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ABSTRACT In animal breeding, the genetic potential of an animal is summarized as its estimated breeding
value, which is derived from its own performance as well as the performance of related individuals. Here, we
illustrate why estimated breeding values are not suitable as a phenotype for genome-wide association
studies. We simulated human-type and pig-type pedigrees with a range of quantitative trait loci (QTL)
effects (0.5-3% of phenotypic variance) and heritabilities (0.3—0.8). We analyzed 1000 replicates of each
scenario with four models: (a) a full mixed model including a polygenic effect, (b) a regression analysis using
the residual of a mixed model as a trait score (so called GRAMMAR approach), (c) a regression analysis using
the estimated breeding value as a trait score, and (d) a regression analysis that uses the raw phenotype as
a trait score. We show that using breeding values as a trait score gives very high false-positive rates (up 14%
in human pedigrees and >60% in pig pedigrees). Simulations based on a real pedigree show that additional
generations of pedigree increase the type | error. Including the family relationship as a random effect
provides the greatest power to detect QTL while controlling for type | error at the desired level and
providing the most accurate estimates of the QTL effect. Both the use of residuals and the use of breeding
values result in deflated estimates of the QTL effect. We derive the contributions of QTL effects to the
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breeding value and residual and show how this affects the estimates.

Genome-wide association studies (GWAS) are now commonplace in
humans, livestock, plants, and model organisms. A commonality
among these studies is that genetic links exist between genotyped
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subjects and these must be accounted for in statistical analyses. Several
approaches have been proposed to take account of these genetic
structures in GWAS (Yu et al. 2006; Aulchenko et al. 2007a; Kang
et al. 2008), resulting in a range of statistical tools such as TASSEL
(Zhang et al. 2010), EMMA(X) (Kang et al. 2010) and GenABEL
(Aulchenko et al. 2007b). Somewhat less attention has been paid to
the definition of the trait value that is used for the GWAS.

In many situations, a phenotypic trait may be decomposed into an
estimated breeding value (EBV) and a residual. The EBV is an
estimated measure of the additive genetic merit of an individual (e.g.,
animal, plant, tree) for the given trait based on its own performance
and/or that of genetically related individuals. In the genome-wide
rapid association using mixed model and regression (GRAMMAR)
approach, the observed phenotype is analyzed under a mixed model
resulting in an EBV and a residual, with the latter being used as the
trait value for GWAS (Aulchenko et al. 2007a). Other investigators,
however, have used the EBV of the individual as the trait score for
GWAS, assuming that it encompasses the best estimate of the genetic
merit of an individual (Johnston et al. 2011; Becker et al. 2013; Cv)epica
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et al. 2013). As a citation from Becker et al. (2013) shows, the EBV is
sometimes considered the best estimate of the genetic merit of an
individual:

Breeding values have the advantage that they are free of
systematic environmental effects on measured phenotypes, as
these effects are considered in the statistical model used for the
estimation of EBVs. Additionally, they reflect the genetic makeup

more accurately because they do not solely rely on own records
but include information from all measured relatives.

We will show here with a straightforward simulation study that the
“information from all measured relatives” is a prime source of false-
positive results in GWAS. We note that this insight is neither profound
nor novel, but our aim is to provide a clear and concise illustration
that using EBV comprising familial information (e.g., parents, sibs,
etc.) can give much greater false-positive rates than ignoring family
relationships altogether.

