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Background: �-L-Arabinofuranosyl linkages are found in many plant biopolymers, but the degradation enzyme has never
been found.
Results: A novel �-L-arabinofuranosidase was found in Bifidobacterium longum.
Conclusion: �-L-Arabinofuranosidase plays a key role in Bifidobacterium longum for �-L-arabinooligosaccharide usage.
Significance: The members of the DUF1680 family might be used for the degradation of plant biopolymers.

Pfam DUF1680 (PF07944) is an uncharacterized protein fam-
ily conserved in many species of bacteria, actinomycetes, fungi,
and plants. Previously, we cloned and characterized the hypBA2
gene as a �-L-arabinobiosidase in Bifidobacterium longum JCM
1217. In this study, we cloned a DUF1680 family member, the
hypBA1 gene, which constitutes a gene cluster with hypBA2.
HypBA1 is a novel �-L-arabinofuranosidase that liberates L-ar-
abinose from the L-arabinofuranose (Araf)-�1,2-Araf disaccha-
ride. HypBA1 also transglycosylates 1-alkanols with retention of
the anomeric configuration. Mutagenesis and azide rescue
experiments indicated that Glu-338 is a critical residue for cat-
alytic activity. This study provides the first characterization of a
DUF1680 family member, which defines a new family of glyco-
side hydrolases, the glycoside hydrolase family 127.

�-L-Arabinofuranosyl linkages with 1– 4 arabinofuranosides
are found in the sugar chains of extensin and solanaceous lec-
tins (1, 2). Extensins and solanaceous lectins are members of the
hydroxyproline (Hyp)2-rich glycoproteins that are widely
observed in plant cell wall fractions. Furthermore, terminal �-L-
arabinofuranosyl residues have been found in arabinogalactan
protein from the pollen of timothy grass (3), rhamnogalacturo-
nan-II (4 – 6), olive arabinan (7), arabinoglucan from Angelica
sinensis (8), and tomato arabinoxyloglucan (9). However,
despite the broad distribution of �-L-arabinofuranosyl residues

in plant cells, the degradative enzyme �-L-arabinofuranosidase
(EC 3.2.1.185)3 has never been found.

Recently, we cloned a hypBA2 gene that encodes a novel �-L-
arabinobiosidase from Bifidobacterium longum JCM 1217 on
the basis of the sequence of BL0421 from B. longum NCC2705,
which belongs to the glycoside hydrolase (GH) family 121 (10).
The enzyme releases Araf-�1,2-Araf disaccharide (�-Ara2)
from Araf-�1,2-Araf-�1,2-Araf�-Hyp (Ara3-Hyp). Because
released �-Ara2 should be hydrolyzed by its own enzyme for
assimilation, we predicted that B. longum has a gene encoding
�-L-arabinofuranosidase. BL0422 is part of a gene cluster with
BL0421 and BL0420 and contains a domain of unknown func-
tion (DUF) 1680 family in the Pfam database (PF07944), which
is a large family annotated as putative glycosyl hydrolases of
unknown function.

In this study, we cloned the gene of a BL0422 ortholog from
B. longum JCM 1217 and characterized the recombinant pro-
tein as a novel �-L-arabinofuranosidase. This is the first report
of the characterization of a DUF1680 family member.

EXPERIMENTAL PROCEDURES

Materials—Extensin, potato lectin, Hyp-linked �-L-arabi-
nooligosaccharides, �-Ara2, and Araf-�1,2-Araf�-OMe (Ara2-
Me) were prepared as described previously (10). Dansylated
Hyp-linked �-L-arabinooligosaccharides were prepared as
described by Gray (11). p-Nitrophenyl (pNP) substrates were
obtained from Sigma. L-Arabinose was obtained from Wako
Chemicals. The chemical structures of substrates are shown in
Fig. 1. HypBA2-C�486 was expressed and purified as described
previously (10).

