substructure

in the cases where the amount of genetic differentiation is par-

ticularly small compared to within each population, such as is

expected and partly known already in human populations from

the European continent.

Application of the V matrix on human genome-wide data
from Europe

Given these promising results obtained in the computer simu-

lations, we applied our newly developed approach to a previously

collected dataset comprising 2,457 individuals from 23 European

subpopulations using 133,363 LD pruned genome-wide SNPs [21].

We first observed that the mean distance T1 of each individual to all

the other individuals collected at the same geographic site (i.e.

belonging to the same subpopulation) was 0.331 (95% CI from

0.322 to 0.342). Thirty-three percent of the individuals showed a

mean T1 distance to their sampling population .1/3, suggesting

that they belonged to a different random mating population [31].

Moreover, this proportion was not constant among European

subpopulations (ranging from 0% in Budapest-Hungary to 63% in

Madrid-Spain; see Table S2, two sided Fisher exact test p value ,

0.0005 after 2000 replicates), indicating that some European

subpopulations are more genetically heterogeneous than others.

The percentage of individuals with BOM in the same subpopula-

tion using the T1 matrix was 25.93%, a value similar to the one

obtained previously when using Identical By State distance

between pairs of individuals [24]. This value ranged from 0% in

Bucharest-Romania, Copenhagen-Denmark, Lyon-France, Pra-

gue-Czech Republic and Warsaw-Poland to 78.7% in Helsinki-

Finland (Table S3). In contrast, the BOM computed from the V

distance matrix increased to 52.83%, ranging from 6% in Lyon

to 97.87% in Helsinki (see Table S4). This improvement is much

higher than the one observed in the simulated datasets for BOM

of 20% computed with the D matrix. Furthermore, the SS(AP)

was estimated to be 1.62% when using the D matrix, while it

increased to 7.98% when using the V matrix. Hence, also when

applied to real genomic data our newly developed approach

revealed increased genetic population differentiation.

Classification improvement when applying the V matrix
compared to the D matrix

We further focused on studying to which extent unsupervised

clusters of individuals inferred from the genetic data would match

GAGA Clustering Algorithm for Genomic Inference
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the geographic site of their sampling origin or subpopulation (see

Table 1). In the case of MDS, the first two dimensions using the D

matrix and considering all the individuals explained 0.733% of the

total variance (see Figure S4), 2% when considering an equal

sample size of 40 individuals per subpopulation. In contrast, the

first two dimensions of the MDS using V and all the individuals

explained 15.133% of the total variance, 20.64 times more, and

increased to 30.45% when using unbiased sample size among

populations. These results supports that the V transformation

reduces the amount of non-shared (i.e. particular of each indi-

vidual) variation, and highlights the differences among groups of

individuals. The best supported clustering by Mclust using the first

Table 1. Estimated association by means of Cramer’s V and mean minimum population informativeness differentiation between
proposed clusters by different clustering methods and (sub)population sampling origin using: all the samples (2457 individuals)
and populations (23), 40 samples per population in 19 populations and all the samples from 19 populations (see Materials and
Methods).

Method All samples and populations
40 samples per population, 19
populations All samples, 19 populations

Clusters Cramer’s V Mean min In Clusters Cramer’s V Mean min In Clusters Cramer’s V
Mean min
In

MDS+D + Mclust 26 0.655 0.231 19 0.753 0.291 33 0.752 0.337

MDS+V+ Mclust 37 0.71 0.304 17 0.793 0.273 28 0.767 0.343

SPA+Mclust 13 0.621 0.127 8 0.8 0.120 11 0.604 0.107

GemTools 56 0.685 0.268 25 0.768 0.375 56 0.781 0.385

Genetic algorithm+D 56 0.618 0.254 56 0.66 0.300 56 0.663 0.294

GAGA 56 0.701 0.316 56 0.745 0.315 56 0.763 0.382

doi:10.1371/journal.pcbi.1003480.t001

Figure 3. Pie maps of 2,457 European individuals from 23 sampling subpopulations from across Europe analysed at 133,363
Linkage Disequilibrium (LD) pruned SNPs according to their genetic relationships using: Classical Multidimensional Scaling (MDS)
+ Mclust analysis using the D distance matrix based on the T1 (Genotype) statistic; MDS + Mclust analysis using the distance matrix
with the transformed V matrix; SPA + Mclust analysis using the original genotype data; GemTools analysis using the original
genotype data; genetic algorithm + AMOVA using the original D matrix; genetic algorithm + AMOVA using the V matrix.
doi:10.1371/journal.pcbi.1003480.g003
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10 MDS dimensions using the D matrix was 26 genetic clusters

