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Expression of
Phosphofructokinase in
Skeletal Muscle Is Influenced by
Genetic Variation and
Associated With Insulin
Sensitivity

Using an integrative approach in which genetic
variation, gene expression, and clinical phenotypes
are assessed in relevant tissues may help functionally
characterize the contribution of genetics to disease
susceptibility. We sought to identify genetic variation
influencing skeletal muscle gene expression
(expression quantitative trait loci [eQTLs]) as well as
expression associated with measures of insulin
sensitivity. We investigated associations of 3,799,401
genetic variants in expression of >7,000 genes from
three cohorts (n = 104). We identified 287 genes with
cis-acting eQTLs (false discovery rate [FDR] <5%;
P < 1.96 3 1025) and 49 expression–insulin sensitivity
phenotype associations (i.e., fasting insulin,
homeostasis model assessment–insulin resistance,

and BMI) (FDR <5%; P = 1.34 3 1024). One of these
associations, fasting insulin/phosphofructokinase
(PFKM), overlaps with an eQTL. Furthermore, the
expression of PFKM, a rate-limiting enzyme in
glycolysis, was nominally associated with glucose
uptake in skeletal muscle (P = 0.026; n = 42) and
overexpressed (Bonferroni-corrected P = 0.03) in
skeletal muscle of patients with T2D (n = 102)
compared with normoglycemic controls (n = 87). The
PFKM eQTL (rs4547172; P = 7.69 3 1026) was
nominally associated with glucose uptake, glucose
oxidation rate, intramuscular triglyceride content, and
metabolic flexibility (P = 0.016–0.048; n = 178). We
explored eQTL results using published data from
genome-wide association studies (DIAGRAM and
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MAGIC), and a proxy for the PFKM eQTL (rs11168327;
r 2 = 0.75) was nominally associated with T2D
(DIAGRAM P = 2.7 3 1023). Taken together, our
analysis highlights PFKM as a potential regulator of
skeletal muscle insulin sensitivity.
Diabetes 2014;63:1154–1165 | DOI: 10.2337/db13-1301

Although genome-wide association studies (GWASs) have
identified thousands of single nucleotide polymorphisms
(SNPs) associated with traits and diseases, the molecular
mechanisms underlying these associations remain largely
unknown. Changes in gene expression can affect phe-
notypic variation; as a consequence, understanding ge-
netic regulation of gene expression through the
identification of expression quantitative trait loci
(eQTLs) could elucidate the mechanisms underlying
genotype-phenotype associations. While cis-eQTL analy-
ses have been carried out in a number of human tissues,
their discovery in human skeletal muscle has been lim-
ited. A large study of skeletal muscle eQTLs (n = 225) was
carried out in healthy Pima Indians to assess the causes
and prevalence of bimodal gene expression and suggests
that bimodality may be an underlying factor in disease
development (1). In a more recent study, cis-eQTL effects
were compared between blood and four nonblood tissues
(including liver, subcutaneous, and visceral adipose tissue
and skeletal muscle), which provided new insights into
the mechanisms by which genetic variants mediate
tissue-dependent gene expression (2).

Insulin resistance (IR) is a physiological condition
where insulin-mediated glucose disposal in skeletal
muscle is inhibited (3), and it plays a key role in the
pathogenesis of type 2 diabetes (T2D) (4). The molecular
mechanisms underlying IR are largely unknown, but
mitochondrial dysfunction coupled with metabolic in-
flexibility has been implicated as a key contributor
(reviewed by Szendroedi et al. [5]). One proposed hy-
pothesis for the etiology of IR is a redistribution of lipid
stores from adipose to nonadipose tissues (e.g., skeletal
muscle, liver, and insulin-producing pancreatic b-cells),
resulting in accumulation of intracellular fatty acids. Accu-
mulation of intracellular fatty acids in turn inhibits insulin-
stimulated glucose transport by stimulating phosphoryla-
tion of serine sites on insulin receptor substrate 1 (6). The
aim of this study was to identify skeletal muscle eQTLs, as
well as expression associated with measures of insulin
sensitivity, to elucidate genetic contributions to skeletal
muscle expression and insulin sensitivity.

