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Abstract
Gastric carcinoma (GC) is the 4th most prevalent cancer 
and has the 2nd highest cancer-related mortality rate 
worldwide. Despite the incidence of GC has decreased 
over the past few decades, it is still a serious health 
problem. Chronic inflammatory status of the stomach, 
caused by the infection of Helicobacter pylori  (H. py-
lori ) and through the production of inflammatory me-
diators within the parenchyma is suspected to play an 
important role in the initiation and progression of GC. 
In this review, the correlation between chronic inflam-
mation and H. pylori  infection as an important factor 
for the development of GC will be discussed. Major 
components, including tumor-associated macrophages, 
lymphocytes, cancer-associated fibroblasts, angiogenic 
factors, cytokines, and chemokines of GC microenvi-
ronment and their mechanism of action on signaling 
pathways will also be discussed. Increasing our un-
derstanding of how the components of the tumor mi-
croenviroment interact with GC cells and the signaling 
pathways involved could help identify new therapeutic 
and chemopreventive targets.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: The intensive interplay that exists between 
tumor cells and the tumor microenvironment can 
play an important role in tumor initiation, growth and 
metastasis. A better understanding of the molecular 
pathogenesis of the tumor microenvironment of Gas-
tric carcinoma would be crucial for the design of novel 
molecular targets. In this review, we have provided an 
overview of the currently available knowledge of the 
role of the TME in gastric cancer and have highlighted 
the potential prognostic and therapeutic implications.
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INTRODUCTION
Gastric carcinoma (GC) is the 4th most prevalent can-
cer and has the 2nd highest cancer-related mortality rate 
worldwide. The risk of  developing GC is 1 in 115, with 
a 5-year survival rate of  only 20%-30%[1]. Despite that 
the incidence of  GC has decreased over the past few de-
cades, it is still a serious health problem[2]. The prognosis 
of  advanced GC (AGC) with extensive node invasion 
and metastasis remains poor, while early GC is associated 
with excellent long-term survival[3]. 

Ever since Rudolf  Virchow, the founder of  modern 
pathology, observed the connection between tumor cells 
and their surrounding tumor microenvironment (TME), 
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TME has long been suspected to play an important role 
in the initiation and progression of  tumors[4,5]. TME is 
thought to determine the behavior of  cancers not only 
through genetic or epigenetic makeups of  the tumor 
cells, but also through the surrounding milieu that the tu-
mor cells interact with for survival, growth, proliferation 
and metastasis. The TME is composed of  many different 
kinds of  cells such as endothelial cells, fibroblasts, lym-
phocytes and macrophages. It also consists of  numerous 
soluble molecules such as growth factors, cytokines, che-
mokines, antibodies, proteases, various types of  enzymes, 
and metabolites as well as a extracellular matrix. As the 
tumor progresses, states of  hypoxia and acidosis develop 
in the TME[6-8], and the intensive relationship that exists 
between tumor cells and the TME plays a major role in 
tumor initiation, growth and metastasis.

Among the numerous factors in the TME, inflam-
matory mediators have received attention recently, and 
an estimated 15%-20% of  cancer deaths are associated 
with chronic infection and inflammation. Population-
based studies have shown that individuals who are prone 
to chronic inflammatory disorders have an increased risk 
of  cancer development[9]. Accordingly, treatment with 
non-steroidal anti-inflammatory agents decreases the 
incidence and mortality of  several tumor types[10,11]. In 
the case of  GC, the chronic inflammatory state of  the 
stomach, caused by Helicobacter pylori (H. pylori) infection, 
as well as the production of  inflammatory mediators, 
such as cytokines and chemokines within gastric tissues, 
is suspected to play an important role in the initiation and 
progression of  GC.

Better understanding of  the special interplay between 
GC cells and the surrounding microenvironment may be 
useful for recognizing the mechanism underlying tumor 
development and progression as well as the discovery of  
novel molecular therapeutic targets[12,13]. In this review, we 
have provided an overview of  the currently available knowl-
edge of  the role of  the TME in GC and have highlighted 
the potential prognostic and therapeutic implications.

CHRONIC INFLAMMATION AND 
H. PYLORI IN GC
H. pylori, a microaerophilic, spiral gram-negative bacte-
rium, colonizes the human stomach and, is a major cause 
of  chronic gastritis, peptic ulcers, and gastric malignancies, 
including gastric non-cardia adenocarcinoma and mucosal-
associated lymphoid tissue lymphoma[14]. H. pylori infects 
over 50% of  the world’s population, with 1% of  those 
infected going on to develop GC. An estimated 75% of  
all GC cases are associated with H. pylori infection[15]. 

