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Abstract
In HIV-1 infection, plasma viral load (VL) has dual implications for pathogenesis and public
health. Based on well-known patterns of HIV-1 evolution and immune escape, we hypothesized
that VL is an evolving quantitative trait that depends heavily on duration of infection (DOI),
demographic features, human leukocyte antigen (HLA) genotypes and viral characteristics.
Prospective data from 421 African seroconverters with at least four eligible visits did show
relatively steady VL beyond 3 months of untreated infection, but host and viral factors
independently associated with cross-sectional and longitudinal VL often varied by analytical
approaches and sliding time windows. Specifically, the effects of age, HLA-B*53 and infecting
HIV-1 subtypes (A1, C and others) on VL were either sporadic or highly sensitive to time
windows. These observations were strengthened by the addition of 111 seroconverters with 2–3
eligible VL results, suggesting that DOI should be a critical parameter in epidemiological and
clinical studies.
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Introduction
As an informative trait specific for HIV-1 infection, plasma viral load (VL) is well known
for its strong correlation with the probability of sexual transmission (Fideli et al., 2001;
Quinn et al., 2000) and rate of disease progression (Mellors et al., 1995; Mellors et al.,
2007). Even in individuals with uncertain duration of infection, a relatively steady set-point
VL can last for years to serve as a proxy of host-virus equilibrium (Arnaout et al., 1999;
Fiebig et al., 2003). Factors independently associated with set-point VL range from viral
characteristics to multiple quantitative trait loci (QTLs) in the human genome (Prentice and
Tang, 2012; Yue et al., 2013), especially genes in the human major histocompatibility
complex (MHC) that encode human leukocyte antigens (HLA) (Apps et al., 2013; Fellay et
al., 2009; Leslie et al., 2010).

The widely accepted assumption and interpretation of set-point VL can have various
problems. For example, HIV-1 immune escape can frequently tip the initial equilibrium in
favor of the virus (Crawford et al., 2009; Kawashima et al., 2009; Mellors et al., 1995),
which may obscure the relationship between set-point VL and HIV-1 disease progression
(Mellors et al., 2007; Rodriguez et al., 2006). A second issue relates to various statistical
methods that either fully embrace the concept of set-point VL (Prentice and Tang, 2012) or
provide two alternative strategies, i.e., mixed model for repeated measures (Prentice et al.,
2013; Shrestha et al., 2009; Tang et al., 2011) and assessment of cumulative viral load
burden (Arnaout et al., 1999; Cole et al., 2010; Mugavero et al., 2011). To establish the
advantages and disadvantages of these analytical approaches, we have tested a central
hypothesis that cross-sectional and longitudinal VL data are evolving outcomes that depend
heavily on duration of infection DOI), demographic features, HLA genotypes and viral
characteristics.

Results
Characteristics of 421 HIV-1 seroconverters (SCs) in the study population

For this study, sufficient prospective data were available for 421 SCs from Zambia (Lusaka
and Copper Belt, n=164), Uganda (Entebbe and Masaka, n=110), Kenya (Kilifi and Nairobi,
n=83) and Rwanda (Kigali, n=64) (Table 1). In each subgroup, males outnumbered females,
especially in Kenya. All volunteers were relatively young at enrollment (mean age between
25.1 and 33.6 years by site). The estimated dates of infection (EDI) ranged from May 2005
to March 2011, being highly comparable across study sites. Based on a 1.3-kb fragment of
the HIV-1 pol gene sequences (successful in 93.4% of SCs), subtypes A1 and C accounted
for 74.2% of the total, while other subtypes (B or D) and recombinant forms were
infrequent, precluding further stratification (Table 1).