(Figure 3A). Cramer’s V statistic between the proposed clusters

and the sampling sites or subpopulations was 0.655. The average

amount of minimum sampling site differentiation based on

these 26 clusters was 0.231, with Helsinki-Finland being the

mostly differentiated of all European subpopulations considered

(In = 0.642, see Figure 4) and Lisbon-Portugal, Madrid-Spain and

Barcelona-Spain appearing as non-distinguishable from each other

(In = 0). In contrast, Mclust using the first 10 MDS dimensions

from the V matrix proposed 37 different genetic clusters, all the

populations sharing at least one of the proposed clusters (see

Figure 3B). Cramer’s V increased to 0.71, and the average In

increased to 0.304, again suggesting that V provides a better

population sampling resolution than the original D matrix. The

strongest improvement in European subpopulation differentia-

tion was observed in Ancona-Italy (In using the D matrix (In–

D) = 0.122 compared to In using the V matrix (In–V) = 0.434)

and Rome-Italy (In–D = 0.122 to In–V = 434). Running Mclust on

SPA based on the original genotype matrix suggested 13 clusters

(Figure 3C); the average amount of subpopulation differentiation

provided by these genetic clusters was quite poor (average

In = 0.127; see Figure 4), and none of the sampling subpopulations

improved their differentiation compared to all the other methods.

Nevertheless, it must be taken into account that these results are

not directly comparable, since SPA models the observed data in a

very limited number of dimensions (two in our case), whereas

MDS+Mclust analyses were based on 10 dimensions. Indeed, the

MDS+Mclust analysis using the first two dimensions provided

similar results to the ones observed with SPA (results not shown).

GemTools analysis proposed 56 different genetic clusters (see Figure

3D). However, despite this increase in the number of proposed

clusters, the average minimum differentiation among subpopula-

tions (average In = 0.268) was smaller than the one obtained

when running MDS-V+Mclust. Compared to MDS-V+Mclust,

the proposed clusters by GemTools increased the differentiation

of Barcelona-Spain, Ancona-Italy, Augsburg-Germany, and

Innsbruck-Austria but reduced it in Belgrade-Serbia, Bucharest-

Romania, North Greece, Forde-Norway, and particularly in

Warsaw-Poland (see Figure 4). We used the genetic algorithm

maximizing AMOVA’s SS(AP) statistic either with the D or the V

matrix (the latest comprising the GAGA approach) to the same

genetic dataset, setting K = 56 allowed clusters (see Figure S5 for

results using K = 2, 5, 10, 15 and 23 with V matrix), the same

number of clusters as identified by GemTools (see Figure 3E). The

average amount of minimum genetic differentiation of the proposed

clusters by the genetic algorithm + D matrix was In = 0.254, the

second worse value after MDS-D+Mclust. Only in the case of

Belgrade there was an improvement compared to all the other

methods (see Figure 4). In contrast to these results, when the genetic

algorithm uses the V matrix, the average differentiation among

European subpopulations increased to In = 0.316, the largest value

of all the applied methods. Hence, GAGA was able to increase the

geographic resolution compared to other methods. Furthermore, in

the case of Budapest-Hungary, North Greece, Helsinki-Finland,

Prague-Czech Republic and Rome-Italy (Figure 4), GAGA provides

the best values of subpopulation differentiation in this European

genomic dataset.

We further analysed the effect of different sample size in the

outcome of the different methods. We repeated all the analyses

with a subset of 19 populations (after excluding Lisbon-Portugal,

Dublin-Ireland, Budapest-Hungary and Bucharest- Romania) with

equal sample size of 40 individuals. The percentage of closest

genetic neighbours in the same (sub)population is similar to the

ones when considering all the individuals (BOM = 58.03% for the

V matrix, 22.37% for the D matrix). Nevertheless, the association

between the proposed clusters and the (sub)population samples

increases in all the methods. This is particularly pronounced in the

case of GemTools (see Table 1). We wondered whether this

difference in performance of GemTools is due to the excluded four

populations and/or to the use of equal sample sizes, so we per-

formed all the analyses considering the same subset of 19

subpopulations but with their original sample size. The values of

Figure 4. Minimum amount of genetic differentiation of each of the 23 European subpopulation against the others estimated from
the proposed clusters of each method using a genome-wide dataset of 133,363 LD pruned genome-wide autosomal SNPs from
2,457 individuals [21].
doi:10.1371/journal.pcbi.1003480.g004
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minimum informativeness differentiation of GemTools increased

to 0.385, thus suggesting the influence of the four excluded

populations in the final results.