RESEARCH DESIGN AND METHODS

Cohort Descriptions

Malmö Exercise Intervention
The Malmö Exercise Intervention (MEI) cohort consists of
50 male subjects from southern Sweden, all of whom have
European ancestry. Of these 50 subjects, 25 have and 25

do not have a first-degree relative with T2D (7). All par-
ticipants had normal glucose tolerance and VO2max of
32.0 6 5.0 mL/kg/min. All participants also completed
a 6-month aerobic training period, aiming at 3 group
training sessions per week (;60 min training/session,
supervised by members of the research group). In-
formation from the baseline screening visit before the in-
tervention was used for the work presented in this article.

Malmö Men
The Malmö men (MM) cohort is a subset of 203 nonobese
Swedish men from the Malmö Prospective Project (MPP)
who were asked to participate in a training intervention
(8,9). The MPP was initiated in 1974 as an intervention
project to prevent T2D in men born between 1926 and
1935. Upon inclusion in the MPP, all participants in MM
had normal glucose tolerance; at the baseline screening for
the MM intervention, however, some of them had de-
veloped impaired glucose tolerance or T2D. Information
from the baseline screening visit before the intervention
was used for the work presented in this article.

Multiple Tissue Human Expression Resource
The Multiple Tissue Human Expression Resource
(MuTHER) study consists of 856 women of European
descent (336 monozygotic and 520 dizygotic twins),
recruited from the UK Adult Twin Registry (TwinsUK)
(10). MuTHER participants (n = 39) had both muscle
tissue expression profiles and genome-wide genotypes
available. The age at inclusion ranged from 40 to 87 years,
with a median age of 62 years. Metabolic phenotypes were
measured at the same time the biopsies were collected.
Because of the twin structure of the data, the minimum
effective sample size for the MuTHER skeletal muscle
samples was calculated and used in the analysis. Since there
were 3 monozygotic twins sharing 100% of their genetic
material, 11 dizygotic twins sharing 50% of their genetic
material, and 11 singletons, we calculated the minimum
effective sample size to be 3 + (11 + 5.5) + 11 = 30.5.

Phenotype Selection

Fasting insulin and homeostasis model assessment–
insulin resistance (HOMA-IR) were selected as mea-
surements of peripheral insulin sensitivity that were
consistently measured in all three studies and where
large-scale GWAS meta-analyses have been performed.
These measures will capture not only skeletal muscle
insulin sensitivity but also hepatic insulin sensitivity.
Because of the strong association between BMI and
T2D we also included BMI as a third phenotype. From
the MuTHER cohort, two nonfasted and/or diabetic
individuals were excluded from phenotype association
analyses carried out on insulin and HOMA-IR; 12 indi-
viduals were similarly excluded from the MM cohort.

cis-eQTL Analysis

A cis-eQTL analysis was performed within each cohort on
the 7,006 genes common to all three studies. The analysis
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was restricted to nondiabetic individuals, leaving for
analysis 26, 39, and 39 individuals from the MEI, MM,
and MuTHER cohorts, respectively. We investigated
associations between expression levels and all SNPs within
1Mb up- or downstream from the transcription start site
(TSS) of each of these genes. The Malmö studies (MEI and
MM) were analyzed using a linear model adjusting for age
as implemented in the R Matrix eQTL package (11). In
MuTHER, the analysis was performed using a linear mixed
effect model implemented in R by the lmer function in the
lme4 package. The model was adjusted for age and ex-
perimental batch (fixed effects), as well as family re-
lationship (twin pairing) and zygosity (random effects).

A meta-analysis of the cis-eQTL results from each
study was carried out using METAL (12). Because gene
expression levels were measured using different plat-
forms in each study, the effect estimates of the cis-eQTLs
are not comparable across studies. Thus, the “samplesize”
scheme in METAL, which uses P values and direction of
effect, weighted by sample size, was used for the meta-
analysis. Heterogeneity was assessed using the I2 statistic.
We used a false discovery rate (FDR) ,5% of the thresh-
old for the cis-eQTL meta-analysis, computed using the
QVALUE package in R (13). To calculate the number of
independent cis-eQTLs, we looked for the SNP that was
most strongly associated with each gene (top SNP per
gene) among all significant cis-eQTLs.