The carcinogenic potential of  H. pylori is driven by the 
interplay between bacterial virulence factors and the host’
s immune responses resulting in chronic inflammation, 
which in turn leads to tumorigenesis[16]. Four major viru-
lence factors have been identified from H. pylori, that is 
cytotoxin-associated antigen A (CagA), cag-pathogenicity 
island (cagPAI), vacuolating cytotoxin, and outer mem-

brane proteins. H. pylori cagPAI encodes approximately, 
30 genes, including type four secretion system genes, 
which are essential for pathogenesis and are responsible 
for the delivery of  CagA protein and peptidoglycan into 
host cells[17,18]. It has recently reported that CagA binds 
an Src homology 2-containing tyrosinee phosphatase 
(SHP-2) in a tyrosinee phosphorylation- dependent man-
ner and activates the phosphatase activity of  SHP-2[19]. 
Deregulation of  SHP-2 by CagA is an important mecha-
nism by which CagA-positive H. pylori promotes gastric 
carcinogenesis. H. pylori is a potent activator of  nuclear 
factor-κB (NF-κB) in gastric epithelial cells[20,21] caus-
ing the production of  tumor necrosis factor-α, TNF-
inducing protein (Tip), which in turn activates NF-κB 
in gastric epithelial cells using an independent pathway 
involving virulence factors such as CagA[18]. 

Activation of  NF-κB by H. pylori infection induces 
the expression of  a variety of  genes, including those 
encoding the cytokines interleukin (IL)-1, IL-6. IL-8, 
TNF-α, vascular endothelial growth factor (VEGF), 
cyclooxygenase-2 (COX-2), inducible nitric oxide syn-
thase (iNOS), cell-cycle regulators, the matrix metal-
loproteinases (MMP)-2, MMP-7, MMP-9 and adhesion 
molecules[22,23]. High level of  COX2 mRNA and protein 
expression and enzymatic activity are detected in GC 
cells[24], and COX-2 activity is induced by a variety of  
mediators including inflammatory cytokines such as 
TNF-α, interferon (IFN)-γ and IL-1[25]. COX-2 facili-
tates tumor growth by inhibiting apoptosis, promoting 
cell proliferation and stimulating angiogenesis within 
cancer cells[26]. H. pylori infection produces reactive 
oxygen and nitrogen species that cause DNA damage, 
followed by chronic gastritis and intestinal metaplasia. 
Nitric oxide generated by iNOS is converted to reactive 
nitrogen species that bring about direct DNA mutation 
such as those in p53, causing protein damage, inhibition 
of  apoptosis, and promotion of  angiogenesis[27,28]. CagA 
also activates the nuclear factor of  activated T-cells sig-
naling pathway, and interacts with E-cadherin to deregu-
late β-catenin signaling, which induces the expression 
of  genes downstream of  β-catenin, such as Caudal type 
homeobox gene-1 and promotes the transdifferentiation 
of  intestinal cells[29].

SIGNALING PATHWAY OF GC-RELATED 
INFLAMMATION
Multiple steps and multiple factors are involved in the 
development of  GC. More than 90% of  GCs are ad-
enocarcinomas, which are divided into two histological 
types, intestinal and diffuse, based on the Lauren’s clas-
sification[30]. H. pylori infection and chronic inflammation 
are important factors, particularly in the intestinal type 
of  GC. The Correa’s hypothesis postulates that there is 
a progression from chronic gastritis to gastric atrophy, 
intestinal metaplasia, dysplasia, and finally to cancer 
(“gastritis-dysplasia-carcinoma” sequence)[31]. In each step 
of  GC progression, many cytokines and intracellular sig-
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naling pathways are involved. 
GC-related inflammation activate transcription fac-

tors, mainly NF-κB, hypoxia-inducible factor (HIF)-
1α, and signal transducer and activator of  transcription 
(STAT)-3, which are the key inducers of  inflammatory 
mediators such as cytokines , chemokines, prostaglandins, 
nitric oxide[32]. 

The transcription factor NF-κB is a key orchestrator 
of  innate immunity and inflammation and recent evi-
dence suggests that it play an important role in develop-
ment and maintenance of  cancer-related inflammation[33]. 
In cancer and epithelial cells exposed to carcinogens, NF-
κB promotes cell survival and proliferation through the 
activation of  genes encoding proteins that are important 
for cell cycle progression such as cyclin D1, and c-Myc 
and the anti- apoptotic pathway (cIAPs, A1/BFL1, 
BCL-2, c-FLIP)[34,35]. In GC, NF-κB potentiates inflam-
mation in response to H. pylori infection. Some studies 
reported that H. pylori induces expression of  the pro-
inflammatory cytokine IL-8 through activation of  NF-
κB[20,36]. Moreover, NF-κB amplifies the inflammatory 
signals of  other cytokines, such as tumor necrosis factor 
and interferon[37]. A previous study reported that the 
positive rate of  NF-κB/RelA is 42.6% in South Korea 
and NF-κB/RelA expression in tumor tissues was also 
related to serum levels of  IL-6 (P = 0.044) and C-reactive 
protein (P = 0.010)[38]. Interestingly, several microRNAs 
(miRNA) which target NF-κB have been shown to be in-
volved in development and progression of  GC. miR-146a 
expression is up-regulated in a majority of  gastric cancers 
where it targets Caspase recruitment domain-containing 
protein 10 and COP9 signalosome complex subunit, in-
hibiting G protein coupled receptor-mediated activation 
of  NF-κB, thus reducing expression of  NF-B-regulated 
tumor-promoting cytokines and growth factors[39].

