Table 3.
|
p
∗
=
.
35 |
p
∗
=
.
65 |
p
∈(
.
35,
.
65) |
||||||
---|---|---|---|---|---|---|---|---|---|
π () | S ( p ∗ ) | PPV | NPV | S ( p ∗ ) | PPV | NPV | P grey | PPV | NPV |
B(1,1) |
0.650 |
0.991 |
0.692 |
0.350 |
0.692 |
0.991 |
0.300 |
0.300 |
0.300 |
B(9.6, 8.7) |
0.937 |
0.995 |
0.139 |
0.143 |
0.243 |
0.986 |
0.794 |
0.752 |
0.848 |
B(4.3, 2.1) |
0.957 |
0.998 |
0.213 |
0.593 |
0.728 |
0.956 |
0.363 |
0.270 |
0.743 |
B(19.4, 9.3) |
1.000 |
1.000 |
0.002 |
0.634 |
0.688 |
0.832 |
0.366 |
0.312 |
0.831 |
B(2.5, 1.2) | 0.908 | 0.997 | 0.381 | 0.592 | 0.766 | 0.972 | 0.316 | 0.231 | 0.592 |
The table quantities with respect to p* are defined as: S(p*) =P(p >p*), PPV =P(p >p* | X i > 9) and NPV =P(p <p* |X i ≤ 9). For the grey region, P grey =P(p ∈{.35,.65 }), PPV =P(p l <p <p u | X i > 9) and NPV =P(p l <p <p u | X i ≤ 9).