As reported earlier (Prentice et al., 2013; Tang et al., 2011), HIV-1 subtypes A1 and C were
predominant in Rwandan and Zambian SCs, respectively. Kenyan SCs differed from others
in their lower age (25.1 ± 4.4 years), high male-to-female ratio (5.9), and prevalence of
multiple infecting HIV-1 subtypes (A1, C, D and others) (6.0% to 69.9% per subtype).
Ugandan SCs had the greatest frequency (52.8%) of non-A1 and non-C subtypes (mostly
subtype D) (Table 1).
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The spectrum of VLs and cumulative viremia (VCY) in 421 SCs during early HIV-1 infection
In the 3–24 months interval after EDI, VL was measured at a total of 3,154 person-visits.
Cross-sectional VLs beyond 3 months of infection ranged from below detection (<2.60 log10
copies/mL) to 6.6 log10. The mean log10 VL in SCs from each country was stable, with little
(≤0.40 log10) fluctuation between visit intervals, especially adjacent intervals (≤0.30 log10)
(Table 1). Geometric mean VLs were also quite similar between year 1 and year 2 (≤0.30
log10). On the other hand, country-specific variations in VLs began to emerge during later
visits (P <0.001 by ANOVA) (Table 1). Reflecting a strong collinearity between region
(geography) and HIV-1 subtypes, Zambian SCs consistently had higher VLs than Kenyan
and Rwandan SCs for the 18–24 months VL, year 2 geometric mean VL and cumulative
viremia (P <0.05 in all six comparisons).

Evaluation of linear correlation between longitudinal and cross-sectional VL data
In 56 (8 × 7) pairwise comparisons of eight distinct outcomes of VL, the Pearson r values
ranged from 0.51 to 0.92 before and after statistical adjustments for age, sex, country of
origin, and duration of infection (P <0.0001 for all tests) (Table 2). For the seven cross-
sectional VL measurements with slight variation in effective sample sizes (n = 381–419), the
overall pattern persistently revealed that correlation was weak unless the tests involved
cross-sectional results from two adjacent visits (e.g., 3–6 months versus 6–9 months and 9–
12 months vs. 12–18 months). Even so, correlation that was strong enough to imply two
mutually interchangeable outcomes (i.e., r2 >0.80) was rare, being detected on a single
occasion. In this case, the 6–9 months set-point VL showed a strong collinearity with the
geometric mean VL during the 3–12 months interval regardless of statistical adjustments (r
= 0.92, r2 = 0.85, and P <0.0001). In addition, as far as the adjusted r values were
concerned, country of origin as a covariate was interchangeable with HIV-1 subtype as a
covariate.

Identification of independent correlates of longitudinal viremia in 421 SCs
On the basis of adjusted statistical significance (P <0.05), multivariable models identified
sex, duration of infection, infecting HIV-1 subtypes, and HLA-B genotypes as independent
predictors of longitudinal VL outcomes (Table 3). These factors, along with age, accounted
for about 5% of the overall variability in the VL dataset (P <0.0001). Ranking by
univariable r2 values placed viral subtype C, HLA-B*57, and sex as the top three predictors.
Alternatively, the top three predictors ranked by unadjusted VL differences (mean beta
estimates) were HLA-B*57 (P <0.0001), HLA-B*18 (P = 0.018), and sex (P <0.0001)
(Table 3).

However, heterogeneity in HIV-1 viremia fluctuated over time when SCs defined by host
and viral factors were compared. For example, clear separation in VL was seen between
HLA-B*18 positive and HLA-B*18 negative SCs throughout the 3–24 months interval, but
differences between HIV-1 subtypes A1 and C were not apparent in the 3–9 months period
(Figure 1). Like HLA-B*18, B*45, B*57 and female sex also had highly persistent effects
on VLs during the study intervals; these relationships were readily confirmed by analyses of
cumulative viremia (data not shown).

Viral and host factors associated with cross-sectional viremia: sensitivity analyses based
on generalized linear regression models (GLMs)

Analyses of seven cross-sectional VL outcomes led to highly variable findings (Table 4).
The number of independent predictors ranged from two (sex and HLA-B*45) for the 3–6
months VL to six (all but HIV subtype) for the 6–9 months VL. HLA-B*18 and B*45 as
unfavorable factors were each detected in 4 out of 6 models, without a clear preference for
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early or later intervals (Table 4). HLA-B*57 was a favorable factor in 5 out of 6 models,
with an effect size exceeding 0.30 log10 after the first 6 months of infection. Overall, host
and viral factors explained 7.2% to 14.8% of variability in the six VL cross-sectional
phenotypes (P <0.0001 in each test). Of note, analyses of GM VLs had little advantage over
individual VLs.