HIF-1α is centrally involved in multiple aspects of  
tumorigenesis including tumor angiogenesis, prolifera-
tion, metabolism, metastasis, differentiation, as well as 
responses to radiation and chemotherapy[40]. HIF-1α is 
up-regulated in inflammatory conditions and there is 
accumulating evidence indicating the presence of  inter-
connections and compensatory pathways between the 
NF-κB and HIF-1α systems[41]. The expression of  HIF-
1α commonly increases in a variety of  human solid 
tumors and elevated HIF-1α expression is associated 
with poor patient outcome in pancreatic cancer, glio-
blastoma, GC and other cancers[40,42]. Furthermore, the 
contribution of  HIF-1α to chemoresistance has been 
observed in several solid tumors, including GC[43,44]. In-
terestingly, inhibition of  HIF-1α via RNA interference 
or pharmacological compounds has improved their 
anti-tumor efficacy in murine cancer models[45] through 
modulation of  the p53 and NF-κB signaling pathway. 
In this regards, a recent study has demonstrated that 
HIF-1α expression correlates with the metastatic phe-
notype of  human GC[46].

STAT-3 is constitutively activated in several human 
cancer cells and tumor associated leukocytes and it rep-
resents a point of  convergence for several oncogenic sig-

nalling pathways[47]. In approximately 50% of  human GC, 
STAT3 is overactivated[48,49], and its high activation and⁄or 
expression status has been shown to correlate with a low-
er survival rate for GC patients[50]. This transcription fac-
tor supports oncogenesis through different mechanisms, 
ranging from the activation of  genes crucial for prolifera-
tion and survival to the enhancement of  angiogenesis 
and metastasis. In GC, IL-11 produced from tumor cells 
and TME activate the common signal-transducing gp130 
β-receptor subunit to activate the JAK/STAT-3, Ras/
Mitogen-activated protein kinase and phosphoinositide-
3-kinase (PI3K)/Akt signaling pathways[51-53]. Activated 
STAT-3 signaling pathway directly induces the transcrip-
tion of  the Tlr2 gene in the gastric epithelium, which 
upon overexpression promotes proliferation and inhibits 
apoptosis of  gastric epithelial cells[48]. The activation of  
STAT-3 in tumor cells also has been shown to increase 
the capacity of  tumors to evade the immune system by 
inhibiting the maturation of  dendritic cells (DCs)[54], 
thereby suppressing the immune response[55]. A recent 
study showed that STAT-3 plays a divergent role in the 
modulation of  IL-23 and IL-12, two related cytokines, 
which play opposite roles in tumour development. In 
particular, STAT-3 inhibits anti-tumor IL-12p35 expres-
sion in DCs while promoting the expression of  the pro-
carcinogenic IL-23 cytokine in TAMs[56].

Epidemiological studies have highlighted that treat-
ment with non-steroidal anti-inflammatory agents, such 
as COX-2 inhibitors, decrease the risk of  developing 
certain cancers, such as colon cancer, breast cancer, and 
GC[10,11,57,58]. The frequency of  COX-2 expression did 
not differ between gastric adenomas and early intestinal 
carcinomas, indicating that COX-2 expression might act 
as one of  the factors related to early tumorigenesis in the 
stomach. Interestingly, the frequency of  COX-2 expres-
sion was significantly higher in advanced carcinomas 
than in early carcinomas and was higher in intestinal-type 
carcinomas than in diffuse-type carcinomas. COX-2 ex-
pression may be more important for the progression of  
intestinal-type carcinomas than that of  diffuse-type carci-
noma[59].

Transforming growth factor (TGF)-β1 mRNA and 
protein are highly expressed in GC cells[60-62]. TGF-β1 is 
closely related to invasion and metastasis and the TME; it 
alters the biologic behavior of  malignant gastric lesion[63]. 
TGF-β1 produced by carcinoma cells stimulates collagen 
synthesis in both fibroblasts and cancer cells, which leads 
to diffuse fibrosis in the case scirrhous GC[63].

The receptor tyrosinee-protein kinase (HER) family 
consists of  four members: HER-1 [epidermal growth fac-
tor receptor (EGFR)], HER-2, HER-3 and HER-4. Acti-
vation of  these receptors leads to homo- or hetero-dimer-
ization that in turn initiates phosphorylation cascades and 
subsequent activation of  the PI3K-Akt-mammalian target 
of  rapamycin (mTOR) and Ras-Raf-mitogenactivated mi-
togenactivated protein kinase/extracellular signal-related 
kinase (ERK) kinase (MEK)-ERK pathways, which are 
important in cancer cell proliferation and survival[64,65].

