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Abstract

Introduction: Metastases remain the primary cause of cancer-related death. The acquisition of invasive tumour cell
behaviour is thought to be a cornerstone of the metastatic cascade. Therefore, gene signatures related to invasiveness
could aid in stratifying patients according to their prognostic profile. In the present study we aimed at identifying an
invasiveness gene signature and investigated its biological relevance in breast cancer.

Methods & Results: We collected a set of published gene signatures related to cell motility and invasion. Using this
collection, we identified 16 genes that were represented at a higher frequency than observed by coincidence, hereafter
named the core invasiveness gene signature. Principal component analysis showed that these overrepresented genes were
able to segregate invasive and non-invasive breast cancer cell lines, outperforming sets of 16 randomly selected genes (all
P,0.001). When applied onto additional data sets, the expression of the core invasiveness gene signature was significantly
elevated in cell lines forced to undergo epithelial-mesenchymal transition. The link between core invasiveness gene
expression and epithelial-mesenchymal transition was also confirmed in a dataset consisting of 2420 human breast cancer
samples. Univariate and multivariate Cox regression analysis demonstrated that CIG expression is not associated with a
shorter distant metastasis free survival interval (HR = 0.956, 95%C.I. = 0.896–1.019, P = 0.186).

Discussion: These data demonstrate that we have identified a set of core invasiveness genes, the expression of which is
associated with epithelial-mesenchymal transition in breast cancer cell lines and in human tissue samples. Despite the
connection between epithelial-mesenchymal transition and invasive tumour cell behaviour, we were unable to demonstrate
a link between the core invasiveness gene signature and enhanced metastatic potential.
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Introduction

Breast cancer is the leading cause of cancer-related death

amongst women worldwide [1]. In most cases, it is not the primary

tumour that is lethal but the development of distant metastases. In

order to metastasize, tumour cells need to break away from the

primary site to bridge the gap with the surrounding lymph or

blood vessels. Once blood borne, the tumour cells usurp the

bloodstream to passively reach distant organs where they

extravasate to form metastatic deposits. Numerous biological

processes including cell motility, the acquisition of an invasive

phenotype by cancer cells, angiogenesis and anti-apoptosis

orchestrate the metastatic process [2][3].

One of the first steps of the metastatic cascade is the acquisition

of a motile and invasive phenotype by cancer cells. Recently, it has

been recognized that cancer cell invasion is a heterogeneous

process covering at least five distinct patterns including rounded/

amoeboid migration, Epithelial-Mesenchymal Transition (EMT)

driven migration, multicellular streaming, collective invasion and

expansive growth [4]. Only the latter pattern is a passive process in

which cancer cells invade the surrounding tissue as a consequence

of being pushed by the expanding body of the tumour. All other

patterns require a certain degree of plasticity allowing cancer cells

to adapt to diverse structural, molecular and even adverse

microenvironmental conditions. In addition, cancer cells are

allowed to switch between different invasive patterns as the

microenvironmental conditions change along their journey,

leading to the existence of transition states that further extravagate

the complexity of the process [4].

The dynamic behaviour of cancer cells during invasion is,

underpinned by changes in the expression of multiple genes, both

inside the cancer cells and in host cells residing in the surrounding

stroma. These genes can be regarded as biomarkers to monitor the

presence of these invasive cell populations in human samples. The

identification of such biomarkers has potential clinical value, as

they might assist in the identification of patients with a higher
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propensity of developing distant metastases. Also, the search for

biomarkers can result in the identification of novel targets for

therapy. In case of cancer cell invasion, blocking such targets

might lead to the confinement of the primary tumour to its original

site, reducing cancer to a local and more curable problem.

However, due to complex biology of cancer cell invasion,

identifying such biomarkers is a daunting task.

The present study aims at identifying biomarkers for cancer cell

invasion by taking advantage of a collection of recently published

gene signatures specific for invasive or motile cells derived through

genome-wide gene expression profiling [5–22]. Given the high

frequency of false positive results associated with this kind of

experiments, we hypothesize that genes represented multiple times

in these profiles have a higher propensity of being true biomarkers

for tumour cell motility and invasion as compared to genes

identified only once. The identified biomarker panel was validated

using a series of in silico experiments and its translational relevance

was analysed using a collection of publicly available gene

expression profiles derived from approximately 2500 breast

tumour samples.

Materials and Methods

Gene Selection
In order to identify a set of marker genes related to invasion, we

adopted the following strategy. We reviewed the literature in

search for studies reporting on gene expression profiles of motile or

invasive cells, not necessarily related to cancer. The included gene

signatures and their corresponding references are summarized in

Table 1. Two gene signatures were generated using publicly

available data sets (GSE11279 and GSE12917) (Figure S1). To

allow for cross-study comparability we translated the gene

identifiers into gene symbols. Next we performed an overrepre-

sentation analysis to identify genes that were reported 2, 3, 4, 5

and so on times across different studies. We reason that genes

represented multiple times have a higher propensity of being true

biomarkers of tumour cell invasion. To evaluate the significance of

the overrepresentation we first identified the invasiveness gene

universe, which is composed of all genes that have been reported

in the collection of invasion-related gene signatures. Next, we

generated gene lists by randomly selecting genes from the gene

universe. The number of the random gene lists equalled the

number of the gene lists in the original collection. Also, the

number of genes included in the random gene lists matched the

number of genes included in the original gene signatures. Finally,

we identified the genes that were selected 2, 3, 4, 5 and so on times

in the collection of random gene lists. As such, we obtained

expected overrepresentation frequencies and compared those to

the observed overrepresentation frequencies using a Chi-square

test. The list of biomarkers related to tumour cell invasion,

hereafter termed Core Invasiveness Gene (CIG) signature, is

composed of those genes for which the observed overrepresenta-

tion frequency surpassed the expected overrepresentation fre-

quency given a significant P-value for the Chi-square test.