Gene Expression–Phenotype Association

Associations between gene expression levels and the se-
lected phenotypes were investigated separately within
each study. All participants who were diabetic were ex-
cluded from the analysis, and values within each study
were inverse normal transformed (Blom) before analysis.
A secondary analysis adjusting for BMI also was per-
formed to test for associations independent of the effect
of overall obesity. The same models used in the cis-eQTL
analyses were used to test for these associations.

To be able to perform fixed and random effect meta-
analyses on expression-phenotype associations, gene ex-
pression levels were inverse normal transformed before
analysis. Meta-analyses were performed using METAL
for all phenotypes, and a combined FDR ,5% of the
threshold was applied. We then looked for significant cis-
eQTLs, where the gene was significantly associated with
a phenotype to investigate evidence for genetic control of
phenotypic variation through gene expression. Further
information on quality control of genotyping, imputa-
tion, and gene expression can be found in the Supple-
mental Material.

RESULTS

We combined genome-wide SNP, gene expression, and
phenotype data from three independent cohorts of Eu-
ropean origin: the MM study (n = 26) (8), the MEI study
(n = 39) (7), and the MuTHER consortium (n = 39) (14).
The methods used here are outlined in Supplementary

Fig. 1, and the sample size and characteristics for each
study are shown in Table 1. For the gene expression
analysis we used a gene-centric approach by selecting in
each study only probes that mapped (using National
Center for Biotechnology Information build 37) to genes
common to all three cohorts. This limited our analysis to
the overlap of genes present on all the different arrays
used (7,006 genes) that were analyzed for association
with 3,799,401 genetic variants. Furthermore, we used
only uniquely mapping probes with no mismatches and
without common SNPs (minor allele frequency .5%) to
limit false-positive findings in the analysis.

eQTLs (n = 287) Identified in Human Skeletal Muscle

First, we investigated the associations between genetic var-
iation (SNPs) and gene expression within an arbitrary 61
Mb window around every gene. The summary statistics for
skeletal muscle eQTLs from the three cohorts (effective
n = 95.5; see RESEARCH DESIGN AND METHODS for this calcula-
tion) were meta-analyzed. We identify 287 genes with at
least one significant eQTL (top eQTL SNP per gene; FDR
,5%; P , 1.96 3 1025) (Supplementary Table 1). The
most significant eQTL was observed for m-crystallin
(CRYM), a NADPH-regulated thyroid hormone–binding
protein previously reported to be regulated by blood
glucose concentrations (15) (Fig. 1A). Among the
other significant eQTLs were signal transducer and
activator of transcription 3 (STAT3), endoplasmic
reticulum aminopeptidase 2 (ERAP2), and muscle
phosphofructokinase (PFKM) (Fig. 1B and C).

To describe the distribution of eQTL P values in re-
lation to gene proximity, we plotted the distribution of
distances between the SNP with the lowest P value and
the TSS for each gene for the combined analysis (Fig. 2).
We found an enrichment of low P values closer to TSSs
(approximately 6250 kb), showing that cis-eQTLs are

Table 1—Characteristics of the 104 individuals (effective n =
95.5) separated by study cohort

MM
(n = 26)

MEI
(n = 39)

MuTHER
(n = 39)

Sex M M F

Age (years) 65.96 6 1.58 37.83 6 4.32 62.16 6 7.51

BMI (kg/m2) 25.42 6 3.97 28.54 6 3.07 27.40 6 5.41

HOMA-IR 1.91 6 1.59 1.39 6 0.65 10.55 6 7.14

Fasting plasma
insulin* 8.69 6 6.59 7.37 6 3.29 44.76 6 26.37

Fasting glucose
(mmol/L) 4.78 6 0.48 4.25 6 0.51 5.04 6 0.66

Data are presented as mean 6 SD. *Units for fasting plasma
insulin are measured in microunits per milliliter in the MM and
MEI cohorts and picomoles per liter in the MuTHER cohort.
Phenotypes were inverse normalized in each study in the meta-
analysis.

1156 eQTL Screen of Human Skeletal Muscle Diabetes Volume 63, March 2014

http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-1301/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-1301/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-1301/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-1301/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-1301/-/DC1


more likely to be found within this distance (P = 9.71 3
1026, binomial test). Moreover, within a 250-kb dis-
tance, there is a higher likelihood that it is the nearest
gene that is influenced in cis by a SNP (P = 2.93 3 1026,
binomial test).