Expression and Purification of Recombinant HypBA1—The
genomic DNA of B. longum JCM 1217 was extracted using a
FastPure DNA kit (Takara) and then used for PCR amplifica-
tion of the gene for the BL0422 ortholog, hypBA1. The forward
(5�-AAGGAGATATACATATGAACGTTACAATCACTT-
CCC-3�) and reverse (5�-TGCTCGAGTGCGGCCGCTCGA-
CGCTGGAAGACA-3�) primers were designed from nucleo-
tides 4 –22 and 1959 –1974, respectively, of BL0422 from B.
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longum NCC2705 to generate a C-terminal His6-tagged recom-
binant protein. The PCR amplification product of hypBA1 was
cloned into the pET-23b vector (Novagen) with the In-Fusion
Advantage PCR cloning kit (Clontech). The full-length hypBA1
gene was sequenced on an ABI 3100 DNA sequencer with a
Big-Dye Terminator 3.1 cycle sequencing kit (Applied Biosys-
tems). The resulting pET23b-hypBA1 plasmid was trans-
formed into Escherichia coli BL21 (�DE3) cells, which were
then grown at 20 °C by using the Overnight Express Autoinduc-
tion System (Novagen). Subsequently, the cell cultures were
centrifuged, and the resultant pellet was resuspended in Bug-
Buster protein extraction reagent (Novagen). The His-tagged
proteins were purified on TALON metal affinity resin (Clon-
tech), desalted by dialysis with a cellulose membrane (Wako),
and concentrated using a 10-kDa ultrafiltration membrane
(Millipore).

Enzyme Assays—The hydrolytic activity of the HypBA1
enzyme was assayed using dansylated cis-Araf-�1,2-Araf�-

Hyp (cis-Ara2-Hyp-DNS) as a substrate. The 40-�l reaction
mixture contained 50 mM sodium acetate buffer (pH 4.5), 25
�M substrate, 5 mM tris(2-carboxyethyl)phosphine (TCEP),
and 0.17 milliunits�ml�1 of the HypBA1 enzyme. One unit of
enzyme activity was defined as the amount of enzyme
required to produce 1 �mol of cis-Ara-Hyp-DNS per min.
After incubating the reaction mixture at 37 °C, the reaction
was stopped by adding 10 �l of 5% trichloroacetic acid and
then analyzed by HPLC. The sample was applied to a Cos-
mosil 5C18-AR-II (2.5 � 250 mm, Nacalai) column at 30 °C
with a mobile phase of methanol and 20 mM sodium phos-
phate (pH 2.5) (60:40, v/v) and a constant flow rate (1.0
ml�min�1). The elution was monitored by a fluorescence
detector (FP-202, Jasco) with excitation and emission wave-
lengths of 365 and 530 nm, respectively. For TLC analysis of
dansylated substrates, the spots on the plates were developed
with a 3:1:1 mixture (v/v/v) of 1-butanol/acetic acid/water
and then visualized with UV light.
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FIGURE 1. Chemical structures of the �-L-arabinooligosaccharides used in this study. The arrows indicate the cleavage sites for HypBA1.
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Substrate Specificity of HypBA1—Araf�-Hyp (Ara-Hyp),
Ara2-Hyp, Ara3-Hyp, Araf-�1,3-Araf-�1,2-Araf-�1,2-Araf�-
Hyp (Ara4-Hyp), Ara2-Me, �-Ara2, and pNP substrates were
incubated at 37 °C for 16 h with 0.17 milliunits�ml�1 of HypBA1
enzyme in 100 �l of 50 mM sodium acetate buffer (pH 4.5). The
reaction was stopped by boiling for 3 min. For TLC analysis,
oligosaccharides were spotted on a Silica Gel 60 aluminum
plate (Merck) using a 2:1:1 solvent mixture (v/v/v) of ethyl ace-
tate/acetic acid/water. The sugars were visualized by spraying
an orcinol-sulfate reagent onto the plate (12). For high
performance anion-exchange chromatography with pulsed
amperometric detection (HPAEC-PAD) analysis, oligosaccha-
rides were analyzed with a CarboPac PA-1 column. The column
was eluted at a flow rate of 1.0 ml�min�1 by using the following
gradient: 0 –5 min, 100% eluent A (0.1 M NaOH); 5–30 min,
0 –100% eluent B (0.5 M sodium acetate and 0.1 M NaOH); and
30 –35 min, 100% eluent B.