Conclusions
We have described a new matrix distance transformation that

tends to minimize the within-population variance without knowing

a priori the (sub)populations, and have shown, by means of

computer simulations and application to real European genetic

data, that this new approach improves the differentiation among

(sub)populations compared to the original distance matrix. A

practical result of our analyses is that this matrix transformation

improves the output of MDS, both at the level of explained

variance and resolution, as well as from the AMOVA estimations.

In the present paper we show that GAGA performs reasonably

well when using the K proposed by GemTools. One could also

consider estimating the K based on parameterized Gaussian

mixture models [56] such as implemented in Mclust. Nevertheless,

the choice of K is rather arbitrary depending on the required

resolution and subject of further study. Most importantly, our

findings of previously undetected fine-scale human population

substructure down to the level of sampling sites or subpopulations

within Europe, has important implications for various basic and

applied fields of life science. With relevance for genetic epidemi-

ology, our results suggest that the genetic homogeneity detection

desired in case-control studies should be preferably established by

analyzing the relationships of pairs of individuals in the context of all

other individuals tested, rather than by analyzing how genetically

similar individuals are, as usually done. The GAGA approach we

introduce here is now available for application to all types of genetic

data. The GAGA algorithm was implemented in JAVA (Sun

Microsystems) and is publically available for widespread use at

http://www.erasmusmc.nl/fmb/resources/GAGA.

Supporting Information

Figure S1 A) Model of three parental populations and one

admixed population, each one with 10 individuals (black dots, only

two individuals per population are shown in the graph). Eight

different possible situations where considered. The edge of each

individual to his adjacency population vertex were either all of the

same length (Individual Distance Constant, IDC) or of variable

length (Individual Distance Not Constant, IDNC). The edges

connecting two populations were either all of the same length

(Group Distance Constant, GDC) or of variable length (Group

Distance Not Constant, GDNC) and also larger than the

minimum distance of any individual to his population (GDLI) or

smaller (GDSI). For each possible combination, 1000 simulations

were conducted. The edge distance of an individual to the

adjacency vertex population was randomly modelled using a

uniform distribution U(0.5, 1). The assumed error in the esti-

mation was computed following a Normal distribution N(0, 0.05).

The distance between adjacent populations was simulated from a

uniform distribution with parameters U(m, 1) if the distance was

larger than the minimum individual distance to his population (m)

or U(0,m) if the distance between two adjacent populations was

smaller. B) Boxplot of the SS(AP)/SS(T) computed for each of the

1000 simulations conducted for each of the eight possible

combinations. In grey, SS(AP)/SS(T) estimations considering the

original Distance matrix, computed as the path between two

points given their simulated distances to their population of origin

and the distances between populations. In black, SS(AP)/SS(T)

estimations considering the transformed V matrix, computed out

of the original Distance matrix. As can be seen, in all the simulated

cases SS(AP)/SS(T) of the V matrix is . SS(AP)/SS(T) of the D

matrix.

(EPS)

Figure S2 Analysis pipeline applied to the genome-wide data

from 2,457 individuals from 23 European subpopulations [21].

Starting from the genotype matrix of n = 2,457 individuals by

m = 133,363 LD pruned loci, a distance matrix D is computed

using T1 statistic or similar ones (procedure 1). The distance

matrix is then used to perform a MDS analysis (procedure 2),

resulting in a set of MDS coordinates in a reduced Euclidean

space. Applying clustering algorithms, such as Mclust, on the

MDS coordinates by supplying an arbitrary number of clusters, k,

will assign all individuals to k clusters (procedure 3). This clustering

configuration can be evaluated for concordance with their true

population sampling origin labels using cross-tabulations (proce-

dure 4) by means of, for example, minimum Informativeness of

ancestry, which gives a single numeric value for each population

between 0 and log(2) with a larger value for a higher population

differentiation (procedure 5). In parallel, either GemTools or SPA

is applied to the original genotype matrix. In the case of SPA,

Mclust is applied to identify clusters of individuals (procedure 4).