To assess the potential functional significance of the
eQTLs, genes were annotated for the top eQTL SNP per
gene and compared with all SNPs tested in the dataset.
As shown in Fig. 3, most of the eQTL SNPs are located
in intronic regions (62.4%); interestingly, we observed
an enrichment for noncoding regions upstream/down-
stream and in untranslated regions but a depletion for
intergenic and coding regions (test of equal pro-
portions; Bonferroni corrected P = 0.0041). To quantify
further the potential regulatory significance of the
noncoding eQTL SNPs, RegulomeDB, a database derived
from the ENCODE project, was used to annotate the
variants (16). By using scores of functional regional
significance, we found that eQTL SNPs were enriched in
the score category “likely to affect transcription factor
binding and linked to expression of a gene target”
(test of equal proportions; Bonferroni corrected P =
0.013). A gene set enrichment analysis of the eQTL
genes (FDR ,1%) performed in DAVID (17) showed
nominal enrichment in gene ontologies related to
posttranscriptional regulation of gene expression (P =
0.009, Fisher exact test).

Further support for the identified muscle eQTLs was
obtained by probing databases containing published
eQTLs. In particular, the Phenotype-Genotype Integrator
(https://www.ncbi.nlm.nih.gov/gap/PheGenI),
Pritchard’s laboratory eQTL browser (http://eqtl.
uchicago.edu/cgi-bin/gbrowse/eqtl/), and Genevar (18)
were searched and a skeletal muscle eQTL study per-
formed in Pima Indians (1) was reviewed. We found that
19% of our eQTLs were detected in at least one of these
resources (Supplementary Table 1). The observed dis-
crepancy might be explained in part by the use of dif-
ferent genotyping and expression platforms, the known
high degree of tissue specificity of eQTLs (2), and the fact
that only one of those databases contains eQTL data
from skeletal muscle.

Associations of Significant eQTL SNPs in GWAS Data
From MAGIC and DIAGRAM

To explore the results of the eQTL analysis further we
looked up our 287 significant (FDR ,5%; P , 1.96 3
1025) eQTLs in GWAS data from the DIAGRAM con-
sortium for T2D (19) and the MAGIC (Meta-Analyses of
Glucose- and Insulin-related Traits Consortium) for
HOMA-IR (20), 2-h glucose, 2-h glucose adjusted for
BMI, fasting insulin, fasting insulin adjusted for BMI,
fasting glucose (FG), and FG adjusted for BMI (21). To
investigate whether eQTLs are overrepresented in asso-
ciations found in the published DIAGRAM and MAGIC
GWAS results, we calculated the enrichment of nominally
significant (P # 0.05) GWAS associations among our

significant eQTLs using a binomial test (Table 2). The
eQTL SNPs were enriched (uncorrected P # 0.05) in
GWAS signals for six of the eight investigated pheno-
types, that is, T2D, HOMA-IR, fasting insulin adjusted
for BMI, FG, FG adjusted for BMI, and 2-h glucose. Three
phenotypes persisted after Bonferroni correction. One of
the eQTL SNPs (rs1019503, significantly associated with
the expression level of ERAP2; P = 7.17 3 10210) is also
significantly associated with 2-h glucose (P = 8.873 1029)
and 2-h glucose adjusted for BMI (P = 5.103 1029) in the
MAGIC consortium dataset. Another eQTL (rs4547172,
associated with PFKM; P = 7.69 3 1026) has a proxy
(rs11168327; r2 = 0.75), which was nominally associated
with T2D in DIAGRAM (P = 2.70 3 1023).

Skeletal Muscle Expression–Phenotype Associations
(n = 49) Identified

We meta-analyzed the association test statistics for gene
expression (standardized units) with fasting plasma in-
sulin, HOMA-IR, and BMI in each study. Significant
associations (FDR ,5%; P , 1.34 3 1024) are presented
in Supplementary Table 2. The expression of 18 and 11
genes were associated with fasting plasma insulin and
HOMA-IR, respectively, and the expression levels of 8 of
these genes were associated with both traits (Supple-
mentary Table 2). The expression levels of 20 genes were
associated with BMI, and none overlapped with the
fasting plasma insulin– or HOMA-IR–associated genes.
Association of expression levels with fasting insulin and
HOMA-IR adjusted for BMI also were investigated to
control for BMI (Supplementary Table 3) and putative
confounding factors correlated with BMI (e.g., diet and
physical activity level). With adjustment for BMI, the
expression levels of eight and three genes were associated
with fasting plasma insulin and HOMA-IR, respectively.
Several of the genes for which expression levels were
associated with measures of insulin sensitivity have
previously been implicated in T2D and related traits, for
example, calsequestrin 1 (CASQ1) (22), solute carrier
family 30, member 10 (SLC30A10) (23), and growth
arrest-specific 6 (GAS6) (24).