The pH dependence of enzyme activity was determined
between pH 3.5 and 8.0 by using the following buffers: 50 mM

sodium acetate (pH 3.5– 6.0), 50 mM MES (pH 5.5–7.0), and 50
mM sodium phosphate (pH 6.5– 8.0). The effect of temperature
on enzyme activity was examined using 50 mM sodium acetate
buffer (pH 4.5) at 15–50 °C.

Kinetic Analysis—The kinetic parameters of HypBA1 were
determined using 0 –750 �M �-Ara2, cis-Ara2-Hyp-DNS, and
cis-Ara-Hyp-DNS as the substrates. In the case of �-Ara2, the
40-�l reaction mixture was incubated at 37 °C for 10 min and
then stopped by adding 10 �l of 500 mM NaOH. The amount of
liberated L-arabinose was quantified by HPAEC-PAD as
described above, using an L-arabinose standard. In the case of
cis-Ara-Hyp-DNS, liberated cis-Hyp-DNS were analyzed
according to the same procedure used for cis-Ara2-Hyp-DNS.

Transglycosylation of Ara2-Hyp—The transglycosylation
reactions were performed using Ara2-Hyp as a donor and 1-al-
kanols as acceptors. Thirty nanomoles of Ara2-Hyp was incu-
bated at 37 °C for 3 h with 340 milliunits�ml�1 of HypBA1 in 100
�l of 50 mM sodium acetate buffer (pH 4.5) with 5 mM TCEP
and 20% methanol, ethanol, or 1-propanol as an acceptor. Sub-
sequently, the reaction products were analyzed by TLC with a
2:1:1 solvent mixture of ethyl acetate/acetic acid/water (v/v/v).
The sugars were visualized by spraying an orcinol-sulfate rea-
gent onto the plate (12). For structural analysis, the transglyco-
sylation product from the reaction in 20% methanol was puri-
fied by HPLC on a Cosmosil Sugar-D (4.6 � 250 mm, Nacalai)
column at 30 °C with a mobile phase of acetonitrile and water
(75:25, v/v) and a constant flow rate (1.0 ml�min�1). The elution
was monitored by a refractive index detector (RI-8022,
TOSOH), and the fraction that contained the transglycosyla-
tion product was collected. 1H and 13C NMR spectra were
measured with a JMM-ECA600KS spectrometer (JEOL).

Site-directed Mutagenesis and Chemical Rescue—The
QuikChange site-directed mutagenesis kit (Stratagene) was
used to introduce amino acid substitutions into HypBA1 by
using the primers shown in Table 1. After confirmation of the
desired mutations by DNA sequencing, these mutant enzymes
were expressed and purified according to the same procedure
used for the wild-type enzyme. The effect of external nucleo-
phile of the E338A mutant was investigated by adding 0 – 400

mM of sodium azide in 40 �l of 50 mM sodium acetate buffer
(pH 4.5), 7.5 �g of E338A mutant, and 25 �M cis-Ara2-Hyp-
DNS as a substrate. After incubating at 37 °C for 1 h, the reac-
tion was stopped by adding 10 �l of 5% trichloroacetic acid and
then analyzed by HPLC as described above.

Bacterial Strains and Culture Conditions—The Bifidobacte-
rium strains grown in Gifu anaerobic medium (GAM) broth
(Nissui) were as follows: B. longum JCM 1217 and JCM 7054; B.
longum subsp. infantis JCM 1222; B. pseudolongum JCM 1205;
B. adolescentis JCM 1275; B. breve JCM 1192, and B. bifidum
JCM 1254. The in vitro fermentation ability of �-Ara2 was
tested using B. longum JCM 1217 and B. adolescentis JCM 1275
in peptone-yeast extract-Fildes (PYF) medium (13) containing
0.25% �-Ara2, glucose, or L-arabinose. The bacteria were cul-
tured for 3 days at 37 °C under anaerobic conditions. The bac-
terial growth was judged from the decreased pH of the culture
solution (14).

Assays of Bacterial Enzyme Activities—The cell cultures were
centrifuged at 17,000 � g for 20 min, and the resultant pellets
were washed with 50 mM Tris-HCl buffer (pH 6.8). Afterward,
they were resuspended in 50 mM Tris-HCl buffer (pH 6.8) and
sonicated with a Sonifier 250 (Branson). The cell lysates were
incubated with 25 �M cis-Ara2-Hyp-DNS for 16 h at 37 °C and
then analyzed by HPLC.