MATERIALS AND METHODS

Simulations

The simulation scheme follows that of (Aulchenko et al., 2007a) with
two simulated family structures (human and pig) and one complex
real pedigree (pig in this example). For the human pedigree, we sim-
ulated 337 nuclear families of three full-sibs with parents that are not
related to each other or any of the other parents. For the pig pedigree,
we simulated 10 sires, each mated to 10 dams that had 10 or 11
offspring, resulting in 1010 measured individuals for analysis. For
the real pig pedigree, we randomly sampled 1010 last-generation oft-
spring from a total pedigree of 5390 commercial pigs and included
either two or five generations of pedigree information. The latter was
to test the impact of the depth of pedigree information on perfor-
mance of the EBV approach. The pedigrees that were the basis for the
simulations are presented in Supporting Information, File S1. Each of
the 46 scenarios was simulated in 1000 replicates using the MORGAN
genedrop program (George et al. 2005). MORGAN genedrop simu-
lates genotypes at marker loci, trait genotypes, and polygenic values
contributing to the quantitative traits. Quantitative traits were defined
as the sum of the single-nucleotide polymorphism (SNP) effect, the
polygenic effects, and a random environmental error. Two SNP gen-
otypes were simulated and analyzed for association: one SNP was not
linked with the trait of interest, or any other marker, and used for
studying the type I error rate. For studying power, a causal SNP with
an additive effect of 4.0 and a minor allele frequency of 0.3 was
simulated explaining 0.5, 1, 2, or 3% of the total variation in the trait.
The simulated traits had a total heritability of 0.30, 0.40, 0.50, 0.60,
and 0.80. The QTL effect and variance due to the QTL were constant
throughout the simulations whereas the polygenic variance and the
residual variance were scaled to achieve the different QTL contribu-
tions and overall heritabilities. An example of the MORGAN gene-
drop script files that were used for simulation is given as File S2.

Statistical analyses
The simulated data were analyzed using four different approaches:

1. Measured genotype: The SNP to be tested for association was
fitted as a covariate in a polygenic mixed model (1), which
accounted for familial relatedness of individuals in the pedigree
using the additive genetic relationships among individuals. The
SNP effect and polygenic effect were estimated together using this
model:
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y=n+wat+Zu+e (1)

where y is the vector of trait values, . is the overall mean, a is the
additive QTL effect, u and e are vectors of additive polygenic effects
(random), and random residuals, respectively; u ~ N(0, Ao2,), where
A is the additive genetic relationship matrix based on pedigree in-
formation and e ~ N(0, Io2,.), where I is an identity matrix; 02, and
02, are the additive genetic and residual error variance, respectively.
w is a vector of marker genotypes (codes as 0, 1, 2) and Z is an
incidence matrix related to polygenic effects.

2. GRAMMAR: The GRAMMAR approach consists of two steps
(Aulchenko et al. 2007a): the first step accounts for the familial
dependence among family members and the second step tests the
single SNP effect on the remaining variation by analysis of variance.

Step 1: For the simulated trait score, we fitted the following
mixed model [with the same variable definitions as (1)] with-
out the marker effect:

y=wn+Zu+te 2)

Step 2: Using the estimated residuals from Step 1 as the new
quantitative trait (y*), the marker genotype effect of each SNP
on the trait was tested by linear regression:

Y =p+wate 3)

3. Ignoring family structure (IF): The IF analysis is comparable with
the second step of the GRAMMAR analysis. It uses a direct re-
gression of the phenotypic observation (y) on the SNP data and
does not take account of family relationships.

4. EBV: Similar to GRAMMAR but in this analysis the EBV from
the polygenic model [0, from model (2)] is used as a trait score
(y*) for the association study (3).

All analyses were performed in ASReml (Gilmour et al. 2009). The
type I error of each scenario was estimated using the unlinked SNP
and a tabulated threshold of F > 3.85 (P < 0.05). The statistical power
to detect the causal SNP was estimated using either the tabulated
F-threshold of 3.84 or an empirical threshold based on a 5% error
rate for the unlinked SNP. In order to facilitate the computational load
of 1000 replicates of 46 scenarios, the simulations and analyses were
run on the Edinburgh Compute and Data Facility.