To identify genetic variations influencing clinical
phenotypes through gene expression, we integrated sig-
nificant results from the eQTL analysis (FDR ,5%; P ,
1.96 3 1025) and gene expression-phenotype associa-
tions (FDR ,5%; P , 1.34 3 1024), highlighting PFKM
as the only gene associated in both these analyses. Ex-
pression of PFKM (rs4547172 is eQTL lead SNP; P = 7.693
1026; Fig. 1C) was associated with fasting plasma in-
sulin levels (P = 1.34 3 1024) in our cohorts, suggesting
that genetic variation at this locus could be involved in
the interplay between fasting plasma insulin levels and
PFKM expression.

Extended Phenotype Association of PFKM in the MM
Study

To extend the analysis of insulin sensitivity, we tested
both the PFKM eQTL SNP (rs4547172) and PFKM
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Figure 1—LocusZoom plots of selected eQTL regional association results for the three genes CRYM (A), ERAP2 (B), and PFKM (C).
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expression for association with M-value (i.e., glucose
uptake) using the euglycemic-hyperinsulinemic clamp
technique (the gold standard for characterizing insulin
sensitivity in vivo) (25) in the MM study. Both the eQTL
SNP (rs4547172; b = 0.15 [0.03, 0.27] [square root fmg ∙
min21 ∙ kg21g]; P = 0.016; n = 178) and the transcription
levels of PFKM (b = 20.000295 [20.001, 20.000037]
[square root fmg ∙ min21 ∙ kg21g]; P = 0.026; n = 42)
were nominally associated with M-value.

Given that PFKM catalyzes a rate-limiting step in the
glycolytic pathway, we investigated whether the eQTL
SNP (rs4547172) was associated with measures of oxi-
dative fuel partitioning, that is, metabolic flexibility
measured as the d respiratory quotient (RQ) (26). We
examined the difference in RQ during the euglycemic-
hyperinsulinemic clamp between the noninsulin-
stimulated (basal) and the insulin-stimulated (clamp)
states. The rs4547172 SNP was nominally associated
with delta RQ (b = 0.011 [0.001, 0.02] [AU]; P = 0.030;
n = 173). Also, the insulin-stimulated glucose oxidation

rate in the insulin-stimulated state was nominally as-
sociated with the same SNP (b = 0.19 [0.025, 0.36] [mg ∙
body weight21 ∙ min21], per allele; P = 0.025; n = 178).
We also investigated whether rs4547172 was associated
with skeletal muscle energy stores, that is, in-
tramuscular triglycerides and glycogen. The rs4547172
SNP was nominally associated with intramuscular tri-
glycerides (b = 8.69 [0.26, 17.12] [AU]; P = 0.043; n =
167) but not with glycogen (P = 0.213). These results
and descriptive data are summarized in Supplementary
Tables 4 and 5.

Replication of the Expression-Phenotype Associations
Using Publicly Available Data

The 29 expression-phenotype associations (correspond-
ing to 21 genes) (Supplementary Table 2) with fasting
plasma insulin levels and/or HOMA-IR were in-
vestigated for differential expression between patients
with T2D (n = 102) and normoglycemic-insulin sensitive
controls (n = 87). This was done using publicly available

Figure 2—Distance distribution from each gene’s most strongly associated SNP to its TSS.
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microarray skeletal muscle expression data from three
independent studies (27–29), which we retrieved from
ArrayExpress (http://www.ebi.ac.uk/arrayexpress) and
subsequently meta-analyzed. We found four genes
(CASQ1, DBNDD1, DHRS7, and PFKM) that were asso-
ciated with increased expression in muscle from
patients with T2D versus normoglycemic-insulin sensi-
tive controls after Bonferroni correction (Table 3). This
supports our initial expression-phenotype associations
(Supplementary Table 2). Furthermore, raw data on
skeletal muscle expression from seven independent
studies (30–36) with available BMI data (n = 185) were
used to replicate our 20 expression-BMI associations

(Supplementary Table 2). The expression of two
genes—MSTN and RCAN2—was positively and
negatively associated with BMI, respectively, after
Bonferroni correction (Table 4).