RESULTS

Expression and Purification of HypBA1—HypBA1 consisted
of 658 amino acid residues exhibiting 98.9% identity with that of
BL0422 and coincided with that of BLLJ_0211 from B. longum
JCM 1217, for which the complete genome sequence is avail-
able (15). The recombinant HypBA1 protein was expressed at
20 °C as a soluble protein. SDS-PAGE showed that the purified
recombinant HypBA1 protein migrated as a single band with an
apparent molecular mass of 74 kDa (Fig. 2), which was in agree-
ment with its calculated molecular mass of 74,329 Da. The final
yield of the purified enzyme was 140 mg/liter of culture.

Substrate Specificity and General Properties of HypBA1—
The enzymatic activity for dansylated cis-Ara3-Hyp-DNS was
detected in the presence of �-mercaptoethanol, dithiothreitol,
or TCEP but not in the absence of reducing agents (Fig. 3).
Several �-L-arabinooligosaccharides and synthetic pNP sub-
strates were used to identify the substrate specificities for
HypBA1 in the presence of TCEP. The enzyme released L-ara-
binose from Ara-Hyp, Ara2-Hyp, Ara3-Hyp, and Ara2-Me, but
it did not act on pNP-�-L-arabinopyranoside, pNP-�-L-arabi-
nofuranoside, pNP-�-L-arabinopyranoside, or Ara4-Hyp (Fig. 4).
HypBA1 also released L-arabinose from �-Ara2 (Fig. 5B). The
suitable temperatures and pH values for cis-Ara2-Hyp-DNS
were determined at 35– 40 °C and 4.5, respectively (Fig. 6). The

TABLE 1
The primers used for site-directed mutagenesis
The positions of the mutated sequences are underlined.

Name Sequence of oligonucleotide primers

E322A_Forward_Primer 5�-ACCCACGTGGGCGCGTCGTTCACCTACG-3�
E322A_Reverse_Primer 5�-CGTAGGTGAACGACGCGCCCACGTGGGT -3�
E338A_Forward_Primer 5�-CACGATGTACGGTGCGACCTGTGCTTCCG-3�
E338A_Reverse_Primer 5�-GAAGCACAGGTCGCACCGTACATCGTGTCG-3�
E366A_Forward_Primer 5�-CCGACGTGCTGGCGAAGGAACTGTTCAACG-3�
E366A_Reverse_Primer 5�-CGTTGAACAGTTCCTTCGCCAGCACGTCG-3�
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specific activity of the purified enzyme was 2.1 units�mg�1 pro-
tein. The kinetic parameters for �-Ara2, cis-Ara2-Hyp-DNS,
and cis-Ara-Hyp-DNS are summarized in Table 2. The Km and
kcat values for �-Ara2 and cis-Ara2-Hyp-DNS were within the
same range, but the kcat value for cis-Ara-Hyp-DNS was 480-
fold lower than that of cis-Ara2-Hyp-DNS. Consequently, the
kcat/Km ratio of cis-Ara-Hyp-DNS was 670-fold lower than that
of cis-Ara2-Hyp-DNS. HPAEC-PAD analysis showed that L-ar-

abinose was released from Ara2-Hyp and then the liberated
Ara-Hyp gradually hydrolyzed to L-arabinose and Hyp (Fig.
5A). Likewise, both cis- and trans-Ara2-Hyp-DNS also hydro-
lyzed to Ara-Hyp-DNS, which then hydrolyzed to Hyp-DNS
(Fig. 7). Under the conditions in which Ara3-Hyp could be
degraded by HypBA2 and HypBA1 (Fig. 8A, lane 4), the reac-
tivities for the glycoproteins were tested. Liberated sugars were
detected from carrot extensin and potato lectin by HypBA2 but
not by HypBA1 (Fig. 8). Furthermore, HypBA1 did not act on
pNP-galacto-, gluco-, and xylo-pyranosides. The substrate
specificity is summarized in Table 3. These results suggested
that HypBA1 reacts with the liberated �-L-arabinooligosaccha-
rides. Consequently, we classified the enzyme as an exo-acting
�-L-arabinofuranosidase. The cleavage sites for HypBA1 are
shown in Fig. 1.

