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Coestimation of recombination, substitution and molecular
adaptation rates by approximate Bayesian computation

JS Lopes1,2,6, M Arenas3,4,6, D Posada3 and MA Beaumont1,5

The estimation of parameters in molecular evolution may be biased when some processes are not considered. For example, the
estimation of selection at the molecular level using codon-substitution models can have an upward bias when recombination
is ignored. Here we address the joint estimation of recombination, molecular adaptation and substitution rates from coding
sequences using approximate Bayesian computation (ABC). We describe the implementation of a regression-based strategy for
choosing subsets of summary statistics for coding data, and show that this approach can accurately infer recombination
allowing for intracodon recombination breakpoints, molecular adaptation and codon substitution rates. We demonstrate that
our ABC approach can outperform other analytical methods under a variety of evolutionary scenarios. We also show that
although the choice of the codon-substitution model is important, our inferences are robust to a moderate degree of model
misspecification. In addition, we demonstrate that our approach can accurately choose the evolutionary model that best fits the
data, providing an alternative for when the use of full-likelihood methods is impracticable. Finally, we applied our ABC method
to co-estimate recombination, substitution and molecular adaptation rates from 24 published human immunodeficiency virus 1
coding data sets.
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INTRODUCTION

In nature, different evolutionary processes, such as recombination,
substitution and selection, shape the genetic diversity of a population
as generations go by. The traces left behind in the gene pool result
from the joint action of all the evolutionary processes together, and,
ideally, one would want to estimate these parameters simultaneously
to avoid potential biases. For instance, ignoring the presence of
recombination can bias the estimation of gene trees (Posada and
Crandall, 2002) and derived inferences like growth rates (Schierup
and Hein, 2000) or molecular adaptation (Anisimova et al., 2003;
Scheffler et al., 2006; Arenas and Posada, 2010).

As far as we know, only Wilson and McVean (2006) and Wilson
et al. (2009) have proposed methods for the co-estimation of
recombination and adaptation rates from coding sequences. The
former used an approximation to the coalescent with recombination
based on the product of approximating conditionals likelihood and
the copying model of Li and Stephens (2003), which was implemen-
ted in the package OmegaMap using a Markov chain Monte Carlo
framework. The latter introduced an approximate Bayesian computa-
tion (ABC) method to jointly infer recombination, adaptation and
substitution rates from a particular data set of Campylobacter jejuni,
but did not explore further the statistical method. Noticeably, both
methods assume that recombination cannot occur within codons,
which has been shown to bias the estimation of adaptation rates at

individual sites (Anisimova et al., 2003; Arenas and Posada, 2010). On
the other hand, the effect of different selective regimes on estimates of
the recombination rate has not been evaluated in detail.

Additionally, an accurate choice of the underlining substitution
models of evolution also has a significant role in molecular evolution
studies (see Sullivan and Joyce, 2005 and references therein). Tradi-
tionally, model selection methods require the calculation of likelihood
functions; however, for complex models these calculations may
become prohibitive. In these cases, the ABC framework can provide
a feasible way to choose between complex models (Beaumont, 2008;
Cornuet et al., 2008).

In this study we have developed an ABC method for inferring
jointly rates of recombination, molecular adaptation and substitu-
tion from coding sequences, while accounting for intracodon
recombination. We have investigated a large number of summary
statistics that are potentially informative about these parameters,
and used the mean square error to choose a subset for efficient
computation. We have also tested the use of a new ABC approach
for model choice and assessed its robustness to model misspeci-
fication. In addition, we have compared the performance of our
ABC method with that of OmegaMap, PAML (Yang, 2007) and
LAMARC (Kuhner, 2006). Finally, we applied our ABC method to
analyze 24 published human immunodeficiency virus 1 (HIV-1)
data sets.
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MATERIALS AND METHODS
ABC approach based on rejection/regression algorithm
The aim of the ABC approach is to summarize typically high-dimensional data

by a vector of summary statistics S and then obtain an estimate of the posterior

distribution of the parameter vector X in the model of interest:

PðX j SÞ ¼ PðS j XÞPðXÞ
PðSÞ ð1Þ

where P(X) is the prior distribution, P(S|X) is the likelihood function and P(S)

is the marginal likelihood, PðSÞ ¼
R

PðS j XÞPðXÞdX. In practice the like-

lihood function cannot easily be evaluated and the posterior distribution is

estimated from simulations.

Recently there has been a great increase in the application of ABC methods

for problems in population genetics, and this has largely been driven by the

availability of useful software packages (for example, ABCtoolbox package

(Wegmann et al., 2009), ABC package (Csillery et al., 2012) or DIY-ABC

(Cornuet et al., 2008)). These authors have developed a number of important

enhancements to the original rejection and regression algorithms (reviewed in

Beaumont (2010)). However, a recent study by Blum et al. (2013) has

demonstrated that the original regression approach of Beaumont et al.