Findings based on alternative approaches
In alternative analyses, HIV-1 VL dynamics differed between eastern and southern Africa (P
<0.0001) (Figure 2), which was consistent with differences seen with HIV-1 subtypes. In
addition, analyses guided by LOESS curves revealed that HLA-B*53 had modest
association with VL in the 3–18 months intervals (2,361 person-visit, P = 0.043) (Figure 2).
VLs in the 75 subjects with HLA-B*53 had a unique pattern: a modest separation between
B*53-positive and B*53-negative subjects (average Δ = 0.21 ± 0.1 log10) faded shortly after
the 18 months mark (Figure 2). In the final round of data analyses for all 532 eligible SCs
(Table 5), HLA-B*53 explained 1.1% of the overall variance in longitudinal VLs (P = 0.055
by univariable analysis), while the multivariable model confirmed its independent
association with longitudinal VLs (adjusted P = 0.025).

Additional observations on HLA variants
Among the four HLA variants independently associated with longitudinal VLs (Table 5),
HLA-B*18, B*53 and B*57 had similar distribution in the four African countries (Table 1).
Two thirds of subjects with B*57 had HLA-B*57:03, which had its own association with
reduced viremia (data not shown). On the other hand, HLA-B*18, B*53 and B*45 were
each represented by a single allele (B*18:01, B*53:01 and B*45:01, respectively) regardless
of study sites. Other HLA alleles relevant to Africans, including A*29, A*36, A*74, B*13,
B*14, B*35, B*39, B*42, B*51, B*58:01, B*58:02, B*81, C*04, C*18, and the A*30 +
C*03 combination (Apps et al., 2013; Leslie et al., 2010; McLaren et al., 2012; Tang et al.,
2010), had minimal impact on VL outcomes (data not shown). Alternative analyses of
structurally defined HLA-A and HLA-B supertypes were inconclusive (data not shown).

Discussion
Through systematic analyses of prospective data from African seroconverters with early
HIV-1 infection, our work demonstrated that cross-sectional VL outcomes change rapidly as
the infection progresses. In other words, VLs separated by as little as three months can be
considered as different outcomes (Table 2) with varying correlates (Table 4). For subgroups
of SCs defined by host and viral factors (Table 4), three patterns of local regression curves
(Figures 1–2) represent (i) steady and robust differences across visits, (ii) convergence
followed by gradual divergence, and (iii) divergence followed by gradual convergence.
Other patterns (e.g., wave-like and U-shaped) were less obvious, probably because the
overall study interval (from 3 to 24 months after EDI) was relatively short.

In previous work based on 269 SCs (homosexual men in the U.S.) with semi-annual follow-
up visits, VL trajectories (slopes) during the first three years after seroconversion correlated
with AIDS-free time, while VLs in the three years immediately before AIDS diagnosis had
no predictive values (Lyles et al., 1999). When stratified by host genotypes, SCs from the
same study showed different patterns of VL dynamics in early infection as well (Tang et al.,
2002a). While our new findings here are largely consistent with the reports from the
Multicenter AIDS Cohort Study, three major advantages in study design and analytical
approaches here can help strengthen the search for underlying mechanisms. First, frequent
testing before and during seroconversion (at monthly to quarterly visits) has improved the
precision in assigning EDI and DOI. Second, follow-up visits after seroconversion are
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frequent enough to facilitate the comparison of early virologic outcomes in sliding time
windows (Table 4). Third, host and viral genotypes can be analyzed jointly in multivariable
models. The two major HIV-1 subtypes, A1 and C, are widespread in sub-Saharan Africa
(Osmanov et al., 2002; Tebit and Arts, 2011), with some evidence for disparity in
evolutionary and pathophysiologic attributes when compared with other subtypes (Baeten et
al., 2007; Kaleebu et al., 2001; Kiwanuka et al., 2008; Vasan et al., 2006). VL differences
between HIV-1 subtypes A1 and C infection (Table 3 and Figure 1) are generally consistent
with the contrasting rates of heterosexual HIV-1 transmission in Rwanda and Zambia where
the respective subtypes predominate (Dunkle et al., 2008; Fideli et al., 2001).