Transglycosylation Activity of HypBA1—When 1-alkanols
were used as the acceptors, the transglycosylation products
were detected on TLC (Fig. 9A). The purified transglycosyla-
tion product (methyl L-arabinofuranoside) was hydrolyzed to
L-arabinose by the HypBA1 treatment (Fig. 9B), which indicates
that the methanol was linked by the �-anomeric form. The
structure of this product was determined by 1H and 13C NMR
(Fig. 10 and Table 4). The 1H NMR spectrum showed the ano-
meric proton as a doublet at 4.74 ppm with coupling constant
J1,2 � 4.8 Hz. Furthermore, the 13C NMR spectra revealed that
the transglycosylation product was found to be consistent with
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FIGURE 2. SDS-PAGE analysis of recombinant HypBA1. Purified HypBA1
was electrophoresed on a 10% polyacrylamide gel and stained with Coomas-
sie Brilliant Blue R-250. Lane 2, purified HypBA1; lanes 1 and 3, molecular size
markers. The arrow indicates the band that corresponds to HypBA1.
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(lane 4), or TCEP (lane 5) at 37 °C for 16 h. Lane 1, cis-Ara3-Hyp-DNS.
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a methyl �-L-arabinofuranoside (Ara-Me) (16). These data
indicated that HypBA1 is a retaining enzyme.

Sequence Analysis of HypBA1—HypBA1 consisted of 658
amino acids that included DUF1680 without other sequence
motifs (Fig. 11). HypBA1 was 38 –98% identical to other
DUF1680 members from bifidobacteria (Fig. 11 and supple-
mental Fig. S1). Duplicated DUF1680 members were found in
the sequences of almost all Bifidobacterium species. HypBA1
(BLLJ_0211) constitutes a gene cluster with HypBA2
(BLLJ_0212) and a GH43 family member (BLLJ_0213) (Fig. 11).
The gene cluster was conserved in B. longum NCC2705, B.
longum subsp. infantis 157F, and Bifidobacterium pseudo-
catenulatum DSM 20438. In addition, the gene cluster without
the GH43 family member was conserved in Bifidobacterium
catenulatum DSM 16992 and Bifidobacterium dentium ATCC
27678.

Critical Amino Acid Residues of HypBA1—The candidate
acidic amino acid residues were selected for site-directed

mutagenesis studies based on multiple alignments and the
HMM logo of the DUF1680 family in the Pfam database (17).
Alanine substitutions were introduced at the positions of Glu-
322, Glu-338, and Glu-366, which are highly conserved among
the HypBA1 homologs (indicated as asterisks in supplemental
Fig. S1). The mutant enzymes were purified for the determina-
tion of specific activities. The E322A and E338A mutant
enzymes were recovered in the soluble fractions with Bug-
Buster. The E338A mutant enzyme exhibited a significant
decrease in activity (0.0013%), and the E322A mutant showed
1.5% of the activity relative to the wild-type enzyme (Table 5).
The E366A mutant enzyme was insoluble, and only a small
amount of protein was recovered. Nonetheless, it exhibited 16%
relative activity compared with the wild-type enzyme. The
effect of external nucleophile on the activity of the E338A
mutant was further investigated by using different concentra-
tions of sodium azide. The activity of the mutant was rescued by
the addition of azide (Fig. 12). In the presence of 200 mM

sodium azide, the enzymatic activity was 33-fold greater than in
the absence of external nucleophile. We also confirmed azide
rescue by �-Ara2 as a substrate, whereas the glycosyl azide
product was not observed on HPAEC-PAD and TLC (data not
shown).

In Vitro Fermentability of �-Ara2 by B. longum—First, lysates
of bifidobacterial cells grown in GAM were used as the enzyme

FIGURE 6. Effects of pH and temperature on the activity of HypBA1. A, pH
dependence of HypBA1 activity in various buffers at 37 °C for 10 min. Enzyme
activities were expressed as the percentage of activity in sodium acetate
buffer at pH 4.5. B, temperature dependence of HypBA1 activity for 10 min.
Enzyme activities were expressed as the percentage of the activity at 35 °C.
Buffers: sodium acetate (closed square), MES (open circle), sodium phosphate
(closed circle).