EGFR overexpression, observed in 27%-44% of  gas-
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draining regional lymph nodes, and peripheral blood lym-
phocytes is higher in GC and esophageal cancer patients 
than their normal counterparts[93,94]. In addition, patients 
with a higher proportion of  Tregs showed poorer surviv-
al rates than those with a lower proportion. Interestingly, 
after patients underwent curative resection for GC, the 
proportion of  Tregs decreased and was restored to levels 
comparable to those for normal healthy donors[95]. These 
results strongly suggest that tumor-related factors induce 
the expansion and the accumulation of  Tregs in GC. 
Furthermore, the frequencies of  CCL17+ cells and of  
CCL22+ cells, both of  which induce in vitro migration of  
Tregs, within tumors were significantly higher than those 
in normal gastric mucosa, Increased levels of  TGF-1 in 
GC patients have been correlated with the frequency of  
Tregs, and, conversely, numerous studies have reported a 
correlation between an increased frequency of  circulating 
Treg and increased levels of  TGF-1 during during GC 
progression[96-98]. On the other hand, some reports have 
indicated that activated effector T cells are converted 
into Treg cells, capable of  suppressing autologous effec-
tor T cells[99-101]. Thus, it is likely that naturally occurring 
Foxp3+ Tregs in peripheral sites faintly perceive tumor-
related signals such as CCL17 or CCL22, migrate to the 
tumor site, and create a favorable environment for tumor 
growth. 

Recently, a subset of  IL-17 producing T cells that are 
distinct from Th1 and Th2 cells have been described as 
key players in inflammation and autoimmune diseases 
as well as cancer development. Interestingly, IL-17 also 
has been reported to be up-regulated in H. pylori infected 
gastric mucosa. IL-17 positively regulates the synthesis 
of  IL-8 by gastric mononuclear cells and epithelial cells, 
which thus emphasizes the role of  IL-17 in H. pylori-driv-
en inflammation[102]. When the ratio of  Th17⁄Treg cells 
of  TILs was evaluated in GC patients, it was found to be 
markedly higher in early disease than in advanced disease. 
The accumulation of  Th17 cells as well as of  Tregs in the 
TME of  GC occurrs in early disease following which the 
infiltration of  Th17 cells gradually decrease as the disease 
progresses, in contrast to the increased accumulation of  
Tregs.

Cancer associated fibroblasts 
Cancer associated fibroblasts (CFAs) are a central ele-
ments of  TME. They are the most prominent cell type 
within the tumor stroma of  many cancers and play a criti-
cal role in tumor-stromal interactions[103,104]. CAFs dem-
onstrate differential gene expression profiles compared to 
normal fibroblasts[105], and they acquire a modified phe-
notype, similar to fibroblasts associated with wound heal-
ing. Although the mechanisms that regulate activation of  
fibroblasts and their accumulation in tumors are not fully 
understood, platelet-derived growth factor, TGF-β1, and 
fibroblast growth factor-2 (FGF-2) are known to be part-
ly involved in this process[106]. There are some candidates 
for the origins of  CAFs, such as following; fibroblasts 
residing in local tissues[105], periadventitial cells including 

tric cancer cases, is generally reported to be a poor prog-
nostic factor, despite contradictory evidence[66]. HER-2 
overexpression is observed in 10%-38% of  gastric cancer 
tumor samples[67,68], with a higher prevalence in intestinal- 
type and gastroesophageal junction tumors than that 
in diffuse-type and gastric tumors[68,69]. The prognostic 
value of  HER-2 overexpression in gastric cancer remains 
controversial; it is generally associated with a poorer out-
come[70,71], although contradictory evidence exists[72,73]. 
In fact, PIK3CA activating mutation was reported in 
4%-36% of  gastric cancer cases[74,75] and phosphatase 
and tensin homolog loss was reported in 20%-36% of  
cases[74,76]. For gastric cancer, the KRAS mutation was ob-
served in 2%-20% of  cases[77,78], and the BRAF mutation 
was observed in 0%-2.7% of  cases[77,79].

The overexpression/activation of  c-Met, a receptor 
for hepatocyte growth factor, leads to proliferation and 
antiapoptotic signals[80]. It was found to be activated both 
in vitro in human gastric cancer cell lines and in vivo in 
human gastric cancer tissue[81], and this may result from 
the infection of  gastric cells by H. pylori[82]. 

The Hedgehogs (Hh) protein family includes Sonic 
(Shh), Indian (Ihh) and Desert (Dhh). In gastric cancer, 
the aberrant activation of  Shh, through binding Patched 
1 receptor and subsequent disinhibition of  Smoothened 
in turn activates the transcription factor Gli-1[83].