RESULTS

Type | error

The false-positive rates (FPRs) for the four methods are summarized
in Table 1, averaged across QTL effect size. Because they were esti-
mated on unlinked QTL they were, as expected, observed to be in-
dependent of QTL size. The GRAMMAR approach was conservative,
whereas the measured genotype approach performed very close to the
tabulated threshold. Use of either the EBV or ignoring family relation-
ships resulted in much greater levels of false-positive results. However,
the FPR depended on the family structure in the data, with a greater
degree of relatedness for the pig scenarios than the human scenarios.
Particularly for the pig data, FPR for IF increased with increasing
heritability whereas it decreased for EBV. Conversely, GRAMMAR
was slightly less conservative for the human data than for the pig data.
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Table 1 Type 1 error rate for MG, GRAMMAR, EBV, and IF
analysis for the simulated human and pig population structures,
averaged across QTL effects for each heritability (h?) class

Human Population
h> MG GRA EBV IF

30% 0.050 0.038 0.139 0.067
40% 0.047 0.031 0.127 0.068
50% 0.044 0.025 0.122 0.070
60% 0.055 0.031 0.144 0.091 0.054 0.012 0.570 0.401
80% 0.053 0.023 0.135 0.111 0.045 0.007 0.485 0.445

MG, measured genotype; GRAMMAR, genome-wide rapid association using
mixed model and regression; EBV, estimated breeding value; IF, ignoring family;
GRA, GRAMMAR.

Pig Population
MG GRA EBV IF

0.051 0.017 0.630 0.268
0.057 0.018 0.600 0.324
0.043 0.009 0.579 0.352

The simulations based on the commercial pig pedigree also
showed a large type I error when using EBV (Table S1), albeit slightly
lower than for the simulated pedigree. This was due to the smaller
family sizes in the sample from the real pedigree compared to the
simulated pedigree. The use of five generations of pedigree in the
mixed model (2) gave a greater FPR when we used EBV as the trait
score compared to using only two generations (Table S1). The use of
GRAMMAR was more conservative when applying five generations of
pedigree compared with two. There was no clear trend in type I error
when using the measured genotype approach (1) or ignoring family
structure: in some scenarios using five generation of pedigree gave
a more conservative type I error, whereas in other scenarios it was
more liberal than using two generations of pedigree information
(Table S1).

Power

The full comparisons of statistical power to detect the QTL across all
scenarios are presented in Table S2 for the simulated human and pig
pedigrees, and in Table S1 for the real pedigree simulations. Measured
genotype analyses (1) usually, but not always, had the greatest power,
irrespective of whether empirical or tabulated thresholds were used
(Figure 1 and Table S2). Using EBV or ignoring family relationships
had greater power when using tabulated (rather than empirical)
thresholds (Figure 1 and Table S2), but at the cost of high FPRs (Table
1). GRAMMAR was conservative when using tabulated thresholds but
comparable in power with using measured genotype when applying
empirical thresholds (Figure 1 and Table S2), in agreement with
(Aulchenko et al. 2007b).

For scenarios in which the heritability and QTL effect sizes were
low, e.g., a heritability of 30% and a QTL explaining 1% of phenotypic
variance as shown in Figure 1, the human pedigree had greater power
than the pig pedigree. However, at greater heritabilities, these differ-
ences diminished and for some scenarios the pig pedigree had the
higher power (Table S2). For the simulations based on the commercial
pig pedigree, the measured genotype approach had the highest power
regardless of whether the thresholds were tabulated or based on em-
pirical results (Table S1). The two-generation pedigree generally gave
slightly greater power to detect QTL than the five-generation pedigree.

Estimated effects

The estimates of the QTL effect and the empirical standard deviation
more than 1000 replicates are summarized in Table 2. Noting that the
expected effect size was 4.0, using measured genotype gave the most
accurate, and apparently unbiased, estimates of the QTL effect regard-
less of variance explained by the QTL or overall heritability (Table 2).
Ignoring family information also gave accurate estimates of the QTL
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Figure 1 Empirical and tabulated power of detecting a QTL that
explains 1% of phenotypic variance in a trait with 40% heritability. MG:
measured genotype; tab: tabulated power, emp: empirical power.

effect, apart from when the proportion of variance explained by the
QTL was small in which case, the estimates were slightly inflated
(Table 2). When using GRAMMAR or EBV the QTL effects were
underestimated dramatically. This confirms earlier observations that
GRAMMAR underestimates the QTL effects (Aulchenko et al. 2007a;
Crooks et al. 2009).