(2002) typically performs well when compared with more recent develop-

ments, and currently there seems to be no ‘best’ method across all scenarios. In

particular regression adjustment without any selection of summary statistics

tends to outperform methods based on partial least squares. In the present

study we use a rejection algorithm (Pritchard et al., 1999) and a regression

algorithm (Beaumont et al., 2002). Although our method does use a technique

for finding an ‘optimal’ subset of summary statistics, we demonstrate that this

is motivated by its improved performance (as judged by mean square error)

over regression adjustment based on all the summary statistics.

In outline, for the rejection algorithm, trial values Xi are simulated from the

prior P(X); data are simulated by running the model with Xi; these are

summarized by Si and the real data are summarized by S�; for some distance

metric d( � ), the Xi for which d (S, S�)od are accepted. These are then

regarded as drawn from the posterior distribution. In the regression algorithm

the points that are retained by the rejection algorithm are then adjusted as

follows. A weighted linear regression—weighted as a function of d( � )—gives

an estimate of the posterior mean X̂ as a linear function of S. On the

assumption that only the posterior mean changes with S, and no higher

moments, then the adjustment Xi� X̂ðSÞþ X̂ðS�Þ should yield samples drawn

approximately from the target posterior distribution. Explicit algorithms for

these methods are given in Beaumont (2010), but see also Blum et al. (2013).

Because our aim is to estimate recombination, adaptation and codon

substitution rates from coding sequence alignments, the summary statistics

to be used in ABC were chosen according to their correlation with these

parameters.

Substitution models and prior distribution considered
The simulated data were obtained using the backwards-in-time coalescent-

based program NetRecodon (Arenas and Posada, 2010), which allows recom-

bination breakpoints to occur between and within codons and permits the

simulation sequences under a wide range of codon-substitution models and

demographic scenarios. Notice that under GY94 substitution codon models,

only one nucleotide may change per codon substitution event and, therefore,

these models can be crossed with nucleotide models. On the other hand, note

that recombination only occurs at the nucleotide level (Arenas and Posada,

2010). Here we simulated data under four codon-substitution models with

increasing complexity levels:

Model A: GY94�K80, where the transition over transversion ratio rate is

assumed to be 2.0 (a common value in real data), and the codon frequencies

are equally distributed.

Model B: GY94�GTRþGnuc with parameter values typical of HIV-1 data

sets (following Carvajal-Rodriguez et al. (2006)), particularly, using codon

frequencies calculated from the nucleotide frequencies fA¼ 0.35, fC¼ 0.17,

fG¼ 0.23 and fT¼ 0.25, transition rates RA–C¼ 3.00, RA–G¼ 5.00, RA–T¼ 0.90,

RC–G¼ 1.30, RC–T¼ 5.30 and RG–T¼ 1.00, and alpha shape of the gamma

distribution of 0.70.

Model C: GY94�GTRþGnucþGcodon: model B with an additional gamma

distribution for the non-synonymous/synonymous rate ratio (o) variation per

codon. The alpha shape for the latter distribution was obtained from the work

of Yang et al. (2000) on HIV-1 (M5 codon model, a¼ 0.557).

Model D: GY94�GTR3þGnucþGcodon: model C with different GTR

substitution rates for each position of the codon calculated from the HIV-1

data set published by Van Rij et al. (2003), and using codon frequencies

calculated from the nucleotide frequencies for each position in the codon

fA1¼ 0.32, fC1¼ 0.23, fG1¼ 0.31, fT1¼ 0.15, fA2¼ 0.42, fC2¼ 0.18, fG2¼ 0.17,

fT2¼ 0.23, fA3¼ 0.50, fC3¼ 0.14, fG3¼ 0.16 and fT3¼ 0.20, changing rates

R(A�C)1¼ 2.861, R(A�G)1¼ 4.66, R(A�T)1¼ 0.27, R(C�G)1¼ 0.11,

R(C�T)1¼ 4.52, R(G�T)1¼ 1.00, R(A�C)2¼ 195.00, R(A�G)2¼ 4186.73,

R(A�T)2¼ 583.60, R(C�G)2¼ 287.81, R(C�T)2¼ 3937.27 and R(G�T)2¼ 1.00,

R(A�C)3¼ 1.44, R(A�G)3¼ 6.45, R(A�T)3¼ 1.20, R(C�G)3¼ 1.13, R(C�
T)3¼ 9.54 and R(G�T)3¼ 1.00, and alpha shape of the gamma distribution

for rate variation among nucleotide sites of 0.028.

Here GY94�K80 refers to the GY94 codon model (Goldman and Yang,

1994) crossed with the K80 nucleotide model and GY94�GTRþG refers to

that same codon model crossed with the GTR nucleotide model under a

gamma distribution for rate variation among nucleotide sites (þGnuc), or for

o variation among codons (þGcodon).