COMPONENT OF MICROENVIRONMENT 
OF GC TAM
Macrophages recruited to the tumor stroma are called 
TAMs. The role of  TAMs in tumor progression is 
complicated and wide ranging. Although activated 
macrophages may have anti-tumor activity, tumor cells 
have been reported to evade the anti-tumor activity of  
TAMs[84,85]. Indeed, removal of  macrophages by genetic 
mutation reduces tumor progression and metastasis[86]. 
TAMs are recruited from circulating monocytes into tis-
sues in response to chemoattractants, and interact with 
tumor cells to make up the cancer stroma. Macrophage 
infiltration into tumor tissue correlates significantly 
with tumor vascularity in human esophageal cancer and 
GC[87,88]. There is a direct association between the degree 
of  TAM infiltration and depth of  tumor invasion, nodal 
status, and clinical stage of  GC[88]. Macrophage recruit-
ment is mediated by a variety of  chemoattractants, includ-
ing the following; monocyte chemoattractant protein-1 
(MCP-1/CCL2), macrophage inflammatory protein-1α 
(MIP-1α/CCL3); and regulated upon activation, normal 
T cell expressed and secreted (RANTES/CCL5)[87,88].

Lymphocytes 
Regulatory T cells (Tregs) are functionally immune-
suppressive subsets of  T cells that are reported to play 
important roles in immunological self-tolerance[89-92]. 
Tregs are defined more strictly as CD4+CD25+Foxp3+ 
cells. The frequency of  Tregs among tumor infiltrating 
lymphocytes (TILs), lymphocytes derived from tumor-
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pericytes and vascular smooth muscle cells[107], endothelial 
cells[108], and bone marrow-derived cells including vari-
ous stem cells[109]. Worthley et al[110] recently reported that 
bone marrow-derived cells can differentiate into CAFs in 
human GC that developed in female recipients of  male 
allogeneic stem cell transplantation. A previous study 
showed that direct interaction between scirrhous-type 
GC cells and gastric fibroblasts could promote fibrosis 
of  the gastric wall and increasing the malignant behavior 
of  cancer cells through vascular cell adhesion molecule-1 
and induced Snail expression, and through the resul-
tant E-cadherin suppression and vimentin induction in 
HSC-39 cells[111].

Angiogenetic factors
Angiogenesis which is necessary for tumor progression, is 
also influenced by the tumor microenvironment. Stromal 
reaction (desmoplasia) is observed in GC, but not in non-
invasive neoplasms[112]. The generation of  tumor stroma 
is triggered by tumor cells and induces the ingrowth of  
new blood vessels and mesenchymal cells from the ad-
jacent normal tissue[113]. However, recent studies have 
shown that bone marrow-derived stem cells are inte-
grated into the tumor stroma and differentiate into myo-
fibroblasts and vascular endothelial cells[109,114]. A recent 
study reported that the density of  blood vessels directly 
correlates with the incidence of  metastasis in GC[114-117]. 
Angiogenesis of  tumor is mediated by various molecules 
released by tumor cells and TME[118,119] and GC cells 
produce various angiogenic factors, including VEGF[120], 
IL-8[121], FGF-2[122], and platelet-derived endothelial cell 
growth factor (PD-ECGF)[123]. VEGF-A promotes the 
angiogenesis and progression of  human GC, especially 
those of  the intestinal type. A significant correlation be-
tween lymph node metastasis and VEGF-C expression 
has been reported in human GC[124,125]. However, no as-
sociation was found between VEGF-D immunoreactivity 
and clinicopathologic features in submucosally invasive 
GC[126]. These results suggest that VEGF-C is a dominant 
regulator of  lymphangiogenesis in early-stage human GC.

Stem cells
The stem cell niche or microenvironment is composed 
of  different populations of  cells, including not only stem 
cells, but also differentiated cells, soluble factors, and 
extracellular matrix, all of  which are critical for stem cell 
fate and differentiation[127]. Important signaling pathways 
such as the Wnt, Notch, Hedgehog, PI3K, NF-κB, endo-
thelial growth factor (EGF), TGF-β and STAT-3 path-
ways have been shown to regulate stem cell renewal and 
maintenance, and their effects overlap in both normal 
and cancer stem cells[128]. The Interactions of  stem cells 
with their surroundings are currently under intensive in-
vestigation. The inflammatory mediators and oncogenic 
pathways also regulate stem cell differentiation either 
directly or indirectly and are frequently deregulated in tu-
mors[129-131]. Given the fact that gastric stem cells are such 
a rare population of  cells and can be affected by so many 

intrinsic and extrinsic factors, it is very complicated to 
identify the specific role of  a signaling factor in regulating 
their differentiation and migration. It has been noted that 
NF-κB, IL-6, VEGF, HIF-1α, angiogenesis, reactive oxy-
gen species and tissue factors are all involved in the main-
tenance of  stem cell and cancer stem cells[127] and that H. 
pylori infection can alter most of  their expression. This 
suggests that H. pylori might impact the local microenvi-
ronment and affect stem/progenitor cell differentiation, 
and also cause genetic or epigenetic damages in these 
cells, leading to carcinogenesis. However, further studies 
addressing these pathways and mediators of  gastric stem 
cells and progenitors during infection are awaited.