A clear trend was apparent for the effect of the heritability on the
estimates when using GRAMMAR or EBVs. With increasing
heritability, the GRAMMAR estimates were increasingly biased
downward while those from the EBV approach became less biased
(Table 2). Furthermore, in the pig simulations the estimates of using
EBV were more severely underestimated with increasing variance
explained by the QTL. On the other hand, the estimates in which
GRAMMAR was used appeared to be unaffected by the proportion of
variance explained by the QTL in both the pig and the human sim-
ulations (Table 2). When we looked at individual replicates, it was
apparent that the sum of the GRAMMAR and EBV estimates pro-
vided an unbiased estimate of the SNP effect. This could provide
a quick estimate of the true effect of significant SNPs after GRAM-
MAR analyses, rather than re-estimating the effect in a full mixed
model as suggested previously (Aulchenko et al. 2007a). Across all
scenarios and analyses, the precision of the estimates increased as the
proportion of variance explained by the QTL increased, as shown by
the empirical standard errors (Table 2).

DISCUSSION

Our simulations have shown clearly that the use of EBV in association
studies, incorporating information from relatives from the same or
previous generations, can result in several problems, most notably
huge increases in the type I error. This finding is attributed to the fact
that when an individual’s EBV is estimated with familial information,
the estimate is a linear combination of the individual’s phenotype,
expressed as a deviation from the family mean, and the family mean
itself. Although the individual phenotype captures the within-family
segregation of the QTL, the family mean contains information on the
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Table 2 Mean estimates (mean) and empirical standard deviations (SD) of QTL effect for different association analyses across a range of
relative QTL effects and heritabilities (h?) in simulated human and pig pedigrees

Human Pig
MG GRAMMAR EBV IF MG GRAMMAR EBV IF

h?  QTL Effect Mean SD  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
30% 0.5% 401 183 255 118 149 083 402 186 409 201 215 1.09 264 205 436 285
1% 397 137 253 091 145 064 370 138 405 152 211 0.82 224 165 4.15 220

2% 398 095 252 065 147 053 399 098 401 104 209 061 195 126 396 1.57

3% 3.97 079 251 053 146 049 396 081 397 086 209 053 190 110 397 125

50% 0.5% 390 186 174 086 220 123 391 197 400 193 155 079 345 269 460 3.14
1% 396 138 177 067 220 095 396 146 397 148 154 063 282 205 408 248

2% 4.04 1.01 181 054 225 070 406 105 403 1.04 157 049 260 1.64 4.04 1.90

3% 405 078 180 042 226 061 406 081 398 083 153 042 247 145 393 1.61

80% 0.5% 401 192 075 044 334 188 407 218 414 181 074 046 463 338 515 3.58
1% 396 134 074 034 325 136 398 152 402 140 074 039 380 266 438 286

2% 394 096 073 023 318 099 391 1.09 398 097 073 035 349 213 414 222

3% 398 080 074 028 325 083 399 089 399 078 074 035 326 1.77 396 1.80

The simulated QTL effect was always 4. MG, measured genotype; GRAMMAR, genome-wide rapid association using mixed model and regression; EBV, estimated

breeding value; IF, ignoring family.

QTL allele expressed by other family members. This “contamination”
of the EBV by family information can affect both power and the FPR
as follows. First, power can be reduced (as shown by results for the
empirical thresholds in Table S1 and Table S2) as many sibs may have
received alternative QTL alleles. This dilutes the SNP effect, and it will
have greater impact in situations in which family information makes
a greater contribution to the EBV. Second, there is a greater risk of
FPRs, as any SNP that differs in frequency between families risks
being correlated by chance with the family mean polygenic value
for the trait and hence shows a significant association with the
EBV. This finding implies that in analyses of real human pedigrees
the type I errors are expected to be even more serious that those
shown here in the simulated pedigrees as a result of minor ethnic
variations from one pedigree to the next.