Recent assessment of disease progression (time to severe immunodeficiency) has revealed
the role of African HIV-1 subtypes in pathogenesis (Amornkul et al., 2013). However, given
the strong collinearity between geography and HIV-1 subtypes (Table 1), a more definitive
elucidation of host and viral factors in HIV-1 pathogenesis in Africa may require the
assembly of a genetically homogeneous cohort with diverse HIV-1 subtypes and adequate
follow-up. Such study is no longer feasible as new treatment guidelines recommended by
the World Health Organization are expected to transform the test-and-treat concept into a
global practice (Cohen et al., 2011; Montaner et al., 2010; Mugavero et al., 2012).

Among the three HLA-B variants independently and persistently associated with VL
heterogeneity, HLA-B*57 is a well-known favorable factor, while HLA-B*18 and HLA-
B*45 are consistently unfavorable in multiple studies (Apps et al., 2013; Lazaryan et al.,
2011; Leslie et al., 2010; McLaren et al., 2012; Tang et al., 2010). Generalizable findings
about these HLA-B variants, now in the context of sub-Saharan African populations, should
benefit future epidemiologic and experimental studies, especially in the context of HIV-1
adaptation at the population level (Kawashima et al., 2009). HLA-B*18 has also been
reported as partially protective against mother-to-child HIV-1 transmission in Kenyan
infants (Farquhar et al., 2004), suggesting again that mechanisms for immune control of
established HIV-1 infection can be quite distinct from those mediating acquisition of
infection (Gao et al., 2010; Song et al., 2011; Tang et al., 2008).

HLA allelic products contribute to immune control of viral infection through both innate and
adaptive immune pathways (Carrington, Martin, and van Bergen, 2008; Merino et al., 2013;
Merino et al., 2012; Stewart et al., 2005). Alleles with early influences on HIV-1 infection
tend to impose a strong selection pressure for viral immune escape mutations a phenomenon
that has been repeatedly examined in individuals with HLA-B*57 and related alleles (Bansal
et al., 2007; Crawford et al., 2009; Leslie et al., 2004; Novitsky et al., 2010; Wang et al.,
2009). The unfavorable effect of HLA-B*18 on VL started early and remained stable
(Figure 1), which may translate to a durable impact on HIV-1 pathogenesis. In settings
where treatment priority is necessary, timely interventions directed to subjects carrying
unfavorable HLA profile may maximize the benefits by preventing pathogenesis as well as
transmission.

Our work also indicates that modest and relatively transient effects attributable to host
factors like HLA-B*53 can easily escape detection when VLs in the first few months of
infection are missed (Figure 2). As a common allele in Africans and African Americans, its
relevance to HIV-1 infection has been highlighted in at least two recent studies (Apps et al.,
2013; Lazaryan et al., 2011). Although VLs were only slightly elevated in Africans subjects
with HLA-B*53 during the first 18 months of infection (Figure 2), the potential impact on
HIV-1 reservoir and transmission rate may deserve some investigation.
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Conclusions
Analyses of cross-sectional data often failed to identify host and viral factors (e.g., HLA-
B*53 and HIV-1 subtypes) due to time-varying associations with VLs, even in early
infection when complications by immune escape, co-infection and other forms of
comorbidities should be minimal. For correlates (e.g, HLA-B*57) that can be readily
identified using randomly chosen phenotypes, the magnitude of associations can vary from
one interval to another. These observations continue to support our notion that DOI is an
important parameter when cross-sectional VL results are assessed in clinical research
(Prentice et al., 2013; Prentice and Tang, 2012; Tang et al., 2010). As early diagnosis of
HIV-1 infection remains costly and difficult (Kozak et al., 2013), few studies can actually
assess the timing of VL measurements in prevalent HIV-1 infection. One reasonable
compromise is to down-play findings based solely on random sampling of cross-sectional
data. Alternatively, immunologic and virologic techniques suitable for inferring DOI in
seroprevalent infection (Cousins et al., 2013) may provide valuable information about DOI.