DISCUSSION

Here we have integrated genetic variation, skeletal
muscle gene expression, and clinical phenotype data from
104 individuals to investigate the genetic contribution to
gene expression in skeletal muscle and insulin sensitivity.
We identified 287 muscle eQTLs and 49 associations
between gene expression and measures related to insulin
sensitivity.

Figure 3—Functional annotation of eQTL SNPs. The bars indicate the percentages of eQTL SNPs per gene functional unit and their
enrichment or depletion relative to all SNPs tested in this study. The SNPs were annotated with snpEff. Downstream and upstream regions
are defined as being within a 5-kb distance from a gene.

Table 2—Binomial test for enrichment (exact match) of GWAS signals for T2D, HOMA-IR, 2-h glucose, 2-h glucose adjusted for
BMI, fasting glucose, fasting glucose adjusted for BMI, fasting insulin, and fasting insulin adjusted for BMI among significant
(FDR <5%) cis-eQTL SNPs

SNPs #0.05 (n) Total SNPs (n) Enrichment P value Reference

GWAS phenotype
T2D 20 183 5.50 3 1024* 19
HOMA-IR 15 200 0.03 20
2-h Glucose 14 170 0.02 21
2-h Glucose adjusted for BMI 12 170 0.06 21
Fasting glucose 29 199 1.90 3 1027* 21
Fasting glucose adjusted for BMI 18 199 6.00 3 1023* 21
Fasting insulin 11 198 0.11 21
Fasting insulin adjusted for BMI 14 198 0.05 21

*P , 6.3 3 1023, survives Bonferroni correction (= 0.05/8). Data in bold are significant after Bonferroni correction.
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We found a number of cis-eQTLs in our analysis
equivalent to those found in previous studies (1,2). Our
eQTL data suggest that significant associations between
genetic variants and gene expression are more likely to be
found within a 250-kb region of a gene. Previous studies
have shown similar enrichment of significant eQTLs in
this region (2,37,38). Proximal genes within this region
are also more likely to be influenced by a polymorphism
in cis than genes located farther away. Furthermore,
when categorizing the known function of the genes with
eQTLs, we found an enrichment of genes annotated as
being involved in posttranslational regulation of gene
expression. This suggests that the eQTL SNPs are not
only affecting the expression of the nearest gene but also
may regulate other genes and thereby form trans-
regulatory cascades.

When interpreting GWAS data, it is often difficult to
determine which genes/pathways are influenced by ge-
netic variation. Using eQTL data as an intermediate
phenotype is one possible way to address this problem.
To this end, we investigated our significant muscle eQTL
SNPs in GWAS data from MAGIC, thereby identifying an
eQTL SNP for ERAP2 that is significantly associated with
2-h glucose both adjusted and unadjusted for BMI.
ERAP2 is an endoplasmic reticulum aminopeptidase that
functions as an antigen-trimming peptide and has been
implicated as a regulator of blood pressure and

angiogenesis (39). The rs1019503 SNP also influences
the expression of ERAP2 in other tissues, such as human
pancreatic islets (unpublished data), lymphoblastoid cell
lines, primary fibroblasts, T-cells, and skin and adipose
tissue (14,40–42). Our results suggest that differential
expression of ERAP2 in skeletal muscle may be part of
the molecular mechanism underlying this genome-wide
significant association with 2-h glucose levels, but at this
point we cannot exclude effects in other tissues. Never-
theless, the findings related to ERAP2 exemplify the ef-
ficacy of analyzing gene expression in disease-relevant
tissues to disentangle the molecular mechanisms un-
derlying GWAS results.