The parameters of interest throughout the manuscript were: the scaled

recombination rate r¼ 4Nrl, where N is the effective (diploid) population size,

r is the recombination rate per nucleotide and l is the number of nucleotides in

the sequence; the non-synonymous/synonymous rate ratio o; and the scaled

codon substitution rate y¼ 4NmL, where m is the substitution rate per codon

and L is the number of codons in the sequence. Data were simulated using

values of these parameters sampled from different prior distributions. The

scaled recombination rate r was sampled from a uniform prior distribution

between 0 and 50 (note that r¼ 50 corresponds to a very high recombination

rate with 141 expected recombinant events in the neutral case when

considering 15 sequences). In nature, the selective pressure in codon sequences

is thought to be mainly purifying (for example, Hughes et al., 2003). Therefore,

for o we choose a lognormal prior distribution with a location parameter of

log10 of 0.3 and scale parameter of 0.4. In this way we obtain a prior

distribution with only positive values, with a median 0.3 and with small

probability of being higher than 1, which we believe represents well our prior

beliefs about the distribution of this parameter in real data. The scaled codon

substitution rate y was simulated under a uniform prior distribution between

50 and 300 (nucleotide diversity of between 5 and 20%).

For each of the four scenarios, and using the priors described above, we

generated 50 000 samples of n¼ 15 sequences with L¼ 333 codons and an

effective population size N¼ 1000. The four simulated data sets were used as

reference tables (that is, very large tables of simulations to be reused many

times in ABC (Cornuet et al., 2008)). Finally, we generated 1000 data sets for

each scenario with values of r, o and y ranging from the entire extent of the

prior, to be used as test data sets (that is, simulated real data for which the true

values of the parameters are known).

Definition and choice of summary statistics
We defined an initial pool of 26 summary statistics that were applied at the

nucleotide, codon and amino-acid levels (Table 1). Three of the summary

statistics consisted of fast statistical tests for detecting recombination: the

maximum chi-squared method (w2, Smith, 1992), the neighbor similarity

scope (NSS, Jakobsen and Easteal, 1996) and the pairwise homoplasy index

(PHI, Bruen et al., 2006), available in the PhiTest software (Bruen et al., 2006).

Other chosen summary statistics were the mean, standard deviation (s.d.),

skewness (sk) and kurtosis (ku) of the nucleotide diversity (p), number of

segregating sites (S) and heterozygosity (H):

Hi ¼
ni

ni� 1
1�

Xm

j¼1

fj

� �2

 !
ð2Þ

where ni is the number of total states at site i, m is the number of possible

states and fj is the frequency of state j. Finally, we introduced a series of

summary statistics, similar to the o ratio but faster to calculate, that consider

information at the codon (cd) and amino-acid (aa) levels jointly (non-
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synonymous ratio, NSR):

NSR ¼ p of aa

p of cd� p of aa
ð3Þ

the use of disequilibrium measures such as pairwise D, D0 or r2 was not

considered because they require the comparison of all sites against each other,

which would imply heavy computational costs.

The motivation behind using summary statistics is to reduce the dimen-

sionality of the data (D). Ideally one wants to use a set of statistics S¼ (S1, S2,

y, Sn) such that the posterior distribution P(X|S) is similar to the posterior

distribution P(X|D). The key consideration is to choose enough summary

statistics so that S is close to sufficient for the parameters of the model, while

taking into account the increasing inaccuracy of estimation with the number of

summary statistics (the so-called curse of dimensionality). The choice of the

most suitable summary statistics is still problematic for ABC (Beaumont,

2008). Several attempts to provide a general methodology have been proposed,

but there is as yet little consensus on the best approach (Blum et al., 2013).

One of the most promising approaches is that of Fearnhead and Prangle

(2012), in which, motivated by the need to minimize the expected mean

squared error, they prove that the optimal summary statistic for any parameter

is the posterior mean for that parameter. Although the posterior mean is

unknown it can be estimated in a pilot set of simulations using local regression

(as is indeed the aim of the regression adjustment method of Beaumont et al.

(2002)). The criterion of Fearnhead and Prangle (2012) does not pertain to the

posterior variance, only to the posterior mean. By contrast, our approach aims

to minimize the mean integrated squared error (MISE), which is equal to the

sum of the mean squared error and the posterior variance. Although it would

be desirable in the long term to develop a principled proof-guided method

along the lines of Fearnhead and Prangle (2012) we have taken a more

empirical approach, following earlier authors (Veeramah et al., 2012), in which

the performance of the ABC method for different combinations of summary

statistics is evaluated through the use of test data sets in which the true

parameter values are known. We aimed to find combinations that minimized

the MISE for each parameter over a range of parameter values sampled from

the prior:

MISE ¼
X

j

1

n

Xn

i¼1

fi�f0j
� �2

 !
ð4Þ

where n is the number of sampled points from the posterior distribution, fi is

the ith sampled point from the posterior distribution and f is the true value of

parameter of the jth test data set.

With a pool of 26 summary statistics, the set of all possible combinations is

large. In order to reduce this number we chose an initial subset of summary

statistics and the order that the remaining summary statistics were added to

such subset. This was done by calculating a multiple correlation coefficient

between every parameter and different sets of summary statistics with the leaps

package (Lumley and Miller, 2004) in R. This way we tested all possible

combinations of groups of independent variables (the summary statistics) with

respect to a single dependent variable (the parameters) while accounting for

‘over-fit’ of the regression model using the Mallow’s Cp index:

Cp ¼ SSEP

Z2
�N þ 2p ð5Þ

where P is the number of predictors, SSEP is the error sum of squares for the

model with p predictors, Z2 is the residual mean square after regression on the

complete set of predictors and N is the sample size. This procedure provides a

‘best’ set of summary statistics for each parameter considered (recombination,

substitution rate and molecular adaptation). We then took the union of the

‘best’ set of summary statistics of each parameter in order to have one single

set that enables us to infer parameters jointly and compare different models.

