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Abstract

Background: Lysine acetylation is a crucial type of protein post-translational modification, which is involved in many
important cellular processes and serious diseases. However, identification of protein acetylated sites through traditional
experiment methods is time-consuming and laborious. Those methods are not suitable to identify a large number of
acetylated sites quickly. Therefore, computational methods are still very valuable to accelerate lysine acetylated site finding.

Result: In this study, many biological characteristics of acetylated sites have been investigated, such as the amino acid
sequence around the acetylated sites, the physicochemical property of the amino acids and the transition probability of
adjacent amino acids. A logistic regression method was then utilized to integrate these information for generating a novel
lysine acetylation prediction system named LAceP. When compared with existing methods, LAceP overwhelms most of
state-of-the-art methods. Especially, LAceP has a more balanced prediction capability for positive and negative datasets.

Conclusion: LAceP can integrate different biological features to predict lysine acetylation with high accuracy. An online web
server is freely available at http://www.scbit.org/iPTM/.
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Introduction

In the post-genomic era, one of the important goals of biological

research is to explain genome contexts and understand the

function of genetic information [1]. Transcriptomic and proteomic

data can provide important information to understand the genome

contexts [2,3]. For example, acetylation, which is one of the most

significant protein modifications with an important impact on the

functions of proteins, can be inferred from proteomic data. It is

often catalyzed by acetyltransferase that transfers the acetyl group

of acetyl coenzyme (Acetyl-CoA) to an amino acid. A vast scale of

acetylated proteins in mammalian have been identified by

proteomics methods, suggesting that acetylation may be as

ubiquitous as phosphorylation [4,5]. It is reported by Van Damme

[6] that ,85% of human proteins and 68% of yeast proteins were

acetylated at N-terminus.

Acetylation occurs in cellular processes with two forms: Na-

acetylation and Ne-acetylation. Na-acetylation is an irreversible

modification which often occurs during translation at the N-

terminus of a protein and it only occurs in post-translational

process of chloroplast proteins [7,8]. In contrast, Ne-acetylation is

a reversible post-translational modification and it occurs at unfixed

positions of a protein.

Lysine acetylation is important for many cellular processes

[9,10,11,12,13]. For example, the dynamic interaction between

lysine acetyltransferases (KATs) and lysine deacetylases (KDACs)

is used to maintain appropriate levels of histone acetylation for

normal cell growth, proliferation and differentiation [4]. Acetyla-

tion has been shown to regulate protein expression, stability,

localization and synthesis [14,15,16,17,18,19]. It has also been

reported that lysine acetylation is involved in serious diseases like

cancer due to the abnormal KAT/KDAC function impacting the

cell division [20,21,22].

However, the mechanism of protein acetylation is still largely

unknown. Identifying acetylation sites is the first step to

understand acetylation mechanism and can provide a certain

guidance for some diseases treatment [23]. Experimental methods,

such as radioactivity detection [24], immunity affinity detection,

chromatin immunoprecipitation (ChIP) [25] and mass spectro-

metric detection [26] are widely used for acetylation identification.

But these methods are time-consuming and laborious. Especially,

they are not able to identify a large number of acetylation loci

quickly. Therefore, computational approaches for acetylation site

prediction are needed. Currently, various computational models

have been proposed to predict acetylated lysine sites
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[27,28,29,30,31,32,33]. However, some limitations should be

noted. First, some methods didn’t carry out acetylation peptide

length assay and only peptides with a pre-fixed length are checked

[27,31,34]. Second, some prediction models only considered

protein redundancy (not the peptide redundancy) [31,34], which

would lead to over fitting. Finally, many models didn’t consider

adjacent residues’ property [28,30,31,34], which was believed to

have an important impact on acetylation. Therefore, it is possible

to create a new method to identify lysine acetylation sites more

effectively by integrating relevant information.

In this study, we present a lysine acetylation site prediction

system named LAceP based on a logistic regression model. In

practice, the amino acid sequence of the acetylated sites, the

physicochemical property of the amino acids and the transition

probability of adjacent amino acids were utilized as features of

LAceP. Cross-validations were carried out to evaluate the

performance of LAceP. In addition, the accuracy of the system

was compared with state-of-the-art methods in independent

datasets.