Our new algorithm, GAGA, starts by transforming the D matrix

into the V matrix (procedure 7). This step highlights the genetic

differentiation among (the a priori unknown) (sub)populations. A

genetic algorithm is then applied to search for the optimal

clustering configuration (procedure 8). The clustering results from

GAGA can also be compared with those from other algorithms

such as MDS and SPA through procedures 4 and 5.

(EPS)

Figure S3 Demographic scenarios used to test the performance

of V and D matrices. Each simulation consists of 10,000 randomly

ascertained SNPs (see Figure 2 for simulations with 100,000 SNPs)

simulated with ms software in 25 populations (10 diploid indi-

viduals in each population). A) A.1) 2-D stepping stone demo-

graphic model implemented in the simulations. Each population

exchanges a fraction of m migrants with the neighbor populations

each generation. A.2) Amount of variation explained among

populations by either the D or V matrix in simulated against the

inverse of the scaled amount of migrants by generation [57]. A.3)

Percentage of the best genetic-matching partner (best overall

match (BOM)) in the same (sub)population depending on whether

the matrix V or D is used. B) B.1) A sequential split demographic

scenario. Each t generations the youngest population (at the right

of the plot) splits into two. One remains in the same place and the

new one moves to a new position at the right, decreasing its

effective population size proportionally to the number of already

conducted sequential splits. B.2) Percentage of SS(AP) respect to

SS(T) when using either the D or the V matrix against the scaled

time of split by Ne. B.3) Percentage of closest genetic neighbor

(best overall match (BOM)) in the same (sub)population depending

on whether the matrix V or D is used.

(EPS)

Figure S4 Percentage of variation explained by each eigenvalue

from a classical Multidimensional Scaling analysis when using the

D (based on the T1 statistic) or the transformed V distance matrix

on 2,457 European individuals sampled at 133,363 Linkage

Disequilibrium (LD) pruned SNPs.

(EPS)

Figure S5 Best proposed clusters using GAGA setting K = 2, 5,

10, 15 and 23 on 2,457 European individuals sampled at 133,363

Linkage Disequilibrium (LD) pruned SNPs.

(EPS)
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Table S1 2457 European samples from 23 sampling locations/

subpopulations used in the study after the data cleaning performed

in [21]. Underlined populations were excluded from the analyses

considering equal sample size.

(DOCX)

Table S2 Counts of European individuals showing a mean D ,

1/3 (indicating more relatedness to the population than the

expected by random mating) and mean D . 1/3 (indicating that

the individual is on average from a different random mating

population than the one where he was sampled).

(DOCX)

Table S3 Table showing the individuals with the best overall

genetic match (BOM) in the same population of sampling or in a

different population when using the D statistic based on T1

similarity as measure of genetic dissimilarity.

(DOCX)

Table S4 Table showing the individuals with the BOM in the

same population of sampling or in a different population when

using the V statistic as measure of genetic dissimilarity.

(DOCX)

Text S1 Supplementary information describing the Pseudocode

for the Computation of the V matrix, implementation of the

Genetic algorithm for exploring the space of solutions and

demographic simulations.

(DOC)

Acknowledgments

We are grateful to the numerous colleagues who contributed with either

samples or data to the establishment of the previously published genome-

wide European dataset used here: Miroslava Balascakova, Jaume

Bertranpetit, Laurence A. Bindoff, David Comas, Gunilla Holmlund,

Anastasia Kouvatsi, Milan Macek, Isabelle Mollet, Walther Parson, Jukka

Palo, Rafal Ploski, Antti Sajantila, Adriano Tagliabracci, Ulrik Gether,

Thomas Werge, Fernando Rivadeneira, Albert Hofman, Andre G.

Uitterlinden, Christian Gieger, Heinz-Erich Wichmann, Andreas Ruther,

Stefan Schreiber, Christian Becker, Matthew R. Nelson, and Michael

Krawczak.

Author Contributions

Conceived and designed the experiments: OL FL. Performed the

experiments: OL FL AW. Analyzed the data: OL FL AW. Contributed

reagents/materials/analysis tools: MK. Wrote the paper: OL FL MK.

References

1. Barbujani G, Colonna V (2010) Human genome diversity: frequently asked
questions. Trends Genet 26: 285–295.

2. Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, et al. (2004)
Assessing the impact of population stratification on genetic association studies.