CYTOKINES/CHEMOKINES
Infection by H. pylori also disrupts gastric homeostasis 
and induces the production of  multiple inflammatory 
cytokine within the local mucosa. Expression of  IL-1β, 
TNF-α, and IL-10 is associated with an increased risk for 
developing GC[132,133].

IL-1β is a proinflammatory cytokine involved in in-
flammation and immunity. IL-1β polymorphisms are as-
sociated with enhanced IL-1β production and increased 
risk of  GC[133], IL-1β also inhibits gastric acid secretion. 
In transgenic mice, stomach specific overexpression of  
IL-1β induces stepwise spontaneous gastric inflamma-
tion, metaplasia, dysplasia, and carcinoma. 

Overexpression of  IL-1β also mobilizes myeloid-
derived suppressor cells and induces NF-κB activation 
as well as the expression of  downstream genes such as 
IL-6 and TNF-α in these cells. In addition, IL-1β alone 
is sufficient to induce gastric preneoplasia. However, the 
mechanisms by which IL-1β overexpression itself  finally 
results in oncogenic transformation is unclear. Interest-
ingly, other inflammatory mediators can exert opposite 
effects. One example is IFN-γ, which is produced pri-
marily by activated T cells, and natural killer cells and is 
a key mediator of  innate and adaptive immunity. IFN-γ 
mediates responses to bacterial infection and autoim-
mune disease, and acts as a tumor suppressor[134]. In mice, 
stomach specific overexpression of  IFN-γ alone has 
minimal effects on the gastric mucosa, but inhibits IL-
1β- and Helicobacter felis-induced gastritis and neoplasia. 
The mechanism has been attributed to IFN-γ induced 
inhibition of  gastric epithelial cell proliferation, accelera-
tion of  apoptosis of  gastric T lymphocytes and decrease 
in the production of  pro-inflammatory Th1 and Th17 
cytokines. These effects may balance epithelial cell pro-
liferation, restrain inflammation, and ultimately inhibit 
tumor formation[134]. Therefore, disruption of  host cell 
inflammatory cytokine production is involved in gastric 
oncogenesis.

Chemokines are involved in the chemoattraction of  
leukocytes to inflammatory sites and can be produced by 
many kinds of  cells in the TME including leukocytes, en-
dothelial cells, fibroblasts and epithelial cells[135,136]. Recent 
reports described that chemokines not only play a role in 
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the immune system, but also promote tumorigenesis and 
metastasis of  cancer. CXC chemokines and their recep-
tors (CXCR) modulate tumor behavior by three impor-
tant mechanisms: regulation of  angiogenesis, activation of  a 
tumor-specific immune response and stimulation of  tumor 
cell proliferation in an autocrine or paracrine fashion[137]. 

CXC chemokines containing the ELR (Glu-Leu-Arg)-
motif  such as IL-8/CXCL8 have been described to pro-
mote tumor growth by stimulation of  angiogenesis and 
chemoattraction of  neutrophilic granulocytes[138-140]. Pre-
vious studies have shown that IL-1, TNF-α and infection 
with H. pylori induce or enhance the secretion of  IL-8 by 
several gastric adenocarcinoma cell lines in vitro[141,142]. In 
addition, CXCR1 and CXCR2 expression increased in 
gastric carcinoma cells after infection by H. pylori[143,144]. 
In GC, expression of  IL-8 in gastric adenocarcinoma is 
associated with increased tumor vascularization, aggres-
siveness, invasion, and metastasis. In addition, IL-8 may 
act as a diagnostic marker as it was demonstrated to be 
significantly elevated in serum samples of  patients with 
gastric cancer[145,146]. IL-8 also enhances the expression 
of  the EGFR, MMP-9, VEGF and IL-8 itself[122,147,148]. 
Furthermore, the polymorphism of  IL-8 promoter gene 
is associated with higher IL-8 protein expression, more 
severe neutrophil infiltration, enhanced angiogenesis, 
especially with secretion of  MMP-9 and angiopoietin-1, 
and increased risk of  poorly differentiated gastric cancer, 
lymph node, and liver metastasis[149-151].

In contrast, CXC chemokines lacking the ELR-
motif  such as interferon-γ, inducible protein-10 (IP-10)/
CXCL10, possess angiostatic activities and chemoat-
tract anti-tumoral lymphocytes through binding to 
CXCR3[139,140]. It has been described that Mig, IP-10 and 
I-TAC were constitutively express in GC cell lines, and 
the production can be enhanced by IFN-γ in synergy 
with TNF-α. In contrast, in vitro infection with H. py-
lori inhibited the IFN-γ/TNF-α induced Mig and IP-10 
production by GC cells. Increased expression of  CXCR3 
ligands by endothelial cells and mononuclear cells, espe-
cially antigen-presenting cells within GC, results in the 
chemoattraction and activation of  cytotoxic T lympho-
cytes that favor tumor regression.