Methods

Data collection
Our experimentally validated lysine acetylation sites are extract-

ed from a database for post-translational modification (PTM) called

SysPTM2 (http://lifecenter.sgst.cn/SysPTM/, paper submitted)

and the PhosphoSitePlus [35] database. In SysPTM2 database,

11,842 acetylated lysine (K) sites from 5,748 proteins are retrieved.

In PhosphoSitePlus database, 3,814 acetylated lysine sites from

1,592 proteins are retrieved. After combining these two datasets

with redundancy removed, 13,810 acetylation sites from 6,388

proteins were collected as positive dataset. For negative dataset, all

peptides containing lysine from acetylated proteins were extracted.

Then, positive peptides were excluded and the remaining peptides

were used as negative ones. As a result, 256,359 non-acetylated

lysine peptides were collected.

Figure 1. The data process pipeline of LAceP. The dataset was derived from SysPTM 2.0 (http://lifecenter.sgst.cn/SysPTM/) and PhosphoSitePlus
(http://www.phosphosite.org/). After eliminating redundancy, the non-redundant sites were obtained. Independent dataset was selected from
positive dataset and negative dataset randomly at first. Then the remaining positive items and the same number of negative items, selected
randomly from the whole negative dataset, were combined to construct training datasets. The selection process was iterated 10 times. After
encoding three types of features, the logistic regression algorithm was utilized to build the classifier. After parameter optimization and performance
evaluation, the best model was created. Finally, a web server of LAceP was established for biologist to use the prediction model.
doi:10.1371/journal.pone.0089575.g001
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Data process
Marmorstein et al [36] deems that the peptides recognized by

lysine acetyltransferase are about 14–20 amino acids residues.

However, the best length of an acetylationpeptide is unknown and

it is crucial for acetylated sites identification. In this study, a sliding

window strategy was used to determine the best length of

acetylation peptides. In practice, the window size was set to 2n+
1, where n is the number of upstream or downstream residues, and

a peptide can be denoted ass~(s{ns{nz1:::s{i:::s{2s{1

s0s1s2:::si:::sn{1sn). In our work, n was set to 12 and the window

size was 25 initially. The homology reduction of peptides was

carried out through the CD-hit software [37,38] to avoid model

over fitting. In practice, peptides were categorized into a group

when their sequence similarity was over 70%. Then for each

group, only one peptide was kept and the others were discarded.

As a result, 6,210 acetylated lysine peptides and 83,274 non-

acetylated lysine peptides were obtained. In order to compare the

performance of our prediction model with existing tools with

similar functions, 300 acetylated peptides and 300 non-acetylated

ones were randomly chosen as the independent test dataset (see

Table S1). The remaining 5,910 acetylated peptides were utilized

as positive training data. 5,910 non-acetylated peptides were

randomly selected from the whole negative dataset as negative

training data. The select procedure was iterated 10 times. For

each paired positive dataset and negative dataset, a 10-fold cross-

validation was carried out. The whole process of data treatment

was shown in Figure 1.

Features
In our model, three types of features were utilized to predict

lysine acetylation: amino acid physicochemical property (AAPP),

transition probability matrix (TPM) and position-specific symbol

composition (PSSC).

Amino acid physicochemical property (AAPP)
Amino acid physicochemical property is the most important

features for protein biochemical reactions. Amino Acid index

(AAindex) [39,40] is a database of numerical indices representing

various physicochemical and biochemical properties of amino

acids. There are 541 amino acid indices in current release of the

database (version 9.1), and 10 of these indices contain descriptions

like ‘‘NA’’. In order to unify the input format, we replaced the

‘‘NA’’ character with number 0. For a peptide, its value of a

physicochemical property was calculated through followed equa-

tion:

Ps~
1
L

PL

j~1

pj

where L was length of the peptide; pj was index value of the jth

residue. Then, peptides’ physicochemical property values were

normalized into a value in the interval of [0, 1].

Figure 2. Compositional distribution of amino acids between acetylated and non-acetylated peptides. The composition of amino acids
in acetylated and non-acetylated peptides was displayed with the Two Logo software. It showed that for a position, composition of amino acids had a
wide disparity between acetylated and non-acetylated peptides, especially those located in the positions of 27, 21 and 1,7.
doi:10.1371/journal.pone.0089575.g002

Table 1. The impact of window sizes on the performance of
LAceP.