Several of the genes we found to be associated with
measures of insulin sensitivity have previously been im-
plicated in T2D and related traits; for example, CASQ1,
a skeletal muscle protein expressed in the sarcoplasmic
reticulum, is important for the regulation of calcium
channel activity. We found CASQ1 expression to both be
positively associated with fasting plasma insulin and
have higher expression in individuals with T2D compared
with normoglycemic individuals. SLC30A10 expression
was negatively associated with both fasting insulin and
HOMA-IR. SLC30A10 is a zinc transporter, and a SNP
(rs4846567) proximal to this gene has previously been
associated with waist-to-hip ratio (43) and measures of
insulin sensitivity, for example, fasting plasma insulin,

Table 3—Differential expression of 21 genes with association to at least one of the insulin sensitivity–related phenotypes
(fasting insulin and/or HOMA-IR) in skeletal muscle of patients with T2D and normoglycemic/insulin-sensitive individuals (NGT)

Phenotype-expression
association

T2D vs. NGT

z Score* P value Adjusted P value†

Gene
CASQ1 +++ 4.13 3.56 3 1025 7.11 3 1024

DBNDD1 +-+ 3.45 5.69 3 1024 0.01
DHRS7 +++ 3.34 8.52 3 1024 0.02
PFKM +++ 3.18 1.45 3 1023 0.03
IMPA2 +++ 2.55 0.01 0.21
GZMH +++ 2.38 0.02 0.35
ALDH1A2 +-+ 2.22 0.03 0.53
ARHGEF10L +++ 1.58 0.11 1.00
SLC30A10 - - - 21.51 0.13 1.00
G3BP2 +++ 1.28 0.20 1.00
RNF111 +-+ 21.17 0.24 1.00
C17orf101 +++ 21.12 0.26 1.00
EIF4E2 +++ 0.77 0.44 1.00
GAS6 - - - 20.74 0.46 1.00
BCL7A - - - 20.73 0.46 1.00
CALML4 +++ 0.60 0.55 1.00
TMED2 +++ 20.51 0.61 1.00
SPOCK1 - - - 20.44 0.66 1.00
DAK -++ 0.29 0.77 1.00
UGT8 - - - 0.14 0.89 1.00
ATP6V0C -++ NA NA NA

NA = not analyzed (no probe sets represented). *A positive z score indicates higher expression in T2D compared with NGT cohorts.
†Adjusted P value was Bonferroni corrected for 20 genes associated with fasting insulin and/or HOMA-IR (ATP6V0C was not
represented on the arrays). Data in bold are significant after Bonferroni correction.
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HOMA-IR, the Insulin Sensitivity Index, and the
Matsuda index (23). This SNP (rs4846567) was not,
however, identified as a skeletal muscle eQTL for
SLC30A10 in this study. Three genes (GAS6, ALDH1A2,
and CALML4) were found to be associated with fasting
insulin with or without correcting for BMI. The rela-
tively large influence of BMI on the associations be-
tween expression and measures of insulin sensitivity
suggests that, for many genes, either BMI directly
affects the expression of these genes and consequently
affects skeletal muscle insulin sensitivity or that other
BMI-correlated factors such as diet and physical ac-
tivity level confound associations between expression
levels and clinical phenotypes.

By cross-referencing the significant eQTL results with
data from the gene expression–phenotype analysis, we
found that SNP rs4547172 regulates the expression of
PFKM, a gene whose expression also was positively as-
sociated with fasting plasma insulin. Since PFKM encodes
for phosphofructokinase 1 (PFK1), the muscle isoform of
phosphofructokinase, and is a key regulator of glycolysis
(44), this gene is a strong candidate for skeletal muscle
gene expression associated with glycemic traits. Muta-
tions in PFKM have been shown to cause glycogen stor-
age disease VII (Tarui disease), an autosomal-recessive
metabolic disorder characterized clinically by exercise
intolerance, muscle cramping, myopathy, and compen-
sated hemolysis. To determine in more detail the role of
PFKM in the regulation of insulin sensitivity, we

extended these findings to additional phenotypes related
to insulin sensitivity and skeletal muscle metabolism, for
example, with data such as glucose uptake (M-value)
from a euglycemic-hyperinsulinemic clamp setting (25).
Both the A-allele (displaying increased expression of
PFKM) and increased expression of PFKM were associ-
ated with reduced glucose uptake. Because PFK1 regu-
lates a key step in glycolysis by fueling the mitochondria
with carbohydrates, we examined the influence on met-
abolic flexibility and found that the A-allele was associ-
ated with reduced flexibility, possibly by promoting an
elevation of the glucose oxidation rate in the fasted state.
One of the first observations that instigated the concept
of metabolic flexibility was the observation that admin-
istration of fat emulsions during an oral glucose toler-
ance test leads to increased glucose intolerance (45).
Since then, metabolic flexibility has been defined as the
ability to switch from high rates of fatty acid uptake and
lipid oxidation to suppression of lipid metabolism with
a parallel increase in glucose uptake, storage, and oxi-
dation, for example, in response to feeding or high-
intensity exercise (46). Reduced metabolic flexibility has
been described in both patients with manifest T2D as
well as prediabetic individuals (47).