TABLE 2
Kinetic parameters of HypBA1 activity on different substrates

Substrates Km kcat kcat/Km

mM s�1 s�1 mM�1

�-Ara2 0.85 � 0.13 2.0 � 0.20 2.3
Ara2-Hypa 0.31 � 0.0013 6.3 � 0.084 20
Ara-Hypa 0.43 � 0.11 0.013 � 0.0027 0.030

a cis-Isomers of dansylated substrates were used.
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Characterization of a Novel �-L-Arabinofuranosidase

5244 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 8 • FEBRUARY 21, 2014



source. �-L-Arabinofuranosidase activity was found in the cell
lysate of B. longum JCM 1217 and B. longum JCM 7054 but not
in that of B. adolescentis JCM 1275, B. breve JCM 1192, B. bifi-

dum JCM 1254, B. pseudolongum JCM 1205, or B. longum
subsp. infantis JCM 1222 (Fig. 13A). Moreover, enzymatic
activity was not observed in the culture medium or in the bac-
terial cell suspensions for all Bifidobacterium strains described
above (data not shown). The PYF medium containing 0.25%
�-Ara2 was utilized as a carbohydrate source by B. longum JCM
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TABLE 3
Substrate specificity of HypBA1

Substrates Activity

�-Ara2 �a

Ara4-Hyp NDb

Ara3-Hyp �
Ara2-Hyp �
Ara-Hyp �
Ara2-Me �
Ara-Me �
Extensin ND
Potato lectin ND
pNP-�-L-arabinofuranoside ND
pNP-�-L-arabinopyranoside ND
pNP-�-L-arabinopyranoside ND
pNP-�-D-xylopyranoside ND
pNP-�-D-xylopyranoside ND
pNP-�-D-galactopyranoside ND
pNP-�-D-galactopyranoside ND
pNP-�-D-glucopyranoside ND
pNP-�-D-glucopyranoside ND

a Cleavage of substrate was detected.
b Cleavage of substrate was not detected.
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1217 but not by B. adolescentis JCM 1275 (Table 6). In addition,
�-Ara2 in the PYF medium was utilized by the fermentation of
B. longum JCM 1217 (Fig. 13B). Furthermore, �-L-arabinofura-
nosidase activity was found in the cell lysate of B. longum JCM
1217 grown on �-Ara2 but not in the lysate of cultures grown in
media containing glucose and L-arabinose (Fig. 13C). These
data suggested that �-Ara2 is metabolized by �-L-arabinofura-
nosidase in B. longum.

DISCUSSION

The DUF1680 family has 597 members distributed among
315 species of enteric bacteria (i.e. Bifidobacterium, Bacte-
roides, Salmonella, Clostridium, and Escherichia), plant-patho-
genic Xanthomonas, actinomycetes, fungi, and plants, as shown
in the Pfam database. The members of this family are hypothet-
ical proteins of unknown function and have no sequence simi-
larity with other glycoside hydrolase families. In this study, we
cloned the gene encoding a member of the DUF1680 family and
characterized its product as a novel �-L-arabinofuranosidase.

Therefore, we propose that the enzyme be assigned to a new
family of glycoside hydrolases, the glycoside hydrolase fam-
ily 127.
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TABLE 4
Assignments of signals in 1H and 13C NMR spectra of methyl �-L-arabi-
nofuranoside

1 2 3 4 5 Me
1H (�) 4.74 3.99 3.85 3.73 3.61 3.46 3.26
J (Hz) 4.8 8.2, 4.8 7.5 7.1, 3.1 12.2, 3.4 12.2, 7.5
13C (�) 102.72 76.86 75.03 82.54 63.65 55.65