Validation of the CIG Signature
To validate the CIG signature we downloaded 3 data sets of

gene expression profiles of breast cancer cell lines (Gene

Expression Omnibus: GSE12777 [23] and GSE16795 [24]; Array

Express: E-TABM-157 [25]. Each expression data set was

normalized using GCRMA and probe sets with a fluorescence

intensity above log2(100) in at least 10% of the arrays were filtered

in. In addition, we filtered out all probe sets with inconsistent

expression data. Therefore, we adopted the following strategy

using the breast cancer cell line data sets GSE12777, GSE16795

and E-TABM-157. First, we identified the cell lines commonly

profiled in all three data sets (N = 21). Next, we calculated

Spearman correlation coefficients for all common probe sets

(22.277) between each pair of data sets, resulting in three

correlation coefficients per probe set. Those probe sets with a

median correlation coefficient less than 0.50 (N = 11.689) were

considered inconsistent and were filtered out for further analysis.

The breast cancer cell lines were classified as invasive and non-

invasive according to the data published by Neve et al [25]. An

arbitrary cut-off value of 500 cells per 75.000 seeded cells in a

modified Boyden chamber assay was chosen to determine the

classification. The CIG signature was applied onto the data sets

using principal component analysis (PCA). The centroid of the

invasive and the non-invasive breast cancer cell lines on the 2D-

scatter plot representation of the PCA was determined. The

Euclidean distance between both centroids was calculated and its

significance was assessed using class label permutation (N = 100).

To evaluate our hypothesis that genes identified multiple times

across different studies are robust biomarkers of tumour cell

invasion, we selected 100 random gene lists of equal length to the

CIG signature from the invasiveness gene universe (vide supra).

Each of these signatures was applied onto the data sets using PCA.

The Euclidean distances between the centroids of invasive and the

non-invasive breast cancer cell lines for the random gene lists were

calculated and statistically compared with the Euclidean distance

obtained using the CIG signature.

Finally, we evaluated the robustness of the individual CIGs by

means of their regression coefficients for the first metagene in each

data set. The sign and absolute value of the regression coefficients

for each CIG was compared between the data sets. Similar values

for both criteria are considered as evidence for robustness. The

median values of these regression coefficients were used to

calculate the CIG expression for new samples (vide infra).

Association between CIG Expression, Epithelial-to-
Mesenchymal Transition (EMT) and Metastatic Potential

To investigate the relationship between CIG expression and

EMT we downloaded 2 data sets of time series of tumour cells

forced to undergo EMT using either TGFb alone (GSE17708)

[26] or in combination with TNFa (GSE12548) [27]. To delineate

EMT-driving mechanisms represented by the CIG signature we

analysed a data set on HMLE cells (GSE24202), retrovirally

transduced with vectors encoding EMT-inducing factors (TWIST,

SNAI1, GSC, CDH1, TGFb) [28]. To investigate the relationship

between CIG expression and metastatic propensity we analysed a

data set generated on 4T1-derived cell lines (GSE11259) [29]. The

4T1 tumour is a clinically relevant murine model of spontaneous

breast cancer metastasis. The distinct 4T1-derived cell lines (4T1,

67NR and 66cl4) have been characterized for expression of EMT-

features, in vitro invasiveness and in vivo metastatic ability in

previous studies [29]. For all data sets, raw gene expression data

were preprocessed as described before. CIG expression was

calculated as described above using the informative genes only and

compared between different groups using the Kruskal-Wallis test

for multiple groups followed by post hoc testing (Tukey HSD)

when appropriate. Changes in CIG expression in function of

exposure time was evaluated using Spearman correlation coeffi-

cients.

CIG Expression in Human Breast Cancer
To evaluate the biological significance of CIG expression in

breast cancer, 12 data sets vouching for a total of 2420 human

breast tumours were downloaded. The incorporated data sets
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[30-40] are summarized in Table 2. Each of these data sets was

generated on the Affymetrix HGU133A platform. Raw expression

data were normalized using the frozen RMA-algorithm to allow

for cross-data set comparisons. Data preprocessing was done on

the combined data set as described above resulting in 9.889

informative probe sets. Distant-metastases-free survival (DMFS)

data were retrieved when available. CIG expression was calculated

as described above.

Using the Single Sample Predictor (SSP)-algorithm [41] we

classified the samples according to the molecular subtypes. The

subtype-specific classification scores, cell proliferation scores and

Risk-of-Relapse (ROR)-scores were retained for further analysis.

Using correlation-based classifiers, each sample was classified

according to the nine-cell line Claudin-low predictor [42], the

wound healing response (WHR) signature [43], a stromal gene

expression signature (STR) [44], the invasiveness gene signature

(IGS) [45], the 70-gene prognostic signature (70G) [46], a classifier

for CD44+ cells [47], a mammosphere-derived classifier [48] and

the differentiation predictor model [49]. The pathway signatures

described by Gatza and colleagues [50] and a VEGF-activation

signature [51] were applied as outlined in the original manuscripts.