Nat Genet 36: 388–393.

3. Marigorta UM, Lao O, Casals F, Calafell F, Morcillo-Suarez C, et al. (2011)

Recent human evolution has shaped geographical differences in susceptibility to
disease. BMC Genomics 12: 55.

4. Kayser M, de Knijff P (2011) Improving human forensics through advances in

genetics, genomics and molecular biology. Nat Rev Genet 12: 179–192.

5. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of

ancestry in unrelated individuals. Genome Res 19: 1655–1664.

6. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure

using multilocus genotype data. Genetics 155: 945–959.

7. Tang H, Peng J, Wang P, Risch NJ (2005) Estimation of individual admixture:

analytical and study design considerations. Genet Epidemiol 28: 289–301.

8. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)

Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet 38: 904–909.

9. Cox TF, Cox MAA (2001) Multidimensional Scaling. Florida: CHAPMAN &

HALL/CRC.

10. Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of

multivariate analysis. Heredity 102: 330–341.

11. Wang C, Zollner S, Rosenberg NA (2012) A quantitative comparison of the

similarity between genes and geography in worldwide human populations. PLoS
Genet 8: e1002886.

12. Yang WY, Novembre J, Eskin E, Halperin E (2012) A model-based approach for
analysis of spatial structure in genetic data. Nat Genet 44: 725–731.

13. Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW,
et al. (2005) Support from the relationship of genetic and geographic distance in

human populations for a serial founder effect originating in Africa. Proc Natl
Acad Sci U S A 102: 15942–15947.

14. Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, et al. (2006) Positive
natural selection in the human lineage. Science 312: 1614–1620.

15. Oota H, Settheetham-Ishida W, Tiwawech D, Ishida T, Stoneking M (2001)
Human mtDNA and Y-chromosome variation is correlated with matrilocal

versus patrilocal residence. Nat Genet 29: 20–21.

16. Goldstein DB, Chikhi LV (2002) Human migrations and population structure:

what we know and why it matters. Annu Rev Genomics Hum Genet 3: 129–152.

17. Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The history and geography of
human genes. Princeton (NJ): Princeton University Press.

18. Handley LJ, Manica A, Goudet J, Balloux F (2007) Going the distance: human
population genetics in a clinal world. Trends Genet 23: 432–439.

19. Liu H, Prugnolle F, Manica A, Balloux F (2006) A geographically explicit genetic
model of worldwide human-settlement history. Am J Hum Genet 79: 230–237.

20. Mendizabal I, Lao O, Marigorta UM, Wollstein A, Gusmao L, et al. (2012)
Reconstructing the population history of European Romani from genome-wide

data. Curr Biol 22: 2342–2349.

21. Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S, et al. (2008) Correlation

between genetic and geographic structure in Europe. Curr Biol 18: 1241–1248.

22. Lao O, Altena E, Becker C, Brauer S, Kraaijenbrink T, et al. (2013) Clinal
distribution of human genomic diversity across the Netherlands despite

archaeological evidence for genetic discontinuities in Dutch population history.
Investig Genet 4: 9.

23. Ralph P, Coop G (2013) The Geography of Recent Genetic Ancestry across
Europe. PLoS Biol 11: e1001555.

24. Lu TT, Lao O, Nothnagel M, Junge O, Freitag-Wolf S, et al. (2009) An

evaluation of the genetic-matched pair study design using genome-wide SNP

data from the European population. Eur J Hum Genet 17: 967–975.

25. Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, et al. (2008) Genes
mirror geography within Europe. Nature 456: 98–101.

26. Lawson DJ, Hellenthal G, Myers S, Falush D (2012) Inference of population
structure using dense haplotype data. PLoS Genet 8: e1002453.

27. Browning SR, Browning BL (2011) Haplotype phasing: existing methods and
new developments. Nat Rev Genet 12: 703–714.

28. Andres AM, Clark AG, Shimmin L, Boerwinkle E, Sing CF, et al. (2007)
Understanding the accuracy of statistical haplotype inference with sequence data

of known phase. Genet Epidemiol 31: 659–671.

29. Novembre J, Ramachandran S (2011) Perspectives on human population

structure at the cusp of the sequencing era. Annu Rev Genomics Hum Genet 12:
245–274.

30. Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, et al. (2009)

Genome-wide survey of SNP variation uncovers the genetic structure of cattle

breeds. Science 324: 528–532.