Window size Sn (%) Sp (%) Acc (%) MCC (%)

13 66.15 69.10 67.62 35.26

15 67.06 69.57 68.31 36.64

17 67.29 69.86 68.57 37.17

19 67.93 69.97 68.95 37.91

21 68.01 69.95 68.98 37.97

23 67.96 69.91 68.93 37.88

25 67.97 69.81 68.89 37.78

doi:10.1371/journal.pone.0089575.t001

Table 2. The performance of models trained with different
types of features.

Training feature Sn (%) Sp (%) Acc (%) MCC (%)

AAPP 61.24 63.29 62.27 24.54

TPM 65.08 64.90 64.99 29.98

PSSC 65.29 67.44 67.44 34.91

AAPP+TPM+PSSC 68.01 69.95 68.98 37.97

doi:10.1371/journal.pone.0089575.t002

Lysine Acetylation Site Prediction
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AAPP feature selection
Feature selection was carried out for AAPP in order to reduce

the computation complexity. In this study, we used the

CfsSubsetEval attribute evaluator and BestFirst search method

of WEKA (version 3.6) [41] for feature selection. The CfsSubse-

tEval attribute evaluator can measure the predictive capability of

each attribute and the redundancy degree between two different

attributes, thus a set of attributes with high correlation and low-

coupling can be generated. The BestFirst search method searches

the feature subset space through greedy hill climbing strategy

augmented with a backtracking facility. In order to avoid over-

fitting, a ten-fold cross-validation was utilized in the feature

selection procedure.

Transition probability matrix (TPM)
Markov models have been applied in various bioinformatics

areas successfully, such as sequence analysis and gene recognition

[42,43,44]. A Markov model can represent a Markov process

constituted of transition probability matrix and the initial

probability distribution, in which the transition probability matrix

represent its dynamics. In our model, the transition rate of

adjacent amino acids was utilized as the transition probability of

the Markov model. We assumed that the occurrence of an amino

acid depended only on the nearest residue before it.

Lets~s1s2:::sLbe a peptide with length L, and g be the alphabet

which contained 20 amino acids, then the transition probability

from symbol a to b can be represented as fab~p(si~bDsi{1~a).
Then, the whole peptide’s occurrence probability could be

calculated according to the following equation:

P(s)~p(s1) P
L

i~2
fsi{1,si

where si [
X

was the amino acid at position i. We denoted the

amino acid transition probability as f z
ab in acetylated fragment

while f {
ab in non-acetylated fragment. Then the Log likelihood

score of the peptide being acetylated could be calculated by the

following equation:

Table 3. The comparison of performance between LAceP and
existing methods.

Method Sn (%) Sp (%) Acc (%) MCC (%)

EnsemblePail 49.33 62.67 56.00 12.11

PHOSIDA 42.33 92.33 67.33 40.03

PLMLA 78.92 44.29 61.64 24.76

PSKAcePred 72.24 49.66 60.97 22.49

LAceP 61.33 75.40 68.37 37.88

doi:10.1371/journal.pone.0089575.t003

Figure 3. The web interface of LAceP.
doi:10.1371/journal.pone.0089575.g003
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score(s)~ log
p(sDpositive)

p(sDnegative)
~
XL

i~1

log
f z
si{1,si

f {
si{1,si

:

The higher the score was, the more likely the peptide was

acetylated.

Position-specific symbol composition (PSSC)
The position-specific symbol composition information was also

utilized in our model. The Two Sample Logo software [45] was

adopted to display statistically significant differences between

positive and negative datasets after sequence alignments. The

information entropies of each position of given sequences were

also presented by the software (Figure 2). For a peptide with length

L, its position-specific symbol composition score could be

calculated by the following equation:

Score~
XL

j~1

X20

i~1

wij
:sij

where wij was 1 when amino acid i occurred in position j, 0

otherwise; and sij was the information entropy of amino acid i in

position j. In this way, if the score of a peptide was positive, it was

inclined to be an acetylated fragment. When the score is negative,

the peptide was considered as non-acetylated.

Model training
Logistic regression is a machine learning framework which is

often utilized to build classification model. The logistic regression

model can be denoted as follows:

h(x)~hh(x)~h0zh1x1zh2x2z:::zhnxn,

where x1,x2,:::,xn are input features, and h0,h1,h2,:::hn are

parameters which modulate the influence of every feature.