To explore the link between deregulated activity of transcription

factors involved in EMT on the one hand and CIG expression on

the other hand we constructed and applied SNAIL, TWIST, GSC

and E-Cadherin activation signatures. A TGFb-specific gene

signature was not constructed, as it was available from the

publication by Gatza and colleagues [50]. Core-EMT metagene

expression was calculated using the core-EMT signature genes

reported by Taube and colleagues [28] (Figure S2–Figure S3).

Signature classification scores, pathway activation scores and

metagene expression data were subjected to unsupervised hierar-

chical cluster analysis with the Spearman correlation coefficient as

distance measure and complete linkage as the dendrogram

drawing method. Cox regression analysis was used to test for

associations with DMFS data. ROR scores were not included as

they were designed to predict relapse-free survival instead of

DMFS. Multivariate analysis was performed in the backward

setting and only variables significantly associated with DMFS in

the univariate setting were included. Two multivariate models

were constructed. In a first model, we analysed the gene signatures

associated with the molecular subtypes, patient prognosis, tumour-

associated stroma, pathway activation, stem cell biology and EMT

separately. In a second model, the significant variables from the

first model were included.

Results

Identification and Validation of the CIG Signature
All gene signatures related to cell motility and invasion used in

the overrepresentation analysis are provided in Table 1. All

signatures combined represent a total of 2636 unique genes, from

which 646, 202, 62, 16, 6 and 3 genes were represented 2, 3, 4, 5,

6 and 7 times respectively. We determined that the expected

number of genes represented 2, 3, 4, 5, 6 and 7 times is

respectively 1065, 376, 87, 14, 1 and 1. Both distributions were

significantly different (Chi-Square test, P,0.001). The largest gene

set for which the observed number exceeds the expected number

was termed the Core Invasiveness Gene signature. The genes

included in this signature are BIRC3, C1S, CDH1, CTGF, FN1,

c-FOS, IGFBP5, JUN, LTBP1, LYN, S100A8, SOX4, SPP1,

STC1, THBS1 and TNFAIP3. The interaction matrix showing

Table 1. Collection of gene signatures used for overrepresentation analysis.

Description Gene Signature # Genes % Original Reference

1. Differentially expressed genes by TGFb in p53-depleted MDA-MB-231 cells 105 5 Adorno et al. 2009 [5]

2. Coculture of mesenchymal stromal cells with CD133+ hematopoietic stem cells 21 2 Alakel et al. 2009 [6]

3. TGFb-induced EMT in HMECs predisposed to ionizing radiation 32 3 Andarawewa et al. 2007 [7]

4. Trophoblast invasion-related genes 648 7 Bilban et al. 2009 [5]

5. Overexpression of Integrin a6b4 in MDA-MB-435 cells 263 10 Chen et al. 2009 [5]

6. Ezrin knockdown in SW480 26 2 GSE11297

7. Comparison of MDA-MB-231 cells with wild-type SNAIL and dominant negative SNAIL 50 2 Fabre-Guillevin et al. 2008 [10]

8. Comparison of MDA-MB-435 cells with wild-type NM23-H1 and mutant NM23-H1 44 3 Horak et al. 2007 [11]

9. Functional implications of non-lens bc-Cristallin and Refoil Factor Complex 55 6 Liu et al. 2008 [12]

10. Gene expression profiling of central and peripheral zones of pancreatic carcinoma 756 12 Nakamura et al. 2007 [13]

11. Normal HMECs vs. HMECs transfected with constitutively active RhoA 135 2 GSE12917

12. Overexpression of classIIb HLH factors E2-2A and E2-2B in MDCK cells 147 5 Sobrado et al. 2009 [14]

13. Genes epigenetically regulated in poorly metastatic MDA-MB-468 cells vs the highly
metastatic MDA-MB-468LN variant

136 2 Rodenhiser et al. 2008 [15]

14. Expression profiling of migratory cells in the Drosophila ovary 33 3 Wang et al. 2006 [16]]

15. Transfection of MIR-520C in MCF-7 cells 113 4 Huang et al. 2008 [17

16. Transfection of MIR-373 in MCF-7 cells 128 7 Huang et al. 2008 [17

17. Comparison of mesenchymal and epithelial cells 186 3 Choi et al. 2010 [18]

18. Genes differentially expressed in mesenchymal stem cells induced by CCL25 105 3 Binger et al. 2009 [19]

19. Genes differentially expressed across a collection of 10 migratory glioma cell lines 89 1 Demuth et al. 2009 [20]

20. Genes differentially expressed in MDA-MB-231 cells after CD146 downmodulation 45 3 Zabouo et al. 2009 [21]

21. Keratinocyts treated with TGFb to suppress proliferation but not migration 92 4 Cheng et al. 2008 [22]

doi:10.1371/journal.pone.0089262.t001
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the relation between CIGs and the included gene signatures is

shown in Figure 1.

To validate the CIG signature we performed PCA on publicly

available gene expression data sets of breast cancer cell lines

(GSE12777, GSE16795, E-TABM-157). The Euclidean distance

between the centroids of the invasive and the non-invasive breast

cancer cells was respectively 15.587, 26.907 and 12.361. Class

label permutation demonstrated that the observed Euclidean

distances were significantly greater (all Ps,0.001) than the

expected Euclidean distances (GSE12777: 6.575(6.016–7.134);

GSE16795: 4.296(3.686–4.906) and E-TABM-157: 5.060(4.695–

5.426)). Scatter plots and distributions of the expected Euclidean

distances after class label permutation are displayed in Figure 2.