TABLE 5
The specific activities of HypBA1 mutants

Mutant enzymes Specific activitya
Percentage of

specific activity

milliunits mg�1 %
Wild type 2100 100
E322A 32 1.5
E338A 0.028 0.0013
E366A 340 16

a Enzymatic activities were determined using cis-isomer of Ara2-Hyp-DNS.
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�-Ara2 was a suitable substrate for HypBA1 as well as Ara3-
Hyp and Ara2-Hyp, which contain the Araf-�1,2-Araf structure
at the nonreducing terminal. In extensins, �-L-arabinooligosac-
charides are in close existence on repetitive Ser-Hyp4 motifs
and contribute to protease resistance. It is thought that Hyp-
linked �-L-arabinooligosaccharides do not occur naturally in
the normal environment. Furthermore, HypBA1 did not
directly release L-arabinose from extensin or potato lectin (Fig.
8). In addition, we showed that �-Ara2 was used as a carbohy-
drate source for B. longum, with enzymatic activity detected in
the cell lysate (Table 6 and Fig. 13). Interestingly, the enzymatic
activity was not detected in cells grown in the presence of L-ar-
abinose or glucose. The amino acid sequence of HypBA1 lacks
both a secretory signal and a transmembrane domain. Collec-
tively, these results indicate that HypBA1 is an intracellular
enzyme that degrades HypBA2-released �-Ara2, as schemati-
cally summarized in Figs. 14 and 15.

Previously, we characterized an endo-�-N-acetylgalac-
tosaminidase (BLLJ_0168) from B. longum JCM 1217, which
releases Gal-�1,3-GalNAc (GNB) disaccharide from core-1
mucin-type O-glycans (18). Kitaoka and co-workers (19, 20)
proposed a metabolic pathway for GNB from core-1 mucin-
type O-glycans and Gal-�1,3-GlcNAc (LNB) from human milk
oligosaccharides based on the characterization of the genes
encoded in the GNB/LNB operon (BLLJ_1620-BLLJ_1626) of
B. longum. Fushinobu and co-workers (21, 22) characterized
the GNB/LNB-binding protein (BLLJ_1626) of an ATP-binding
cassette-type sugar transport system in the GNB/LNB pathway.
As shown in Fig. 15, the contiguous genes of the hypBA1 gene
(BLLJ_0211) have also been annotated as encoding subunits of
a putative ATP-binding cassette-type sugar transport system
(23) as follows: a solute-binding protein (BLLJ_0208) and two
transmembrane subunits (BLLJ_0209 and BLLJ_0210).
BLLJ_0208 exhibits 28% identity with the GNB/LNB-binding
protein, and BLLJ_0209 and BLLJ_0210 also have 	27% iden-
tity with the GNB/LNB transmembrane subunits (BLLJ_1624
and BLLJ_1625). Furthermore, the neighboring gene
(BLLJ_0207) is predicted to be a LacI-type transcriptional reg-
ulator. Thus, we expect that BLLJ_0207 will regulate the gene
cluster containing the �-Ara2 transport system (BLLJ_0208-
BLLJ_0210) and the �-L-arabinooligosaccharides degradation
enzymes (BLLJ_0211-BLLJ_0213) by internalizing �-Ara2.
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FIGURE 13. Detection of �-L-arabinofuranosidase activity in Bifidobacte-
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lysates of Bifidobacterium strains grown on GAM. The Bifidobacterium strains
that were incubated with cis-Ara2-Hyp-DNS are as follows: B. longum JCM
1217 (b), B. longum JCM 7054 (c), B. longum subsp. infantis JCM 1222 (d), B.
pseudolongum JCM 1205 (e), B. adolescentis JCM 1275 (f), B. breve JCM 1192 (g),
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fermentation with B. longum JCM 1217. C, enzymatic activities of B. longum
JCM 1217 grown on PYF medium containing �-Ara2 (a), L-arabinose (b), and
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TABLE 6
Growth capacity of Bifidobacterium strains on carbohydrates
Judgment of bacterial growth is as follows: �, �pH 
0.5; �, 0.5 � �pH 
1.0; �,
1.0��pH 
1.5; ��, 1.5��pH. �pH � (test pH) � (control pH).