Optimal tolerance and number of simulations
Following Beaumont et al. (2002) we have chosen the tolerance by setting

a proportion of simulations Pd to be accepted according to d(S, S�). We

evaluated the use of different combinations of number of simulations and

tolerance intervals by using test data sets. For each combination we used 1000

test data sets and calculated their average MISE for the three parameters of

interest: rates of recombination, molecular adaptation and substitution (that is,

MISErec, MISEomega and MISEmut). In order to compare the different

combinations in use using a single measurement of error, we devised a

composite MISE value as:

MISEtotal¼
MISErec

MISErec

þ MISEomega

MISEomega

þ MISEmut

MISEmut

ð6Þ

The set of the different conditions to be tested will have an average MISEtotal

equal to the number of parameters to estimate (see for example Figure 2,

where the average of the points of each panel is 3). For this reason, the

composite value not only helps the comparison between different conditions,

but also scales the error values to the number of parameters, allowing for a

better comparison of the behavior of the different models.

RESULTS

Experiment I. Selection of the preliminary subsets of summary
statistics
The initial experiment focused on choosing the most suitable
summary statistics set for estimating recombination, adaptation and
substitution rates. The first approach was to select a preliminary
subset. Considering the four reference tables and using the Cp index,
we obtained the most linearly correlated subsets of 1, 2,y, 6
summary statistics with each parameter for the four models (see
Supplementary Tables S1�S4). This information was used to choose
a preliminary subset of summary statistics and the order in which the
remaining summary statistics were added to that subset. Thus, the
preliminary subset was composed of eight summary statistics (PHI,
NSS, w2, aapav, aaS, cdHav, cdS and nucS) and the order of addition of
the remaining summary statistics was cdpav, cdps.d., aaHav, aaHs.d.,
cdpsk, NSRav, aaps.d., cdHs.d., aapsk, cdHsk, aaHsk, cdHku, aaHku, aapku,
cdpku, NSRs.d., NSRsk and NSRku.

Experiment II. Selection of the final set of summary statistics and
accuracy of the ABC method
For the selection of the final set of summary statistics, we applied the
developed ABC method to analyze the 1000 test data sets of each
model, using the points simulated under the appropriate model, and
accepted the closest 0.2% (100 samples). The regression step was
performed on each parameter at a time after applying a log
transformation to ensure that the regression-adjustment would not
project points outside the region of support of the model. The
regression-adjusted parameters were then back-transformed. We used

Table 1 Description of the 26 summary statistics used in this work

Amino-acid level a Codon level a Nucleotide level a

Mean of p (aapav) Mean of p (cdpav) PHI

s.d. of p (aapsd) s.d. of p (cdpsd) NSS

sk of p (aapsk) sk of p (cdpsk) w2

ku of p (aapku) ku of p (cdpku) S (nucS)

Mean of H (aaHav) Mean H (cdHav)

s.d. of H (aaHsd) s.d. of H (cdHsd)

sk of H (aaHsk) sk of H (cdHsk)

ku of H (aaHku) ku of H (cdHku)

S (aaS) S (cdS)

aapav/(cdpav–aapav) (NSRav)

aaps.d./(cdpsd–aaps.d.) (NSRs.d.)

aapsk/(cdpsk–aapsk) (NSRsk)

aapku/(cdpku–aapku) (NSRku)

aSummary statistics abbreviations are shown in parentheses.
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each set of summary statistics to perform ABC on the test data sets as
follows: taking a model at a time, we analyzed the 1000 test data sets
and calculated their median MISE for each parameter (see
Supplementary Tables S5�S8); whenever the added summary statistic
decreased the MISE, it was added to the preliminary subset of
summary statistics. Upon considering the results for the four models,
we chose a final subset of 22 summary statistics (PHI, NSS, w2, aapav,
aaps.d., aapsk, aapku, aaHav, aaHs.d., aaHsk, aaHku, aaS, cdpav, cdps.d.,
cdpsk, cdpku, cdHav, cdHs.d., cdHsk, cdHku, cdS, nucS). This subset
contains all the suggested summary statistics but the NSRs, which are
composite summary statistics calculated as nonlinear functions of aap
and cdp.