To test whether the CIG signature performs better than sets of

randomly selected genes in segregating the invasive and non-

invasive cells, we performed PCA using 100 sets of 16 genes

randomly selected from the list of 2636 unique genes represented

by the original gene signatures included in this analysis. The

average Euclidean distance between the centroids of the invasive

and non-invasive cells for the randomly selected genes sets

(GSE12777: 7.036(6.545–7.527); GSE16795: 7.814(7.293–8.336)

and E-TABM-157: 4.078(3.697–4.456)) is significantly smaller

than the Euclidean distance observed using the CIG signature (all

Ps,0.001). Distributions of the random Euclidean distances are

provided in Figure 2.

To evaluate the robustness of the CIGs we compared the

regression coefficients of the CIGs in the first principal compo-

nents between the different data sets (Figure 3). The regression

coefficients in all 3 data sets show similar trends for both

directionality (the sign of the regression coefficient) and amplitude

(magnitude of the absolute value of the regression coefficient),

except for STC1, S100A8 and LTBP1. The range of the

regression coefficients for those genes crosses zero. For c-FOS,

only 1 data point is reported as the gene was excluded from the list

of informative genes in the remaining data sets (GSE12777 and

GSE16795). Altogether, our data indicate that the greatest amount

of variation in CIG expression resides in the difference between

invasive and non-invasive breast cancer cells and that the set of

CIGs are robust biomarkers to evaluate the invasive ability of

tumour cells by gene expression analysis.

Association between CIG Expression and EMT
To evaluate the association between CIG expression and EMT

we analysed 2 publicly available gene expression data sets of a time

series of cancer cell lines treated with TGFb alone (GSE17708) or

in combination with TNFa (GSE12548). In both data sets we

observed a significant differences in CIG expression with respect to

the treatment time (Kruskal-Wallis: P,0.001 and P = 0.020

respectively). In addition, the CIG expression was positively

correlated with the treatment time in both data sets (Spearman

correlation: Rs = 0.757, P,0.001 and Rs = 0.514, P = 0.020

respectively). Results are displayed in Figure 4A and

Figure 4B. These data indicate that the CIG expression increases

in conditions with more pronounced EMT.

Table 2. Gene expression data sets used throughout this study.

Group ID Repository Platform N DMFS Remark Reference

Breast cancer
cell lines

E-TABM-157 Array express HGU133A 51 NA Breast cancer cell line collection Neve et al. 2006 [25]

GSE12777 GEO HGU133PLUS2 39 NA Breast cancer cell line collection Hollestelle et al. 2009 [24]

GSE16795 GEO HGU133A 51 NA Breast cancer cell line collection Hoeflich et al. 2009 [23]

GSE11279 GEO HGU133PLUS2 4 NA Ezrin knockdown SW480 –

GSE12917 GEO HGU133PLUS2 6 NA Normal and RhoA-transfected
HMECs

–

GSE12548 GEO HGU133PLUS2 20 NA EMT time series in ARPE19 Takahashi et al. 2010 [27]

GSE17708 GEO HGU133PLUS2 26 NA Time course of A549 treated
with TGFb

Sartor et al. 2010 [26]

GSE24202 GEO HGU133A 21 NA HMLEs transfected
with EMT-inducers

Taube et al. 2010 [28]

GSE11259 GEO HGU133v2 9 NA [Non]Metastatic 4T1 clones Lou et al. 2008 [29]

Breast cancer
patient samples

GSE1456 GEO HGU133A 159 – None Pawitan et al. 2005 [30]

GSE2034 GEO HGU133A 286 286 Lymph node negative cohort Wang et al. 2005 [31]

GSE2603 GEO HGU133A 99 82 None Minn et al. 2005 [32]

GSE2990 GEO HGU133A 189 125 Cohort used for generation of GGI Sotiriou et al. 2006 [33]

GSE4922 GEO HGU133A 289 – None Ivshina et al. 2006 [34]

GSE5327 GEO HGU133A 58 58 ER negative cohort Minn et al. 2007 [35]

GSE7390 GEO HGU133A 198 198 Lymph node negative cohort Desmedt et al. 2007 [36]

GSE11121 GEO HGU133A 200 200 Lymph node negative cohort Schmidt et al. 2008 [37]

GSE12093 GEO HGU133A 136 – ER+, tamoxifen treated Zhang et al. 2009 [38]

GSE17705 GEO HGU133A 298 298 ER+, tamoxifen treated Symmans et al. 2010 [39]

GSE25055 GEO HGU133A 310 66 ErbB2-, Anthracyclin/Taxane-treated Hatzis et al. 2011 [40]

GSE25065 GEO HGU133A 198 198 ErbB2-, Anthracyclin/Taxane-treated Hatzis et al. 2011 [40]

doi:10.1371/journal.pone.0089262.t002
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Next we analysed the expression of the CIG signature in

function of the induction of EMT downstream of several EMT-

inducing factors (TWIST, SNAIL, GSC and TGFb) or loss of E-

Cadherin expression (GSE24202). Again, significant between-

group differences in CIG expression were observed (Kruskal-

Wallis: P,0.001). Data are shown in Figure 4C. Post hoc testing

demonstrated that CIG expression increased relative to the control

level upon overexpression of TWIST (P,0.001), SNAIL (P,

0.001), GSC (P,0.001) or TGFb (P,0.001) to the HMLE cells.

Silencing of E-Cadherin in HMLE cells did not significantly alter

the level of CIG expression relative to the control level (P = 0.799).

Interestingly, no significant differences (P.0.050) were observed

for CIG expression upon overexpression of TWIST, SNAIL or

TGFb. However, CIG expression was significantly elevated upon

overexpression of GSC relative to TWIST, SNAIL and TGFb (All

Ps,0.001).