In the Appendix, we demonstrate how an EBV may be decom-
posed in individual and family information and into major gene and
polygenic (unlinked) effects. With EBVs, it is apparent that the
weighting given to the family mean is always greater than that given to
the Mendelian sampling term, hence the risks of FPRs and reduced
power described previously, with the converse true for residuals. The
relative weightings, and the expected value of the regression of
phenotype on marker, are slightly complex and depend on the trait
heritability, the accuracy with which the family mean is estimated, and
the QTL frequency. Derivations are shown in the Appendix for family
information estimated solely from sib means; however, the same
principles apply to information obtained from other sources. This is
seen in Table S1, where the five-generation pedigree resulted in
a greater FPR than the two-generation pedigree; because the family
mean was estimated more accurately, a greater weighting was applied
to the family mean resulting in a greater FPR.

In species in which the bulk of the information is derived from
progeny testing, such as dairy cattle breeding, the contribution to the
EBV coming from relatives other than the direct offspring becomes
smaller and using EBV will be less detrimental than in the cases
considered here. This is because offspring information directly
estimates the Mendelian sampling term of the animal being evaluated,
and hence assists in estimation of the QTL effect. We acknowledge
that for many species, most commonly in dairy cattle where EBV are
derived for bulls using a large number of daughter records, EBV for
a wide range of traits are routinely available and are a convenient
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source of information. In these cases, the use of deregressed EBV has
been proposed for GWAS and genomic prediction (Garrick et al.
2009). De-regressed EBV take account of the heterogeneous variances
of EBV that are the result of, e.g, different numbers of daughter
records per sire. However, de-regressed EBVs do not remove the
component of the EBV coming from information on other relatives.
To remove effects from other relatives from the (deregressed) EBV,
Garrick et al. (2009) suggested to adjust for the parent average effect.
The use of de-regressed EBVs, adjusted for parent average effects, can
be also relevant when the EBV is the result of repeated measurements
that are not easily replaced by a single trait score for GWAS.

In summary, when each genotyped individual has its own
associated trait score(s), we recommend the use of a measured
genotype approach (1) or an approximation using GRAMMAR.
Although GRAMMAR was once again shown to be conservative and
give an underestimate of the QTL effect, recent developments of the
GenABEL software have accounted for this in the GRAMMAR-
Lambda module that provides an adjusted test static and a correction
for the estimated QTL effect (Svishcheva et al. 2012). At all costs,
naive usage of EBVs incorporating familial information should be
avoided, as use of EBVs will achieve the triple whammy of reducing
power, increasing the FPR and misestimating QTL effect sizes.
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APPENDIX
SOURCES OF INFORMATION IN SNP ASSOCIATION ANALYSES

Decomposing the animal genotype
Assume that the phenotype for individual i is composed of a genotype and a residual (“environmental”) term. Thus:

P = Gi+ E 1

Assuming that we are interested in the contribution of a major (additive) gene to the genotype, the individual’s genotype can be decomposed
in several equivalent ways. First, the genotype can be decomposed into a polygenic component (uncorrelated with the major gene) and the
direct additive effect of the major gene, i.e.:

Gi = Gpoly_i + &i (2

Alternatively, the genotype can be decomposed into the family mean (F) plus a Mendelian sampling term (M), ignoring the major gene effect
for the time being. Thus;

Gi=F+ M; 3)

Following the logic that the overall genotype can be decomposed into a family mean and a Mendelian sampling term, the same can be done

with the polygenic terms, i.e., Fyo, and Mp,y,. Therefore:

Gi = ‘poly_i + Mpoly_i + & (4)

Clearly, the true major gene effect will contribute to the individual’s deviation from the family mean, hence will be contained in the Mi term
in equation 3. However, depending on the allele frequency of the major gene variant, the major gene effect will also contribute to the family
mean. It is easily shown that if the major gene is additive with a frequency of the major allele p, and assuming Hardy-Weinberg equilibrium,
then the expected value of the major gene contribution to the family mean is (p — g)g.