Stromal cell-derived factor-1 (SDF-1)/CXCL12 is an 
exception on this rule as this chemokine lacks the ELR-
motif, has angiogenic properties and mediates the dis-
semination of  CXCR4- positive tumor cells to distant 
organs[140]. SDF-1 modulates the angiogenic process di-
rectly by binding to its receptors CXCR4 and/or CXCR7 
expressed on endothelial cells or indirectly by the induced 
secretion of  matrix-metalloproteases or angiogenic fac-
tors such as IL-8, VEGF, respectively[152,153]. Many studies 
have demonstrated that both CXCL12 and CXCR4 are 
differentially expressed in GC[154,155], and overexpression 
of  CXCR4 in gastric cancer cells is associated with ag-
gressive tumor behavior, such as tumor invasion, lymph 
node metastasis, liver metastasis, and poor differentiation 
as well as peritoneal carcinomatosis[156]. In addition, peri-
toneal mesothelial cells contained high concentrations 
of  SDF-1 indicating that SDF-1 induces the migration 

of  CXCR4-positive tumor cells to the peritoneum[157]. 
H. pylori increased CXCR4 expression in gastric cancer 
through increased secretion of  TNF-α. CXCR4 has also 
been found in leukocytes and microvascular blood ves-
sels, confirming that SDF-1 binds to endothelial cells[158]. 
In addition to cancer cells, stromal cells such as endothe-
lial cells, tumor-infiltrating lymphocytes and cancer-as-
sociated fibroblasts have been demonstrated to produce 
elevated levels of  SDF-1[158,159].

Matrix metalloproteinases
MMPs lead to tissue remodeling, inflammation, tumor 
cell growth, migration, invasion and metastasis in many 
cancers. They are major modulators of  the tumor micro-
environment, playing key roles in tumorigenesis[160]. Dif-
ferent stromal and cancer cells produce various types of  
MMPs whose main subtypes are collagenases (MMP-1, 
MMp-8, MMp-13), gelatinases (MMP-2, MMP-9), matryli-
sins (MMP-7, MMP-26), membrane type MMPs (MMP-14, 
MMP-15, MMP-16, MMP-17, MMP-24, MMP-25) and 
stromelysins (MMP-3, MMP-10, MMP-11). 

Previous studies reported that MMP-1[161], MMP-7[162-164] 
and MMP-9[165,166] are important in development of  gastritis 
during infection by H. pylori and these molecules are utilized 
as molecular markers. It has been suggested that overexpres-
sion of  MMP-1[167] and MMP-7[162,168] is dependent upon 
the pathogenicity island of  H. pylori and, interestingly, it 
is known that MMP-7 participates in the epithelial mes-
enchymal transition[169] and is also overexpressed in GC[170]. 
Moreover, the activity of  MMP-9 is increased in macro-
phages resident in the gastric mucosa of  subjects infected 
with H. pylori[171] and its activity is known to be reduced by 
the eradication of  H. pylori[172].

MMPs are noncovalently inhibited by the tissue in-
hibitors known as TIMP, a family comprising four mem-
bers (TIMP-1, TIMP-2, TIMP-3, TIMP-4). TIMP-3 in 
the only inhibitor associated with the extra cellular matrix 
(ECM) and the rest of  the TIMP are soluble proteins[173].

The disintegrins and metalloproteinase (ADAM) fam-
ily are proteases related to the MMP and comprise more 
than 20 proteins that are anchored to the cell membrane 
and present various functions which are cell adhesion, 
cell fusion, activation of  signaling pathways and release 
of  substrates such as cytokines and growth factors from 
the cell membrane or the ECM[174]. In patients with gas-
tritis and H. pylori infection, levels of  ADAM-10 and 
ADAM-17 are elevated[175], and these play key roles in 
cell signaling[174]. E-cadherin is a substrate of  ADAM-10 
and the Notch signaling pathway, in which ADAM-17 
participates, and these pathways are also involved in the 
development of  GC. ADAM-17 has been associated with 
the generation of  transient hypochlorhydria in patients 
infected with H. pylori[176] and interestingly, high levels of  
hypochlorhydria are founded in GC patients.

NEW THERAPEUTIC APPROACHES
According to our understanding of  the molecular basis 
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of  TME of  GC, targeted agents have led to a modest 
improvement in the outcome of  advanced gastric cancer 
(AGC) patients. 

Previous studies showed that EGFR, HER-2, tyrosine 
kinase inhibitors (TKIs) as well as VEGF were most at-
tractive target for molecular therapy. The ToGA trial tar-
geted HER-2 and AVAGAST trial targeted VEGF have 
marked the beginning of  a new era in AGC treatment. A 
number of  other phase Ⅲ clinical trials that target differ-
ent target molecules are ongoing.