Finally, we evaluated the significance of CIG expression in

function of metastatic ability. Therefore we analysed the gene

expression profiles of cell lines derived from a 4T1 tumour. The

distinct 4T1-derived (4T1, 66cl4 and 67NR) cell lines exhibited

different features with respect to EMT, in vitro invasiveness and

in vivo metastatic ability. The CIG expression differed significantly

between the three cell lines (Kruskal-Wallis: P = 0.001). Data are

shown in Figure 4D. Post hoc testing revealed a significantly

lowered expression in the 4T1 cells relative to the 66cl4 (P = 0.001)

and the 67NR cells (P = 0.004). Interestingly, the 4T1 cells have

the highest metastatic capacity although they do not express

mesenchymal markers such as vimentin and N-Cadherin, whereas

the 67NR cells have a mesenchymal phenotype but fail to

metastasize. These data again demonstrate the association

between EMT and CIG expression and also suggest that EMT

as such may not be a prerequisite for elevated metastatic potential.

Translational Significance in Breast Cancer
Twelve gene expression data sets, vouching for a total of 2420

breast tumour samples, were retrieved from GEO. Each of the

samples was classified according to a set of published gene

signatures. In addition, we generated SNAIL, TWIST, GSC, and

E-Cadherin specific gene signatures (Figure S2–Figure S3).
Unsupervised hierarchical clustering was performed on the

classification scores (including CIG expression) and pathway

activation scores. The resulting heatmap is shown in Figure 5.

We observe 3 clusters linked to the differentiation status of breast

cells: mature luminal cells, luminal progenitor cells and mammary

stem cells. The cluster related to the mature luminal cells includes

gene signatures associated with slowly proliferating ER+ breast

tumours (Luminal A). Conversely, the cluster related to the

luminal progenitor cells is predominated by gene signatures of

highly proliferative tumours (Luminal B, Basal-like and ErbB2+)

and includes the poor prognosis signatures (IGS, 70GENE, WHR,

ROR_S and ROR_P). This observation agrees with the hypoth-

esis that genes associated with cell proliferation are the main

drivers of these signatures. As expected, the Luminal B gene

signature is also associated with elevated ER signalling. The third

cluster contains gene signatures that are associated with stem cell

biology and incorporates most of the EMT-related gene signa-

tures, including the one representing Claudin-low breast tumours.

The EMT-related signatures do not reveal a coherent cluster

pattern with TWIST- and E-Cadherin-specific signatures allo-

cated to the luminal progenitor cell cluster, the TGFb- and

Figure 1. Core invasiveness genes/gene signature collection Interaction matrix. Interaction matrix representing the core invasiveness
genes in the X-axis and the gene signature collection used for the overrepresentation analysis in the Y-axis. A blue cell indicates membership of the
associated CIG in the corresponding gene signature. Most of the signatures count at least 2 CIGs in their gene lists except for the gene signature
indentified in migratory glioma cells.
doi:10.1371/journal.pone.0089262.g001

A Gene Signature Reflects EMT but Not Metastases

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e89262



Figure 2. Validation of the CIG signature using breast cancer cell line gene expression data. The top row (A–C) shows the scatter plot
representations of the PCAs performed on the distinct breast cancer cell lines data sets (GSE12777, GSE16795 and E-TABM-157) using the CIG
signature. The X-axis represents the first principal component; the Y-axis represents the second principal component. A blue dot indicates a non-
invasive breast cancer cell line and a red dot indicates an invasive breast cancer cells line. The black dots represent the centroids of the invasive and
non-invasive cell lines. The middle row (D–F) shows the distributions of the Euclidean distances between the centroids of the invasive and non-
invasive cell lines after class label permutation. The dashed vertical line indicates the true Euclidean distance between the centroids of the invasive
and non-invasive cell lines. The lower row (G–I) represents the distributions of the Euclidean distances between the centroids of the invasive and non-
invasive breast cancer cell lines based upon random selections of 16 genes from the group of 2636 genes obtained from the collection signatures
associated with cell motility or invasion. The dashed vertical line indicates the Euclidean distance between the centroids of the invasive and non-
invasive cells based on the 16 CIGs. These data demonstrate that the CIG signature is able to segregate invasive and non-invasive breast cancer cell
lines and performs better then random selections of genes, which validates our gene selection strategy.
doi:10.1371/journal.pone.0089262.g002

Figure 3. PCA for the CIGs on the breast cancer cell line data sets. Regression coefficients for the first principal components obtained by
performing PCA for the CIGs on the breast cancer cell line data sets. The X-axis represents the 16 CIGs, the Y-axis represents the regression
coefficients. The black, red and green dots are indicative for respectively GSE12777, GSE16795 and E-TABM-157. Positive and negative regression
coefficients indicate respectively pro-invasive and contra-invasive genes. The magnitude of the regression coefficient reflects the importance of the
corresponding gene in determining the CIG expression. The horizontal dashed line indicates a regression coefficient of zero. Some genes are
represented less than 3 times due to the fact that not all CIG were amongst the informative gene list in every cell line data set. Most of the CIGs,
except for S100A8, STC1 and LTBP1 show consistent regression coefficients indicating that they have a similar behaviour with respect to the
prediction of the invasiveness phenotype of breast cancer cells in all 3 data sets.
doi:10.1371/journal.pone.0089262.g003
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SNAIL-specific signatures allocated to the mammary stem cell

cluster and the GSC-specific signature allocated to the mature

luminal cell cluster. Of note is the hierarchy of the identified

subgroups in the cluster dendrogram, which shows that the

mammary stem cell cluster is more closely related to the mature

luminal cell cluster and not the luminal progenitor cell cluster.