In Figure 1 we present the true values of the parameters that gave
rise to the test data sets and their point estimated values (mode of the
posterior distribution) using ABC with the final subset of summary
statistics. Under the simpler cases (models A, B and C), ABC
estimations were accurate, particularly for o and y. When considering
the most complex scenario (model D), the correlation between the
true and estimated values decreased, especially for o. Under this

model each codon can take a different value for o and each
nucleotide position in the codon a different substitution scheme,
and thus parameter estimation becomes more difficult. Overall,
our results show that the chosen summary statistics can accurately
co-estimate recombination, adaptation and substitution rates.
As a side study presented in the Supplementary Information, we
considered the 1000 test data sets from model A and performed ABC
using two different table references with 50 000 simulations each—
one table assumed no recombination (r¼ 0) and the other no
adaptation (o¼ 1). Results suggest that unaccounted recombination
leads to bias in adaptation (Supplementary Figure S1C). Interestingly,
contrary to the two sets observed by Scheffler et al. (2006),
the trend is for the presence of recombination to lead to an
underestimation of global adaptation by using ABC. However, in
our case we consider the overall impact of low and high recombina-
tion in different values of adaptation. Regarding the impact of
ignoring adaptation, this seems to also lead to underestimation of
recombination, especially for higher values of recombination
(Supplementary Figure S1D).

Figure 1 Accuracy of ABC estimates of r, o and y rates. The full line indicates the estimated value (y axis) corresponding to each of the 1000 test data

sets generated using models A–D under a given true value (x axis). Dotted lines indicate 95% credible intervals. Panels (a) to (l) show results for each

parameter of each model as described in the panel’s title.
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Experiment III. Finding the optimal tolerance and number of
simulations
Following the choice of the summary statistics, we studied the
optimal tolerance interval and number of simulations. We performed
ABC analysis under the same conditions as before and used the set of
summary statistics proposed in Experiment II. This time we varied
the total number of simulated data used and the tolerance interval.
The analyses were performed using the full table references with
50 000 simulations and two subsets of it, 12 500 and 25 000 simula-
tions, while the tolerance intervals were set to 50, 100, 200, 400 and
800 simulated samples, resulting in 15 different simulation scenarios.
For each one, we calculated the average MISE for the ABC analysis of
the 1000 data sets for each of the three parameters of interest and
under models A�D. In particular, we calculated the average MISE
among all the analyses for each parameter separately (that is, MISErec,
MISEomega and MISEmut) and, following equation (6), we calculated
MISEtotal.

In Figure 2 we show MISEtotal as a function of tolerance for models
A–D (see Supplementary Figures S2–S4 for results on the MISE of
each of the three parameters). Here the MISE values increased
considerably when using 25 000 or 12 500 simulations, suggesting
that we should not decrease the number of simulated data below
50 000. Likewise, as we moved the tolerance interval down to 100 data
sets the MISE decreased consistently, but for lower tolerance intervals
the MISE was maintained and even increased. This suggests that a

tolerance of 100 data sets (when using either 12 500, 25 000 or 50 000
simulated data) provides a good sample of the posterior distribution.

Experiment IV. Testing ABC robustness to model misspecification
The previous experiments showed that our ABC implementation
performs well under the correct model of evolution. As a follow-up,
we investigated how robust this method was when the model of
molecular evolution is misspecified. As model D is substantially more
complex than others, we considered only models A, B and C in this
experiment. Thus, we run ABC analyses on three sets (one for each
model) of 1000 test data sets. For each set of test data and under the
same conditions as in the previous experiments, we performed ABC
with the reference tables of the other two models (that is, we used
misspecified models for the analyses). When models B and C were
misspecified, the results were similar to those obtained under the true
model (Supplementary Figures S5 and S6). The analyses using
simulated test data from A but assuming any of the other two
models, or using simulated test data from B and C and assuming
model A, all resulted in high MISEs (Supplementary Figures S5–S7).
Indeed, model A is very different from models B and C: the former
assumes a K80 nucleotide model, whereas the latter two assume a
GTRþG nucleotide model (see MATERIALS AND METHODS).
Most importantly, model A assumes that all sites evolve under the
same rate, whereas models B and C assume rate variation among
nucleotides (B) and both nucleotides and codons (C). The weak

Figure 2 Effect of number of simulations and tolerance interval on accuracy of ABC using 1000 test data sets generated with models A–D. MISEtotal

(y axis) is plotted against different tolerance intervals (x axis) in an analysis with different number of simulated data (12.5k (full line), 25k (dotted line),

50k (dashed line)). (a) Model A. (b) Model B. (c) Model C. (d) Model D.

Coestimation of recombination and selection using ABC
JS Lopes et al

259

Heredity



impact of misspecification between models B and C suggests that,
under this framework, rate variation among codons has a relatively
mild effect on parameter estimations. In any case, before using ABC
we recommend to test the codon model that best fits the data. The
ABC framework also allows for model validation using prior and
posterior predictive distributions (Ratmann et al., 2009) and for
testing the best-fitting model out of a set of candidate models
(Beaumont, 2008). The advantage of using ABC is that we can easily
quantify the fit of each suggested model to the data, providing a
useful alternative when the likelihood functions are impracticable.