Carbon
source B. longum JCM 1217

B. adolescentis
JCM 1275

Glucose �� ��
L-Arabinose �� �
�-Ara2 �� �
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The �-L-arabinooligosaccharide metabolic pathway in B.
longum is predicted as shown in Fig. 15. First, a GH43 family
member (BLLJ_0213) releases L-arabinose from extensin (Ara4-
Hyp to Ara3-Hyp) and then HypBA2 (BLLJ_0212) releases
�-Ara2 (Ara3-Hyp to Ara-Hyp) on the bifidobacterial cell sur-
face. Next, the released L-arabinose and �-Ara2 are internalized
into the bifidobacterial cell by uncharacterized transport sys-
tem and predicted �-Ara2 transport system (BLLJ_0208-
BLLJ_0210), respectively. Then, HypBA1 (BLLJ_0211)
degrades �-Ara2 to L-arabinose. Furthermore, the L-arabinose
metabolic enzymes for the conversion to D-xylulose 5-phos-
phate, which have been characterized in Corynebacterium glu-
tamicum ATCC 31831 (24), exhibit 50 –59% identity with those
of B. longum JCM 1217 as follows: L-arabinose isomerase
(BLLJ_0342), L-ribulokinase (BLLJ_0340), and L-ribulose
5-phosphate 4-epimerase (BLLJ_0341). As a result, HypBA1
plays a key role in B. longum for �-L-arabinooligosaccharides
usage as a carbohydrate and energy source.

Recently, Fukuda et al. (15) reported that B. longum has an
advanced ability for fructose uptake and acetate production,
with the released acetate improving the intestinal defense
mediated by epithelial cells. In addition to fructose, L-arabinose
is a naturally found common carbohydrate and is found as a
component of biopolymers such as hemicellulose and pectin. B.
longum JCM 1217 encodes a number of candidates for the �-L-

arabinofuranosidase gene, 11 members of the GH43 gene fam-
ily, and 4 members of the GH51 gene family. Several reports
indicate that B. longum has the ability to grow on L-arabinose
and �-L-arabinooligosaccharides (14, 23, 25–27). We showed
that B. longum also uses �-Ara2 as a carbohydrate source (Table
6). Several �- and �-L-arabinooligosaccharide degradation
enzymes in B. longum might be involved in L-arabinose acqui-
sition from plant polymers in the large intestine.

HypBA1 was identified as a retaining glycoside hydrolase, as
described above. Hydrolysis by retaining glycoside hydrolases
proceeds through a double-displacement mechanism with two
catalytic residues. The catalytic residues typically utilized are
either aspartate or glutamate residues. In the chemical rescue
study, E338A mutant was rescued by the addition of azide,
which suggests that Glu-338 is a catalytic residue for HypBA1.
However, no glycosyl azide product was formed in the reaction
mixture. A water molecule activated by azide ion might be reac-
tivated E338A mutant without glycosyl azide production, as
shown in GH43 �-xylosidase and GH14 �-amylase (28, 29).

B. longum JCM 1217 encodes four members of the DUF1680
family (BLLJ_0211, BLLJ_1826, BLLJ_1848, and BLLJ_0089),
whereas B. longum NCC2705 encodes two members (BL0422
and BL0174) (Fig. 11). BL0422 constitutes a conserved gene
cluster with the GH121 �-L-arabinobiosidase gene and the
GH43-encoding gene as well as BLLJ_0211. BL0174 (98.8%
identity with BLLJ_1826) is flanked by a gene cluster with five
GH43 members and one �-galactosidase (BL0176 –BL0190),
whereas BLLJ_1826 is flanked by a small gene cluster without
GH43 members (BLLJ_1824-BLLJ_1820). Interestingly,
BLLJ_1848 constitutes a gene cluster with five duplicated GH43
members (BLLJ_1850-BLLJ_1854), in which the cluster is
replaced by insertion sequences in B. longum NCC2705.

Hydroxyproline-rich glycoproteins that contain �-L-arabi-
nooligosaccharides are widely distributed in land plants,
mosses, ferns, and green algae (30). Furthermore, terminal �-L-
arabinofuranosides are found in many plant biopolymers (3– 8)
and in yessotoxin from the dinoflagellate algae Protoceratium
reticulatum (31, 32). Because DUF1680 family members are
conserved in many species of bacteria, actinomycetes, fungi,
and plants, they are thought to play a role in the effective deg-
radation of plant biopolymers as well as hydroxyproline-rich
glycoproteins.
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