31. Lee WC (2003) Testing the genetic relation between two individuals using a

panel of frequency-unknown single nucleotide polymorphisms. Ann Hum Genet
67: 618–619.

32. Stevens EL, Heckenberg G, Roberson ED, Baugher JD, Downey TJ, et al.

(2011) Inference of relationships in population data using identity-by-descent

and identity-by-state. PLoS Genet 7: e1002287.

33. Excoffier L, Smouse PE, Quattro JMV (1992) Analysis of molecular variance
inferred from metric distances among DNA haplotypes: application to human

mitochondrial DNA restriction data. Genetics 131: 479–491.

34. Excoffier L (2003) Analysis of population subdivision. In: Balding DJ, Bishop M,

Cannings C, editors. Handoobk of statistical genetics- 2nd edition. 2 ed. The

Atrium, Sothern Gate, Chichester, West Sussex: Wiley.

35. Meirmans PG (2006) Using the AMOVA framework to estimate a standardized
genetic differentiation measure. Evolution 60: 2399–2402.

36. Goudet J, Raymond M, de Meeus T, Rousset F (1996) Testing differentiation in
diploid populations. Genetics 144: 1933–1940.

37. Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic
markers for inference of ancestry. Am J Hum Genet 73: 1402–1422.

38. Bondy JA, Murty USR (2008) Graph Theory; Axler S, Ribert KA, editors:

Springer. 657 p.

39. Dupanloup I, Schneider S, Excoffier LV (2002) A simulated annealing approach

to define the genetic structure of populations. Mol Ecol 11: 2571–2581.

40. Haupt RL, Haupt SE (2004) Practical genetic algorithms: Wiley-Interscience.

272 p.

41. Goswami G, Liu SJ, Wong HW (2007) Evolutionary Monte Carlo Methods for

Clustering. Journal of Computational & Graphical Statistics 16: 21.

42. Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of

genetic variation. Bioinformatics 18: 337–338.

43. Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide
in humans. Genetics 156: 297–304.

GAGA Clustering Algorithm for Genomic Inference

PLOS Computational Biology | www.ploscompbiol.org 10 February 2014 | Volume 10 | Issue 2 | e1003480



44. DeGiorgio M, Jakobsson M, Rosenberg NA (2009) Out of Africa: modern

human origins special feature: explaining worldwide patterns of human genetic

variation using a coalescent-based serial founder model of migration outward

from Africa. Proc Natl Acad Sci U S A 106: 16057–16062.

45. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet 81: 559–575.

46. McVean G (2009) A genealogical interpretation of principal components

analysis. PLoS Genet 5: e1000686.

47. Liu Y, Nyunoya T, Leng S, Belinsky SA, Tesfaigzi Y, et al. (2013) Softwares and

methods for estimating genetic ancestry in human populations. Hum Genomics

7: 1.

48. Fraley C, Raftery AE, Murphy TB, Scrucca L (2012) mclust Version 4 for R:

Normal Mixture Modeling for Model-Based Clustering, Classification, and

Density Estimation.

49. Lawson DJ, Falush D (2012) Population identification using genetic data. Annu

Rev Genomics Hum Genet 13: 337–361.

50. R Development Core Team (2006) R: A Language and Environment for

Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
51. Cailliez F (1983) The analytical solution of the additive constant problem.

Psychometrika 48: 343–349.

52. Lee AB, Luca D, Klei L, Devlin B, Roeder K (2010) Discovering genetic
ancestry using spectral graph theory. Genet Epidemiol 34: 51–59.

53. Baran Y, Quintela I, Carracedo A, Pasaniuc B, Halperin E (2013) Enhanced
Localization of Genetic Samples through Linkage-Disequilibrium Correction.

Am J Hum Genet 92: 882–894.

54. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of localized

haplotype clustering. Am J Hum Genet 81: 1084–1097.
55. Cramér H ( 1946) Mathematical Methods of Statistics: Princeton: Princeton

University Press.
56. Fraley C, Raftery AE (2007) Bayesian Regularization for Normal Mixture

Estimation and Model-Based Clustering. Journal of Classification 24: 155–181.

57. Barton NH, Wilson I (1995) Genealogies and geography. Philos Trans R Soc
Lond B Biol Sci 349: 49–59.

GAGA Clustering Algorithm for Genomic Inference

PLOS Computational Biology | www.ploscompbiol.org 11 February 2014 | Volume 10 | Issue 2 | e1003480