Notably, the ToGA trial, which is a large, phase Ⅲ, 
randomized controlled multicenter trial[177], showed that 
trastuzumab in combination with chemotherapy led to 
a significantly higher overall response rate (ORR 47% vs 
35%, P = 0.0017), significantly longer progression free 
survival interval (PFS; 6.7 mo vs 5.5 mo, P = 0.0002), and 
significantly longer overall survival duration (OS; 13.8 mo 
vs 11.1 mo, P = 0.0046) than that of  the controls. More-
over, the trastuzumab-containing regimen was generally 
well tolerated and did not affect quality of  life. To date, 
trastuzumab is the first and only targeted agent for gastric 
cancer approved by both the United States[178] and Euro-
pean[179] authorities.

Although the phase Ⅲ Avastin® in Gastric Cancer 
(AVAGAST) trial did not meet its primary endpoint of  
OS and was thus a negative trial for this endpoint, the 
ORR was significantly better in the bevacizumab arm 
(46% vs 37%, P = 0.0315) and the PFS interval was sig-
nificantly longer (6.7 mo vs 5.3 mo, HR = 0.8; P = 0.0037) 
than that of  the controls[180].

In first-line phase Ⅱ trials, cetuximab, a recombinant 
human-mouse chimeric monoclonal antibody target-
ing EGFR, showed that the ORR was in the range of  
40%-60%, the time to progression (T0P) was 5.5-8.0 
mo, and the OS time was 9.5-16.0 mo[181,182]. Other study 
reported that cetuximab showed no clinically significant 
benefit in combination with docetaxel plus oxaliplatin[183]. 
Other EGFR targeted therapy including Erbitux®, pa-
nitumumab, matuzumab, and nimotuzumab are under 
evaluation in phase Ⅱ/Ⅲ trials in combination with 
chemotherapy. The EGFR TKIs such as gefitinib and 
erlotinib were evaluated in phase Ⅱ trials but produced 
disappointing results as monotherapy for AGC.

Lapatinib (Tykerb), a dual TKI inhibiting both HER-2 
and EGFR are under investigation in two phase Ⅲ trials. 
One is the LoGIC trial that is the lapatinib Optimization 
Study in ErbB2 (HER-2)+ GC patient[184], and the other is 
TYTAN trial that is investigating the lapatinib with pacli-
taxel (Taxol) in Asian ErbB2+ (HER2+) GC patients[185]. 

A few signaling pathways have attracted a lot of  en-
thusiasm. The ubiquitin-proteasome pathway that is in-
volved in cell cycle control is one good target.

Bortezomib, a proteasome inhibitor, was shown to 
induce apoptosis and suppress tumor growth in GC 
cell lines[186]. The overexpression/activation of  c-Met, a 
receptor for hepatocyte growth factor, leads to prolifera-
tion and antiapoptotic signals[80]. A phase Ⅱ study of  
GSK1363089 (GSK089, formerly XL880), a c-Met TKI, 

showed minimal activity in a cohort of  metastatic GS pa-
tients unselected for c-Met[187]. The Hedgehog (Hh) path-
way further complicates the complex signaling in gastric 
cancer cells[83]. Clinical use of  Hh inhibitors is currently 
only in the early phases of  development[183]. 

Inhibition of  other biological pathways in AGC is in 
preclinical or early clinical evaluation. Insulin like growth 
factor-1 receptor antibody, figitumumab, in combination 
with docetaxel was well tolerated in a phase I trial of  pa-
tients with advanced solid tumors[188]. FGFR inhibitors, 
HSP90 inhibitors, histone deacetylase and IL-6 antibody 
also may play a role in AGC treatment[189-193].

CONCLUSION
Although recent phase Ⅲ clinical trials with conventional 
chemotherapeutic agents have shown encouraging results 
in advanced GC, overall survival rates continue to be 
suboptimal. This highlights the need for new therapeutic 
strategy using targeted therapy to improve the result of  
GC treatment. 

The association between chronic gastritis and tumors 
is well documented in the step-wise histopathologic (Cor-
rea) model of  GC. A better understanding of  the mo-
lecular pathogenesis of  GC would help for improving the 
knowledge on this relationship and would be crucial for 
the design of  novel molecular targets. 

Previous studies reported that a synergistic interplay 
among the components of  TME of  GC, including H. 
pylori infection, immune cells and mediators, and several 
proteins along with matrix metalloproteinases, is essen-
tial for the initiation, progression and metastasis of  GC. 
The understanding of  how these mechanisms regulate 
the relationship among those components of  TME of  
GC would contribute strongly to identifying key signaling 
pathways that serve as both novel biomarkers for early de-
tection and molecular targets for new therapeutic strategies.
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