Composition of EBV and residual
Now consider the situation in which we have phenotypic information on an individual and on 7 sibs, who have phenotypes Ps. Deeper pedigree
is ignored. The EBV will be calculated as follows:

EBV; = b1.Pi + b2. 3 %
= b1(F + M; + E) + b2(F + Y M+ Y ) )
= (b1 + b2)F + bL.M; + (bL.E; + b2 3" M5 4 p2 3 )

The first term of equation (5) contains data potentially leading to false positives, i.e., the false-positive signal, as any SNP that differs in

frequency between families and shows a correlation with the family mean may show up as a significant effect. Depending on allele frequency

the family mean will also contain information on the major gene of interest, as well. The second term contains the true major gene effect, i.e.,

the true signal. The third term contains noise that is uncorrelated with the major gene effect in individual i that potentially masks the signal.
The residual term is simply the phenotype for the individual minus the EBV:

Resid = P; — (b1.P; + b2. 3" &)
=(1—=b1—b2)F+ (1-b1)M; ©)

+((1=b1)E— b2y % —p2 3 E)

Note that for the EBV, the weighting given to the family mean is always greater than that given to the Mendelian sampling
term((b1 + b2) > bl), hence a much greater risk of false positives as well as a masking of true effects, whereas the converse is true for
the Residual.

Calculating the weighting factors

The weighting factors b1 and b2 can easily be calculated from standard selection index theory, where Pb = Gv. In this case with one trait the
vector v is simply a unity scalar, P is the phenotypic variance/covariance matrix of the phenotypes, and G is the genetic covariance vector between
the information sources and the individual’s true genotype.
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If the phenotypic variance is set to one, ie., 0'12, =1, and using standard expectations for variance and covariances, then
Cov(Pi, > &) = Cov(Gi, Y- &) = rh? and
Var( > %) = <1 + @), where 7 is the coefficient of relationship between sibs, e.g., 0.5 for full sibs. For the full-sib scenario and

assuming no common environmental effects, after some algebra and removing the common factor (h*/[1 + 0.5(n — 1)h* — 0.25nh*]), we obtain
the following relative weighting factors: b*1 = 1 + 0.5(n — 1)h* — 0.25nh* and b*2 = 0.5n(1 — h?), where * indicates that the terms have been
scaled by the common factor. Therefore, the relative weights depend, as you would expect, on the trait heritability and the information available
to calculate the family mean (n).

Expectations of estimated genotype effects
Let the major gene effect be indicated by a SNP marker, and the regression of the trait on the allele count (e.g., —1, 0, 1) for the marker be defined

as 3.

Estimating the genotype as a fixed covariate in mixed model equations: Let the estimated g be ¢. Invoking the BLUE properties of Mixed
Model BLUP equations, for fixed effects E(¢) = g. Thus, the estimate of g is unbiased.

Estimating the genotype from regression of phenotype on markers, ignoring families: Combining equations 1 and 2, we have

P = Gpuly,i +gi +Ei

Therefore, the expected value of the regression equation is:

E [B (Gpolyj +gi + Ej, marker)]
= E[B(Gpoly_i, marker)} +E [B (gi, marker)] +E [B(E,», marker)]
=0+g+0
=&

Thus, the estimate of g is again unbiased.

Estimating the genotype from regression of EBV or residual on markers: First note that by definition P; = EBV; + Resid ;. Therefore, if
B(P;, marker)is an unbiased estimate of g, then the sum B(EBV;, marker) + B(Resid;, marker)is also an unbiased estimate of g.
Consider B(EBV;, marker). As described previously, EBV; = b1.P; + b2. }_ £ therefore, we wish to find the expected value of the regression:

B(b1.P; + b2. > 2 marker). The first term yields a contribution blg to the expected regression coefficient. The second term is:
b2.8( X &, marker) = b2./3<z % +3 84535 marker). Only B( Y%, marker) has a non-zero expectation; when p#0.5, the in-

dividual and family mean genotype will be correlated. This regression term is simply (p — q)g.
Therefore:

E[B(EBV, marker)] = (b1 + b2(p — q))g Q)

and consequently:

E|[ B(Resid;, marker)] = (1 — b1 —b2(p — q))g ®)

Therefore, the expected effect sizes when using EBVs or residuals are biased downward, with the bias being a function of the heritability, the
quantity of familial information, and the frequency of the major gene.
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