Commonly, a virtual variable x0 (always one) is added to the

model, then the model can be briefly denoted as

hh(x)~hT X

Given a peptide and its features, the likelihood as an acetylated

fragment can be defined as:

P(hT X)~
1

1ze{hT X

For the likelihood, it always takes on values between zero and

one. The higher the value was, the more likely the peptide was

acetylated. For peptides in the training datasets, their class tags

and features were used as the input of the logistic regression

model. After model training, the optimized parameters

(h0,h1,h2,:::hn) were generated as outputs.

Model evaluation
To evaluate the performance of our prediction model, a 10-fold

cross-validation was utilized after feature selection and window

size optimization. In general, the sensitivity (Sn), specificity (Sp),

accuracy (Acc) and Matthews correlation coefficient (MCC) were

four important measurements of model performance. The

sensitivity represented the percentage of positive data being

predicted correctly and the specificity represented the percentage

of negative data being predicted correctly. The accuracy indicated

the correct prediction of both positive and negative data. The

MCC was another comprehensive indicator considering both

positive and negative data. The four measurements were

calculated as follows.

Sn~
TP

TPzFN

Sp~
TN

TNzFP

Acc~
TPzTN

TPzTNzFPzFN

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TPzFP)|(TNzFN)|(TNzFP)
p

where TP, TN, FP, and FN represent the number of true positive,

true negative, false positive and false negative respectively.

Results

Determine the best length of acetylated peptide
After homology reduction, the non-redundant positive and

negative peptides were graphically visualized as sequence logos by

the Two Sample Logo software. The conservation of amino acids

in acetylated and non-acetylated peptides showed a wide disparity

(Figure 2). Especially, in positions of 27, 21 and 1,7 the

residue composition had significant differences between positive

and negative peptides. Overall, lysine (K), arginine (R) and

Glycine (G) showed a high frequency on acetylated peptides, while

leucine (L), serine (S) and glutamic acid (E) showed a high

frequency on non-acetylated ones. On one hand, according to

previous research [29,31,32] and Figure 2, we deduced that

flanking residues in the position of 210,10 had a relative

important effect on the lysine acetylation. On the other hand, we

used the prediction accuracy as index to deduce the best length of

acetylated peptides. For peptides with window size of 2n+1, where

n varied from 6 to 12, logistic regression models were built and 10-

fold cross-validation tests were carried out. Table 1 showed the

performance of each model with different window size. The model

with a window size 21 was relatively better, and its sensitivity,

specificity, accuracy, and MCC achieved 68.00%, 69.95%,

68.98% and 37.96% respectively. Although there was no

significant difference in results for window sizes from 19 to 23, it

hinted that the finally used window size was indeed around the

sweet spot. According to these results, the best length of acetylated

peptides was set to 21 in our study.

Lysine Acetylation Site Prediction
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Predictive capability of different features
In our model, three types of features were utilized to predict

lysine acetylation: amino acid physicochemical property (AAPP),

transition probability matrix (TPM) and position-specific symbol

composition (PSSC). In order to evaluate the predictive capability

of different features, three single feature models (based on the

three features respectively) and a combined model were construct-

ed. Performances of these models were inspected by 10-fold cross-

validation. Results were shown in Table 2. Accuracy of the AAPP

model was 62.27%, which showed that amino acid physicochem-

ical property had a fairly well capability in differentiating

acetylated and non-acetylated lysine peptides (The selected

physicochemical properties were listed in Table S2). The PSSC

model had the highest performance with an accuracy of 67.44%

among the three single feature models. This result illustrated that

the contribution from sequence composition was significant in

acetylated peptide identification. Accuracy of the TPM model

achieved 64.99%. This outcome hinted that composition of

adjacent amino acids of acetylated peptides had a particular

preference. For the combined model, its performance was better

than the three single feature models, which meant there existed

synergistic effect in these features.

The optimal performance was obtained with a window size of

21 amino acids. In order to further test whether our prediction

model was over-fitting for training data, same inspection was

carried out in an independent dataset. Results were shown in

Table 3. The predictive capability of our model in independent

dataset was comparable to that in training dataset, which

suggested that out model was robust.