The CIG signature is contained in the EMT/mammary stem

cell cluster, corroborating our view that CIG expression identifies

breast tumour samples with a mesenchymal gene expression

profile. To further elaborate on the biological significance of the

CIG signature, we compared the classification scores of each

signature with the CIG expression data. Due to large amount of

samples, all P-values show at least a trend towards significance (P,

0.1). The 10 most correlated gene signatures have correlation

coefficients of at least 0.40 and clearly establish the relationship

between CIG expression and EMT in breast cancer. Correlation

coefficients are provided underneath the heatmap in Figure 5.

To associate CIG expression and EMT with metastatic

potential in human breast cancer, we performed survival analysis

relating all analysed gene signatures with Distant Metastasis Free

Survival (DMFS). We included 1508 expression profiles of patients

with breast cancer, from which 481 patients developed distant

metastases. The median follow-up for patients with and without

metastatic disease is 2.57 years and 8.11 years respectively. In

univariate analysis, the CIG signature and 9 additional signatures

were not associated with DMFS (P.0.050). Results are shown in

Table 3. Using a 2-step multivariate analysis on the significant

variables from univariate analysis, we identified 7 parameters that

were independently associated with DMFS. The mammosphere

signature (b= 0.597; P = 0.008) and the gene signatures associated

with MYC- (b= 0.531; P,0.001), P53- (b= 0.682; P,0.001),

TWIST- (b= 0.839; P,0.001), and SNAIL-activation (b= 0.863;

P = 0.049) are associated with longer DMFS. The gene signatures

for the Luminal B-phenotype (b= 1.771; P,0.001) and CD44+
breast tumour cells (b= 2.009; P,0.001) demonstrate the opposite

pattern. When comparing the different datasets with respect to

DMFS using Kaplan-Meier analysis, we found significant (P,

0.001) dataset-specific differences. Results are shown in Figure
S4. Therefore we decided to analyse each of the independent

prognosticators in a multivariate model incorporating data set

membership. All 7 variables retained their significance (P,0.05),

indicating that the identified differences are not data set-specific.

Discussion

In the present study we describe the identification of a set of

biomarkers related to the invasive behaviour of (breast) cancer

cells. We hypothesized that genes represented multiple times in a

set of cell motility- and invasion-related gene lists have a higher

propensity of being true biomarkers for the above-mentioned

tumorigenic processes. We validated our signature by analysing 3

publicly available gene expression data on breast cancer cells,

which were grouped according to their invasive potential using

data published by Neve et al [25]. The robustness of the

differential expression profile of the identified genes across all 3

data sets and the superior discriminative power to distinguish

between invasive and non-invasive breast cancer cells with respect

to random gene sets validates our hypothesis. Since we classified

breast cancer cells according to their invasive potential, we named

the identified gene list ‘‘Core Invasiveness Gene’’ signature.

Mining of gene functions associated with the core invasiveness

genes suggests a tight link between CIG expression and EMT, a

process in which tumour cells lose their epithelial phenotype to

acquire a more mesenchymal phenotype. THBS1, FN1, CTGF

Figure 4. Boxplots showing the relation between CIG expression and EMT. The top row (A–B) represents a time series of different cell lines
treated with EMT-inducing factors. These data demonstrate that CIG expression increases by incubation time. The lower left boxplot (C) indicates that
CIG expression is induced by all of the known EMT-inducing factors, but most strongly downstream of GSC. The lower right boxplot (D) indicates that
CIG expression does not necessarily correlate with metastatic capability as the cell line with the highest metastatic capability has the lowest CIG
expression.
doi:10.1371/journal.pone.0089262.g004
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and E-Cadherin are bona fide markers of EMT [52]. LYN is

reported to be a top-ranked EMT signature gene and RNAi-

mediated knockdown of LYN inhibited cell migration and

invasion [53]. SPP1 is a member of a group of EMT-related

genes identified by comparing the expression profiles of melanoma

samples from patients with and without distant metastases [54].

Figure 5. Association between published gene signatures and the CIG signature in human breast cancer. Heatmap showing the
association between the expressions of several published gene signatures and the CIG signature in a set of approximately 2.500 breast tumour
samples. The rows and columns represent the set of analysed gene expression signatures organized into groups related to prognosis, EMT, pathway
activation, stem cell biology, breast tumour heterogeneity and stromal involvement. The cells at the intersection between the rows and the columns
are colour-coded with red indicating a positive correlation between the respective gene signatures and white indicating a negative correlation.
Colour saturation is associated the magnitude the correlation coefficient. The dendrogram is divided in 3 groups (red, blue and green) of strongly
associated gene signatures. Underneath the heatmap the Spearman correlation coefficients between the CIG signature and the remaining signatures
is represented as well as the ten signatures most strongly associated with the CIG signature.
doi:10.1371/journal.pone.0089262.g005
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The AP1-complex members c-JUN and c-FOS are involved in the

activation of the promoter of MMP1 in MDA-MB-321 breast

cancer cells secondary to the activation of ZEB1, a transcription

factor involved in EMT [55]. In human immortal keratinocytes,

EMT was induced by AP1-complexes downstream of TGFb
signalling [56]. The association between CIG expression and

EMT was further explored through a set of in silico experiments.