Materials and Methods
Study population

Recent HIV-1 seroconverters (SCs) were enrolled from Kenya, Rwanda, Uganda, and
Zambia (Table 1) under a uniform study protocol developed and implemented by the
International AIDS Vaccine Initiative (IAVI) (Amornkul et al., 2013). The procedures for
written informed consent and research activities were approved by institutional review
boards at all collaborating clinical research centers, with further compliance to human
experimentation guidelines set forth by the United States Department of Health and Human
Services.

Follow-up strategies before and after HIV-1 infection
Identification of SCs relied on frequent (monthly to quarterly) testing of HIV-1 seronegative
subjects at high risk of HIV-1 infection through heterosexual (common) and homosexual
(occasional) exposure, with the vast majority being partners of HIV-1 discordant couples
and/or individuals diagnosed with sexually transmitted infections. As described in detail
elsewhere (Amornkul et al., 2013; Karita et al., 2007; Prentice et al., 2013), the estimated
dates of HIV-1 infection (EDI) were defined as one of the following: (i) the midpoint
between the last seronegative and first positive HIV-1 antibody tests, (ii) two weeks before
the first positive test for HIV-1 p24 antigen in plasma, (iii) 10 days before the first positive
test for plasma viral load (VL) while being negative for both p24 and rapid HIV-1 antibody
tests, and (iv) event date for the only high-risk exposure. Following confirmation of HIV-1
infection (detection of VL), clinical visits were scheduled monthly for the first three months
after EDI and quarterly for the 3–24 months interval. Initiation of antiretroviral therapy
(ART) followed national guidelines (Ngongo et al., 2012), and all visits and VL
measurements after ART initiation were excluded. In all, 421 SCs (Table 1) were selected
based on: (i) availability of more than 50 SCs from a single country, with biological
specimens for DNA extraction and HLA class I genotyping, (ii) at least four time points of
VL in the early chronic phase (3–24 months) of infection, with no gap greater than one year
between two consecutive VL measurements, and (iii) no ART during the eligible study
intervals. An additional 111 SCs with only 2–3 eligible VL measurements were available for
secondary analyses. The remaining SCs excluded from analyses here included those enrolled
from South Africa (n = 26) and a small group (n = 46) with limited follow-up (no more than
a single VL for eligible visits).
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HIV-1 viral load (VL) as a quantitative trait
Plasma VL (RNA copies/mL) was measured at a central location (Clinical Laboratory
Services, Johannesburg, South Africa) using the Amplicor Monitor v1.5 assay (Roche
Applied Science, Indianapolis, IN) and following good clinical laboratory practices
(Amornkul et al., 2013). With a focus on visits beyond acute-phase (the first 3 months after
EDI), eligible VLs in the 3–24 months intervals were first treated as the longitudinal
outcome and then divided into cross-sectional outcomes corresponding to five visit intervals:
3.1 to 6.0 months, 6.1 to 9.0 months, 9.1 to 12.0 months, 12.1 to 18.0 months and 18.1 to
24.0 months (rounded to the nearest integer for tables and figures). Repeated measures in the
3.1–12.0 and 12.1–24.0 months intervals also allowed the calculation of geometric mean
(GM) VLs. In addition, cumulative viremia as a time-varying measurement of VL in the
3.1–24.0 months after EDI was expressed as the number of virus copies per mL of plasma
multiplied by time of follow-up (years) (Cole et al., 2010; Mugavero et al., 2011). A
trapezoidal rule was used to approximate the integral representing the area under the curve
for each participant’s longitudinal VL. Within each segment (time between two VL
sampling dates), VL burden was the mean of the two VL measurements multiplied by the
time interval between the sampling dates. Summation of the individual segments (3–24
months after EDI) gave rise to the viremia copy-year (VCY) outcome. For log10
transformation, all VLs below the lower limit of detection (LLD = 400 RNA copies/mL)
were assumed to be 1.30 (half of log10400). In alternative analyses, setting VL below LLD
to 2.30 log10 (200 copies/mL) did not change statistical models (data not shown).