Comparison with other methods
In order to further assess performance of our model, compar-

ison in the independent dataset was carried out for LAceP and

other existing methods. Currently, many acetylation prediction

software has been developed, but some of them had broken links

so they could not be tested in our study. In practice, EnsemblePail

[28], PHOSIDA [29], PLMLA [31] and PSKAcePred [32] were

included in the comparison. The comparison results were shown

in Table 3. In terms of sensitivity and specificity, LAceP achieved

61.33% and 75.40%, which suggested that LaceP had a relatively

balanced performance in positive and negative datasets. In

contrast, there was a great divergence between sensitivity and

specificity in PHOSIDA, PLMLA and PSKAcePred. In terms of

accuracy, the value of LAceP was 68.37%, which overwhelmed all

other methods. While considering the MCC measurement, the

value of LAcep was only slightly lower than PHOSIDA and

exceeded other methods. By compared with state-of-art methods,

it was worth pointing out that LAceP had a fairly good capability

to predict lysine acetylation.

In addition, we compared the performance of LAceP and

PHOSIDA on lysine acetylation data from protein sequences of

organisms other than human. In the independent dataset, 365

were from human (170 positive and195 negative), the rest 235

were from non-human organisms (130 positive and 105 negative),

such as fly, mouse and worm (see more details in Table S1). If we

evaluated LAceP and PHOSIDA based on the data from different

organisms, LAceP exceeded PHOSIDA significantly in most non-

human datasets while PHOSIDA performed slightly better in

human data (Table S3). LAceP’s performance was quite stable for

different species as well.

Online web server
In order to facilitate biologists to use our actylation prediction

model, an online web server was constructed (http://www.scbit.

org/iPTM). The web interface of LAceP was shown in Figure 3. In

the prediction module, users can paste protein sequences with a

FASTA format in the text box area or upload a file containing

protein sequences. When protein sequences were submitted to the

server, a task id was presented to users. After finishing the

calculating process of a task, a result page would be returned to the

user, which included protein name, acetylation site, and prediction

information. If an email address was given to the server during the

task submision, a notification letter would be sent to the user when

the task was finished. If no email address was provided by the user,

then the server would display the results immediately without

email. In the search module, users can query prediction results of a

task by its id.

Discussion and Conclusion

Protein acetylation is crucial to understand the mechanism of

cellular processes. The current experimental technologies for

acetylation recognition are time-consuming and laborious while

computational methods can accelerate acetylation recognition. In

nature, the acetylated and non-acetylated lysine dataset is not

balanced. Building training dataset without considering the

imbalance between positive and negative lysine acetylated sites

will lead to erroneously evaluate performance of prediction model.

In previous study, Zhen Chen [46] et al. pointed out that if the

ratio of positive dataset to negative dataset was less than 1:1, the

score of cross-validation was unbalanced. In another word, the

more negative data, the greater specificity and the lower

sensitivity. In this study, we randomly selected negative items

(with a number matching the number of positive items) from the

whole negative dataset to build training datasets. Moreover the

select procedure was iterated10 times in order to check the

robustness of the model. In addition, our model integrated multi-

features, including not only peptide sequence characteristics

(PSSC and TPM) but also peptide physicochemical properties

(AAPP). Compared to features adopted in existing acetylation

prediction methods, TPM was a novel feature which was not a

single amino acid description but the characteristic of relationship

between two adjacent amino acids. For all acetylation site

prediction methods, specific amino acid composing information

in each position of peptide was a widely used feature [31,32].

However, in our study we took into account the statistical

differences of amino acid composition in each position of peptide

between positive and negative datasets. Results of our work

illustrated that the statistical difference feature could differentiate

acetylated lysine from the non-acetylated ones effectively.

Although LAceP achieved a fairly good performance, there is

still some room for improvement. Many studies have been

reported that lysine acetyltransferases (KAT) catalyze the acetyl

groups to the target residues and display a specific preference to

lysine. In fact, Li et al. did find that the surrounding sequences of

different family of KATs had different patterns and these patterns

could improve the prediction of the KAT-families that are

responsible for acetylation of a given protein or lysine site [47].

Although we have incorporated surrounding sequence feature in

our method, it is possible to improve the accuracy of our methods

by dividing the acetylation sites into different groups according to

the underlying mechanisms. Therefore in the future we can use the

relationship between KAT and acetylated protein as predictive

feature for lysine acetylation identification. In addition, secondary

and tertiary structure information of peptide can also be applied to

improve acetylation recognition.

For the independent dataset, our method performed better than

most existing prediction methods. The performance test results

Lysine Acetylation Site Prediction
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demonstrated that logistic regression is a good framework to

combine multiple features; LAceP can integrate multi-biological

features to predict lysine acetylation with high accuracy.
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