Experiment V. Choosing the appropriate model of evolution
using ABC
Following the experiment on model misspecification, we evaluated
the accuracy of the proposed ABC method on choosing best-fit
substitution models. In this experiment we performed model choice
on the four sets of 1000 test data sets using a combined reference table
of 200 000 simulations (that is, we joined the four reference tables of
each model of evolution) with various tolerance intervals and using
both ABC-rejection and ABC-logistic-regression methods, as
described previously (see Beaumont, 2008; Cornuet et al., 2008).
Figure 3 presents the support for the true model as the tolerance
intervals decreased. For all models, the regression step increased
model selection accuracy considerably, although this advantage
decreased at smaller tolerance intervals. An effect that has been
observed before in other ABC studies (for example, Guillemaud et al.,
2010). For models B and C, when considering the widest tolerance

interval (that is, 800 data sets) ABC regression gave around 95%
support to the true models, while ABC-rejection algorithm showed a
support of about 65% (with the remaining 35% corresponding to
model B or C depending on the model used to generate the test data).
When considering a tolerance interval of 50 data sets, however, the
support for the true model using ABC rejection increased up to 85%
(again with the remaining support given to either model B or C). The
similarities between models B and C may be responsible for the
relative difficulty in being able to distinguish between them. For
models A and D, as they are so different from the remaining ones, the
method performed very well, identifying them as the correct models,
irrespective of the tolerance intervals considered.

Experiment VI. Comparison of ABC with other methods
In order to evaluate how our approach compares with others, we
compared parameter estimates obtained using ABC with estimates
calculated by OmegaMap, PAML and LAMARC. Constrained by the
extremely large computational time needed to reach convergence in
OmegaMap, we simulated 10 replicates of 27 test data sets under model
A using as true values every combination of the following settings:
o¼ 0.2, 1.0 and 2.0; r¼ 0, 10 and 30; and y¼ 60, 100 and 200.

For the ABC estimates we used the reference table generated under
model A, as this is the model implemented in OmegaMap. We used
the best set of summary statistics, as chosen in Experiment II, and
accepted the closest 0.2% (100 samples). As before, we performed the
regression step on the log-transformed accepted data and the point
estimate was taken as the posterior mode. For OmegaMap we used

Figure 3 Performance of model choice using ABC in 1000 test data sets generated with models A�D. The points (and error bars) correspond to the

average (and standard error) of the posterior probabilities of the true model from a choice of the four models in the study (A, B, C and D) using both the

rejection (dashed lines) and regression (full lines) algorithms and different tolerance intervals. (a) Model A. (b) Model B. (c) Model C. (d) Model D.
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two sets of priors for r: a uniform prior as it was set in ABC, and an
exponential with the same mean. The prior for o was set to be the
same as the one used in ABC, and the prior for the synonymous
mutation rate was set to the software default, as recommended by the
authors. In accordance with the generating model, the transition over
transversion ratio rate was set to 2.0. All the other parameters were set
as the software default. Note that OmegaMap uses the codon model
NY98 (Nielsen and Yang, 1998), equivalent to the model GY94�K80
used for simulating the test data sets. Estimates were obtained by
performing two independent runs for each data set until reaching
convergence, the latter being assessed by comparing o and r estimates
of the two runs. Note also that NetRecodon enables the user to
differentiate between N and r instead of using the scaled parameter r.
OmegaMap, on the other hand, estimates r directly. In order to better
compare both approaches, and to remain in line with the results
presented in Experiments I�V, we show the results in terms of the
scaled parameters. For estimation of o with PAML, we first
reconstructed a maximum likelihood phylogenetic tree using PhyML
(Guindon and Gascuel, 2003) and estimated o with the codeml
computer program (included in the PAML package) under the M0
codon model. To estimate r with LAMARC, we used the default
parameters. In Figure 4 we present a comparison between the
recombination and adaptation rates estimates obtained with our
ABC method and OmegaMap, PAML and LAMARC. ABC estimates
of recombination rate were in general accurate with tight credible
intervals, albeit showing some tendency for underestimation of higher
values of r. These results were expected, as the effect of fitting a prior
for r with mean 25 was to cause the posterior to underestimate r
when r425 and potentially to overestimate r when ro25. This
effect, however, was quite mild and decreased as the number of
simulations used for ABC increased (results not shown), indicating
that there is some space for improvement of the method. By contrast,
OmegaMap usually showed overestimations of r with credible
intervals well off the true value. Even with a more informative

exponential prior on r the overestimation of recombination rate by
OmegaMap still remained (see Supplementary Figure S8). LAMARC
was able to accurately infer the absence of recombination and
presented a better performance than OmegaMap. However, in the
presence of recombination LAMARC underestimated recombination
rates (Figure 4). Importantly, the ability of the ABC method to
estimate recombination rates was robust to low levels of codon
diversity, where the tendency of LAMARC to underestimate recombi-
nation rate was increased (see Figure 4a, scenarios with y¼ 60 and
presence of recombination).

On the other hand, all methods were quite accurate in estimating
adaptation rates (Figure 4b), where the true value was commonly
contained within narrow credible intervals.