Viral sequencing and human leukocyte antigen (HLA) class I genotyping
Methods for HIV-1 pol gene sequencing and HLA class I genotyping have been described
elsewhere (Price et al., 2011; Tang et al., 2011). Viruses were grouped into subtypes (mostly
A1, C and D) and recombinant forms (rare) (Table 1). Allelic variants at three HLA class I
loci (HLA-A, HLA-B and HLA-C) were fully resolved to the 4-digit level. Data analyses
focused on three prominent variants, HLA-B*18 (unfavorable), B*45 (unfavorable), and -
B*57 (favorable), based on their confirmed effects on VL in native Africans and African-
Americans (Apps et al., 2013; Leslie et al., 2010; Tang et al., 2010).

Statistical Analysis
Using software packages in SAS, version 9.2 (SAS Institute, Cary, NC), SCs were stratified
by country of origin and tabulated for demographic data, laboratory findings (viral subtypes
and VL) (Table 1) and distribution of major HLA variants of interest. Methods used for
comparing baseline characteristics included (i) analysis of variance (ANOVA), (ii) t-test for
quantitative variables with a normal distribution, and (iii) χ2 and Fisher exact tests for
categorical variables. The extent of collinearity among eight VL outcomes was determined
by Pearson’s correlation coefficients (r), and paired data with r ≥0.90 (r2 ≥0.80) were
considered as mutually interchangeable (Craney and Surles, 2002). Subsequent association
analyses, including mixed models, generalized linear models (GLMs) and local regression
(LOESS) curves, aimed at identifying independent correlates of VL and assessing their
relative effects on VL over time during the 3–24 months follow-up period. Based on
evidence from earlier studies (Prentice et al., 2013; Tang et al., 2010), age, sex, duration of
infection (DOI, measured monthly or quarterly), infecting viral subtypes and common HLA
variants were tested as independent cofactors in univariable and multivariable models. The
performance of individual models was gauged by their overall R2 values (corresponding to
variability explained by factors in the model), while the performance of individual factors
was ranked first by the regression beta (mean difference) and then by the R2 values from
univariable models. Statistical significance was accepted at the level of P ≤0.05, but age was
kept in all multivariable models regardless of statistical significance (for consistency with
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earlier work). Major findings from these models were subjected to three sets of sensitivity
analyses: (i) replacing HIV-1 subtype with country of origin as the two covariates were
highly collinear (Tang et al., 2011); (ii) including regional groupings (eastern versus
southern Africa) as a covariate (Prentice et al., 2013); and (iii) adding the results from 101
eligible SCs with limited (2–3) VL data points to the overall model for repeated VL
measurements.
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Research Highlights

• In recent HIV-1 seroconverters, plasma viral load (VL) is a rapidly evolving
outcome;

• Host and viral factors show time-varying associations with longitudinal or cross-
sectional VL;

• Three types of VL trajectories are readily detected in analyses of longitudinal
VL.
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Figure 1. Contrasting dynamics of HIV-1 viremia in African seroconverters defined by host and
viral genotypes
Prospective viral load measurements are compared between HLA-B*18-positive and HLA-
B*18-negative subjects (top panel, 3,154 person-visits) and between two major HIV-1
subtypes, HIV-1C and HIV-1A (bottom panel, 2,306 person-visits). Thick and thin lines
correspond to the expected mean (average) value and 95% confidence intervals for each
stratum (see Table 3 for summary statistics based on mixed models). Arrows point to plasma
viral load measurements that are <400 RNA copies/ml (transformed to 1.30 log10).
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Figure 2. Viremia in HIV-1 seroconverters stratified by geography and HLA-B*53
Prospective viral load measurements (3,154 person-visits) are compared between Eastern
Africa (Kenya, Rwandan and Uganda) and Southern Africa (Zambia) (top panel) and
between HLA-B*53-positive and negative subgroups (bottom panel). Thick and thin lines
correspond to the expected average value and 95% confidence intervals for each stratum
(overall unadjusted P = 0.056). Arrow points to plasma viral load measurements that are
<400 RNA copies/ml (transformed to 1.30 log10).
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