The finding that increased expression of PFKM is as-
sociated with T2D and IR is somewhat paradoxical given
that the encoded protein, PFK1, is rate-limiting to gly-
colysis. We can only speculate about the reasons for this
increased expression, which we consider secondary to,

Table 4—Replication of the skeletal muscle expression and BMI associations using publicly available data

BMI-expression
association

T2D vs. NGT

b (for BMI) P value Adjusted P value

Gene
MSTN +++ 0.07 7.81 3 1025 1.48 3 1023

RCAN2 -+- 20.03 1.92 3 1023 0.04
BCKDHB - - - 20.01 0.01 0.25
FHL2 -++ 0.02 0.02 0.44
RBBP6 - - - 20.01 0.03 0.61
TRIO - - - 24.39 3 1023 0.11 1.00
TMOD1 +++ 0.01 0.17 1.00
ENPEP +++ 20.01 0.18 1.00
CA2 +++ 0.01 0.31 1.00
ARID1A +++ 22.97 3 1023 0.33 1.00
PITPNM1 - - - 22.96 3 1023 0.47 1.00
PDIA4 +++ 2.09 3 1023 0.51 1.00
RAF1 +++ 2.06 3 1023 0.54 1.00
CTSF -+- 21.60 3 1023 0.70 1.00
SPR - - - 1.14 3 1023 0.78 1.00
AGXT2L1 - - - 21.65 3 1023 0.81 1.00
WSB2 -+- 8.74 3 1024 0.86 1.00
SH3GLB2 +++ 28.56 3 1025 0.98 1.00
CD46 +++ 7.08 3 1025 0.99 1.00
ARHGAP17 +++ NA NA NA

NA = not analyzed (no probe sets represented). Adjusted P value was Bonferroni corrected for 19 genes associated with fasting insulin
and/or HOMA-IR (ARHGAP17 was not represented on the arrays). Data in bold are significant after Bonferroni correction.
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rather than a cause of, IR. First, even in an insulin-
resistant state glycolysis might be sensitive enough to the
small amount of insulin required to maintain a normal
flux; the median effective dose for stimulation of gly-
colysis/glucose oxidation is half that of what is required
to stimulate glycogen synthesis (48). Therefore, under
insulin-resistant conditions it is possible that glucose
entering the cell can still be shunted through glycolysis to
ensure sufficient production of energy in the citric acid
cycle. Second, if the insulin-resistant state is associated
with, or caused by, excess oxidation of free fatty acids,
there will be a feedback inhibition of glycolysis, including
PFK1, by accumulated citrate and acetyl-CoA. It is pos-
sible that the amount of PFKM transcript is increased in
an attempt to overcome the allosteric inhibition of PFK1.
It should be acknowledged, however, that this study was
not designed to address these issues, which will require
flux measurements using isotopes as well as measure-
ment of enzyme activities. However, increased PFKM
activity has been associated with increased deposition
of muscle fat as measured by computed tomography
(49), and increased glycolytic capacity in T2D has been
suggested (49–54). These observations could possibly
be attributed to fiber type composition with a shift
toward increased glycolytic type IIx fibers in T2D (53).
Our hypothesis that PFKM is involved in T2D patho-
genesis is strengthened by the observation that PFKM
is overexpressed in diabetic muscle compared with
muscle from nondiabetic, normoglycemic individuals,
and a proxy SNP (r2 = 0.75) for rs4547172 has
a nominally significant association with T2D (none of
the top eQTL SNPs for PFKM were represented in
DIAGRAM).

In conclusion, the identified association of PFKM with
skeletal muscle insulin sensitivity demonstrates how an
integrative approach combining different levels of geno-
mic data with clinical phenotype data from disease-
relevant tissue may help to functionally characterize the
genetic contribution to disease susceptibility.
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