Experiment VII. Application of ABC to real data
Here we illustrate the application of our ABC method to 24 sequence
alignments of HIV-1. These data were obtained from the PopSet
database at the NCBI, and correspond to several genomic regions (for
example, partial sequences of genes env, gag, nef, pol, tat and of long
terminal repeats) and to different viral types and subtypes (for
example, subtypes A, B, C, G)—details and references are shown in
Supplementary Table S9. These HIV-1 data sets are particularly
interesting to analyze owing to their generally high recombination,
adaptation and substitution rates. In all cases, sequences were
realigned and missing, ambiguous and stop codons were excluded.
The priors were the same as those used in Experiments I–VI, as these
were already chosen in order to cover a wide range of empirical
scenarios. We used jModelTest (Posada, 2008) to select the best-fit
substitution model and Hyphy to calculate the nucleotide frequencies
at each codon position. We then considered 500 000 simulated data,
from which the closest 0.2% (1000) were retained. This was followed
by the regression step on the log-transformed parameters.

We present the estimates obtained using our ABC method in
Figure 5 and Supplementary Table S10. The method seemed to
perform well, as the estimates fell well within the prior distributions
and the posterior distributions were fairly sharply peaked with narrow
credible intervals. Nevertheless there was a trend for credible intervals
to become wider when estimated values get higher for all the
parameters. This trend was also confirmed in Experiments II and
VI. In order to assess the goodness of fit of the models to the data, we
performed principal component analysis on the simulated summary
statistics and plot the first two components for the accepted simulated
data and the observed data (Supplementary Figure S9). Reassuringly,
these plots show that the observed data falls consistently within the
accepted simulated data.

Additionally, we tried to obtain OmegaMap estimates from these
same HIV-1 data sets. For a variety of data sets, particularly those
with high recombination rates, the program had apparent problems
to converge, and even after 20 million Markov chain Monte Carlo
iterations (several months running on a cluster) r estimates from the
two independent runs still differ by more than five units of r.
Nevertheless, the comparison of molecular adaptation estimates
obtained using ABC and those obtained with OmegaMap showed
an encouraging agreement (Supplementary Figure S10).

DISCUSSION

We present a novel approach that allows one to assume a codon-
substitution model, while considering recombination at the nucleo-
tide level. We show that this method provides accurate estimates of
recombination, molecular adaptation and substitution rates from
alignments of coding sequences under different conditions. Thus, for

Figure 4 Comparison of ABC, OmegaMap, Lamarc and PAML estimates
from simulated data. Tweenty-seven evolutionary scenarios were generated

under different values of r, o and y (x axes). The height of the bars

correspond to the average values over replicates. Error bars indicate

95% credible intervals and horizontal dashed-lines indicate the true value.

(a) Estimates of r. (b) Estimates of o.
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the relatively simple models explored (A, B and C), all the three
parameters were accurately estimated, except in the high recombina-
tion scenario, which seems to be more challenging. For more complex
models, with both substitution and adaptation rates differing per site
(case D), the precision of ABC decreased, as might be expected.

The efficacy of ABC depends to a great extent on the choice of
summary statistics that extract and summarize maximal information
from data, while allowing simulated data sets to be easily compared
with the real data set under investigation. The strategy for choosing
summary statistics in the ABC study of Wilson et al. (2009) was to use
previously developed method-of-moments estimators (a similar
approach is justified theoretically in Fearnhead and Prangle (2012)).
Note that Wilson et al. (2009) developed their ABC to analyze a single
data set, and could afford for summary statistics that require a
noticeable computation time. By contrast, we present a general
method for choosing a subset of summary statistics based on the
calculation of the Cp index. We used test data to perform informed
trial-and-error tests that suggest that a set of 22 summary statistics,
chosen to be rapidly computable, is adequate to provide accurate
estimates of the parameters studied.

ABC has been shown to be an efficient alternative to full-likelihood
methods when the likelihood function is intractable. This approx-
imate method has also the advantage of being potentially faster than
the correspondent full-likelihood approach. Nevertheless, ABC can
still be highly computational intensive if the simulation step is
complex. For this reason it is important to refine the method in

order to find an optimal number of simulations both in terms of
accuracy and speed. We showed that in a range of simple to complex
models of molecular evolution a sample size of 100 points provided
sufficient information to construct reliable posterior summaries.
Given this number, at least 50 000 simulated points in total are
needed to successfully perform ABC in the scenarios proposed. Under
these conditions we obtained very good estimates, reaching correla-
tions between the true and the estimated values approaching 1. Note,
however, that we have worked with moderately small samples size (15
sequences with 333 codons). Larger data would require more
computation time for each simulation, but might need fewer
simulations to reach the same accuracy. An illustrative list of running
times for NetRecodon is shown in the Supplementary Table S11, and
as expected longer sequences and higher sample sizes require longer
computational times. We also observe that the prior distribution of
the parameters can affect the required simulation time, indeed a
higher recombination rate requires more computation time. Impor-
tantly, NetRecodon simulations can be run in parallel, reducing the
simulation time, which is the ABC step with the highest computa-
tional cost. Finally, the estimation part of ABC requires only a few
minutes and does not depend on the simulation settings.