We observed that CIG expression increases in cell lines as they

were treated for increasing amounts of time with EMT-inducing

factors. Also, overexpression of SNAIL, TWIST, GSC and TGFb
in HMLE cells led to augmented CIG expression relative to the

control or mock-transfected conditions. Surprisingly, knockdown

of E-Cadherin in the same cell line did not result in augmented

CIG expression, although E-Cadherin is included in the list of core

invasiveness genes. Finally, the analysis of transcriptional profiles

of about 2500 breast tumour samples revealed that CIG

expression in human breast cancer is associated EMT-related

features and with the Claudin-low phenotype, a breast cancer

subtype characterized by the elevated expression of mesenchymal

markers [28][42].

One of the goals to embark on the quest of identifying

biomarkers associated with increased invasiveness was the premise

that such biomarkers could aid in identifying patients at risk of

development of distant metastases. In contrast to our expectations,

we found that CIG expression or the presence of EMT-associated

features does not correlate with metastatic potential. CIG

expression was lowered in highly metastatic clones derived from

the murine 4T1 breast cancer cell line. The analysis of CIG

expression in function of the development of distant metastases

demonstrated that patients with elevated CIG expression levels do

not exhibit a poor prognosis profile. The analysis of other EMT-

associated gene signatures in this study supported this finding and

corroborates previous studies that failed to demonstrate a link

between EMT and metastatic potential [28] [44]. On the other

hand, several studies did report that EMT was associated with the

absence of a (complete) pathological response to neoadjuvant

chemotherapy [28] [44], which can be explained by the fact that

tumour cells undergoing EMT acquire a stem cell phenotype [57–

58]. Also in this study, we observed that tumour samples with

elevated expression levels of EMT-related features exhibit stem

cell characteristics.

In general, our data seem to suggest that EMT-like invasive

tumour cell behaviour is not required for successful metastasis.

Nevertheless, several points need to be considered prior to taking

this conclusion for granted. First, the invasive behaviour might

reside in a small fraction of tumour cells. Therefore, the

contribution of these cells to the global gene expression profile

of breast tumour samples is limited which might obscure their

association with the development of distant metastases. This

hypothesis however does not apply to the expression data obtained

from the clones of the murine 4T1 cell line and therefore will not

provide the sole explanation for our observations. Second, the

acquisition of an mesenchymal phenotype might not be sufficient

to capture the metastatic potential. Fibroblasts for example, which

are characterized by a mesenchymal expression profile [59], do

not metastasize. In addition to becoming invasive, tumour cells

need to be able to disseminate and survive in the blood stream in

order to spread to distant organs. The role of angiogenesis, and by

extension the tumour host, in the metastatic cascade should also be

considered.

In spite of the above, the most likely hypothesis states that EMT

as such is not a prerequisite for successful metastasis. Several lines

of evidence obtained in this study support this view. The 4T1-

clone 67NR has low expression of E-Cadherin and elevated
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expression of vimentin and N-Cadherin. CIG levels in this cell line

were significantly elevated when compared to the parental 4T1

cell line, which expresses E-Cadherin and is characterized by a

more epithelial phenotype. Nevertheless, the metastatic potential

of the 4T1 cell line is far superior, indicating that EMT is not

always necessary for the formation of metastases. A parallel can be

drawn between the observations made on the 4T1 clones and the

situation observed in inflammatory breast cancer (IBC). IBC is an

aggressive subtype of locally advanced breast cancer with a

significant degree of local invasion and distant metastasis [60].

Tumour cells from patients with IBC often express E-Cadherin

[61–63], which has been regarded as a paradox due to the high

metastatic nature of IBC. In this context, we observed that EMT is

not more pronounced in IBC as compared to non-IBC breast

cancer samples (data not shown). Studies on the SUM149 IBC cell

line actually demonstrated that the invasive nature of IBC tumour

cells critically depends on the overexpression of functional E-

Cadherin and the influence thereof on MMP1 and MMP9

expression [64]. Another intriguing observation, made by

Giampieri and colleagues [65], suggests that reduced levels of

TGFb, a negative regulator of E-Cadherin through SNAIL and

TWIST [66–67], prevent tumour cells from moving individually

but do not inhibit cells moving collectively. Moreover, cells

moving collectively were capable of lymphatic invasion but not

blood-borne metastasis. Thus, lowered TGFb levels would allow

tumour cell clumps to home to the lymphatic system. This view

can be easily translated into the pathological hallmark of IBC,

namely tumour emboli in the dermal and parenchymal lymph

vessels [68]. In our data, reduced SNAIL activation is an

independent predictor of the IBC phenotype and gene expression

data did suggest that TGFb-activation in IBC is indeed lowered

(data not shown).

A last point that needs to be considered with respect to this

study relates to the fact that EMT is an extremely dynamic

process, governed by a plethora of transcription factors. The

acquisition of a mesenchymal morphology is the end-point of

EMT but the routes towards the end-point might differ between

conditions and cells. Therefore, different EMT-signatures might

represent different flavours of EMT, driven by alternative

pathways, and conclusions with respect to EMT based on only

one EMT-related signature should be made with care. In light of

this statement, we observed a significant overexpression in IBC of

2 CIGs, associated with the NFkB pathway. The NFkB

transcription factor has been associated with EMT [69] and

previous studies have shown that NFkB is an important molecular

characteristic of IBC [70–71].