We also examined the problem of misspecification of the model of
evolution. In cases where the model used for the ABC approach and the
model used to generate the data differed on the assumption of rate
variation among sites, the estimation of the parameters was poor.
Fortunately, rate variation among sites is easily detected using model
selection techniques, and our results show that ABC is robust to slight
model misspecification, in particular regarding different relative sub-
stitution matrices (see Supplementary Figures S5–S7). As noted by
Ratmann et al. (2009), it is relatively straightforward to investigate
model misspecification under an ABC framework through comparison
of observed summary statistics with those generated under predictive
distributions. ABC model choice enables different models to be
compared, although such tests do not assure that the most supported
model is correct. Recently, attention has been drawn to the potential
sensitivity of ABC model choice to sufficiency of the summary statistics
(Robert et al., 2011). These studies recommend the use of simulation
testing to evaluate performance of model choice procedures. We have
carried out extensive simulations, and showed that ABC can easily
distinguish between distant models. In the comparisons between
evolutionary models that were similar its efficiency was slightly reduced,
but we still obtained a high support for the true model (see Figure 3).

We compared estimates of recombination and adaptation rates
made by our ABC method, OmegaMap, PAML and LAMARC on
simulated test data sets. An important difference between these
approaches is that only the ABC method considers intracodon
recombination. Nevertheless, according to previous studies, our
expectation was that the estimations of alignment-wise adaptation
rates (o) would not be much affected by ignoring intracodon
recombination (Arenas and Posada, 2010). Reassuringly, this was
the case, and the similar estimates obtained by the different methods
reinforce our beliefs about the validity of the ABC method proposed
here (Figure 4b). More interesting, though, was the observation that
overall recombination rates were most accurately estimated by ABC,
OmegaMap showed a clear tendency for overestimation (Figure 4a).
In fact, some authors have shown that there is an upward bias on
product of approximating conditionals-likelihood estimations of r
even on data without intracodon recombination (Li and Stephens,
2003; Wilson and McVean, 2006), although this can be corrected as
suggested by Li and Stephens (2003). LAMARC performed well in the
absence of recombination but for higher recombination rates tended

Figure 5 Estimates of r, o and y from 24 HIV-1 published data sets. Error

bars indicate 95% credible intervals. (a) Estimates of r. (b) Estimates of o.

(c) Estimates of y.
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to underestimate the rate. Interestingly, although such an under-
estimation was increased in scenarios with lower levels of codon
diversity, ABC was quite robust to these scenarios. Additional
advantages of the ABC approach are its speed and the possibility to
analyze data sets with a vast variety of codon models, as implemented
in NetRecodon or in other simulator, in contrast with the single codon
model implemented in OmegaMap. This can be particularly beneficial
when there is a need to consider substitution models that best-fit the
data (see Yang et al., 2000; Arbiza et al., 2011).

We collected 24 HIV-1 data sets with which we challenged our
developed ABC method. In this case our ABC approach exhibited
good behavior, in that estimates using different tolerance intervals and
either the regression or the rejection algorithms showed considerable
agreement, and as the tolerance interval decreased, the credible
intervals got tighter (results not shown). Furthermore, the tests to
assess the goodness of fit of the models show that the models explain
the data reasonably well (Supplementary Figure S9). In accordance
with previous studies, our results suggest that overall the analyzed
HIV-1 data sets exhibit large recombination rates, and that, consider-
ing the whole sequences, selection pressure has been mostly purifying
(Scheffler et al., 2006). Nevertheless, there is space for improvement.
First, we have assumed a uniform recombination rate along sequences,
although some studies revealed the presence of hotspots in HIV-1 (for
example, Zhuang et al., 2002). Second, we have estimated molecular
adaptation for the whole sequence, although estimating adaptation at
local (codon) level is possible (for example, by using the Bayesian
hierarchical model developed by Bazin et al., 2010). In any case, we
argue that the ABC approach can be an ideal framework to
incorporate more relaxed model assumptions.

In this study we assumed a model that only considers molecular
adaptation by the non-synonymous/synonymous ratio. Although this
ratio is widely used as an indicator of molecular adaptation (for
example, Nielsen and Yang, 1998; Wilson and McVean, 2006; Wilson
et al., 2009), this methodology is not free from some controversy. One
of the main criticisms is its use in single-population samples, where
the close ancestry of the sequences may break the relation of this ratio
to the adaptation coefficient (Kryazhimskiy and Plotkin, 2008).
However, for populations with high substitution rate, non-synon-
ymous/synonymous ratio approaches have been shown to perform
well (for example, virus and bacteria). Nonetheless, this assumption
should be considered when applying the methodology we present here.

To summarize, our approach provides a novel ABC method to estimate
jointly codon substitution, adaptation and recombination rates under
realistic substitution models from coding data. This new method can also
accurately choose the substitution model that best fits the data between a
series of candidate models. In addition, further increase of model complexity
is relatively straightforward, requiring only the introduction of new features
to the simulation software. Such alterations may require testing different
summary statistics and optimizing the number of simulations and the
tolerance interval, a procedure that we believe can be easily attained by
following the steps we have proposed here.
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