In conclusion, the data presented in this paper add to the

discussion related to the importance of invasion and EMT for the

development of distant metastases. Given the concerns discussed

above, a definitive conclusion cannot be drawn. However, our

data do show that a clear and positive relation between EMT and

metastatic potential is not readily observable. In fact, our data

suggest that the opposite might be true, although the magnitude of

the hazard ratios requests caution. Specifically due to the large

amounts of samples analysed in this paper, small but biologically

irrelevant differences can become significant. Whether these

observations apply only to EMT or can be extended to other

types of invasion (e.g. collective invasion) remains unclear. Either

way, our data do put forward a list of research question that

warrant further investigation.

Supporting Information

Figure S1 Identification of genes differentially ex-
pressed in response to Ezrin knockdown or RhoA
activation. To identify genes associated with knockdown of

Ezrin, a critical regulator of the actin cytoskeleton we downloaded

data set GSE11279. Raw expression data were normalized using

the frozen RMA algorithm and probe sets with fluorescence

intensities above log2(100) in at least 10% of the cases were filtered

in. Using significance analysis of microarrays (SAM) we identified

differentially expressed genes between SW480 cells treated with

and without siRNA against Ezrin. Due to the small sample size

(N = 4) we decided to use a d-value corresponding to a false

discovery rate (FDR) of 10% resulting in 31 significant probe sets.

The corresponding SAM-plot is provided in (A). The list of 31

probe sets corresponded to 26 unique genes. This list was included

in the collection of cell motility and invasion related gene lists used

for the overrepresentation analysis. To identify genes associated

with activation of RhoA, a critical regulator of the cell motility via

its function in modulating the actin cytoskeleton we downloaded

data set GSE12917. Data were preprocessed as described before.

Using SAM we identified differentially expressed between normal

HMECs and HMECs transfected with RhoAG14V, a constitu-

tively active mutant of RhoA. A d-value was chosen as such that

the FDR was less than 5%, resulting in 170 significant probe sets.

The corresponding SAM-plot is provided in (B). The list of 170

probe sets corresponded to 135 unique genes. This list was

included in the collection of cell motility and invasion related gene

lists used for the overrepresentation analysis.

(TIF)

Figure S2 Generation of the TWIST, SNAIL, GSC and
E-Cadherin activation signatures. We retrieved data set

GSE24202 from the GEO-repository. Data preprocessing was

done as described earlier. Using SAM we identified differentially

expressed probe sets associated with each transcription factor by

performing pair-wise comparison between the transfected and

non-transfected conditions. A d-value was chosen as such that the

FDR was less than 5%. The resulting SAM-plots for each

comparison are shown in (A–D). The corresponding d-values and

the number of genes called significant are reported with each

SAM-plot. Next, we intersected the gene lists to identify genes that

are specific only to one condition. As such we identified 141, 162,

993 and 845 genes that are respectively SNAIL-, TWIST-, GSC-

and E-Cadherin-specific. Using these gene lists we performed

principal component analysis to investigate whether the shrunken

gene lists were still able to distinguish between the transfected and

the non-transfected conditions. 2D scatter plot representations of

the PCAs are shown in (E–H). For each EMT-inducing factor we

observed a significant segregation of the transfected and the non-

transfected conditions along the X-axis, which represents the first

principal component. The regression coefficients responsible for

the construction of the first metagene expression retrieved from

each PCA were used to calculate the activation scores on novel

data sets.

(TIF)

Figure S3 2D scatter plot representation of the PCA on
GSE24202 data set of the core-EMT signature. In addition

to the gene lists for the individual EMT-inducing factors, we

retrieved the gene list for the core-EMT signature described by

Taube et al (PNAS, 2010). This signature consists of all genes

commonly deregulated by SNAIL, TWIST, GSC, E-Cadherin

and TGFb. We applied this gene signature onto its original data
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set (GSE24202) using PCA. The regression coefficients responsible

for the construction of the first metagene expression retrieved from

the PCA were used to calculate the EMT score on novel data sets.

(TIF)

Figure S4 Survival analysis. Due to the fact that the different

data sets used throughout this study involve series of patient

samples with differences in their clinicopathological characteristics,

we first analysed data-set specific differences in DMFS. Using

Kaplan-Meier analysis we identified significant data set-specific

differences (P,0.001). The resulting Kaplan-Meier plot is

demonstrated in supplementary figure 3. The most dramatic

difference was observed for the data set GSE25055 (b= 19.961,

95%C.I. = 13.455–29.615). Due to this difference in survival, we

incorporated the data set membership in the survival analysis to

test whether the identified significant associations are data set-

dependent.

(TIF)
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30. Pawitan Y, Bjöhle J, Amler L, Borg A-L, Egyhazi S, et al. (2005) Gene

expression profiling spares early breast cancer patients from adjuvant therapy:

derived and validated in two population-based cohorts. Breast Cancer Res 7:

R953–R964.

31. Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, et al. (2005) Gene-

expression profiles to predict distant metastasis of lymph-node-negative primary

breast cancer. Lancet 365: 671–679.

32. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, et al. (2005) Genes that

mediate breast cancer metastasis to lung. Nature 436: 518–524.

33. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, et al. (2006) Gene expression

profiling in breast cancer: understanding the molecular basis of histologic grade

to improve prognosis. J Natl Cancer Inst 98: 262–272.

34. Ivshina AV, George J, Senko O, Mow B, Putti TC, et al. (2006) Genetic

reclassification of histologic grade delineates new clinical subtypes of breast

cancer. Cancer Res 66: 10292–10301.

35. Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, et al. (2007) Lung metastasis

genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci U S A

104: 6740–6745.

36. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, et al. (2007) Strong time

dependence of the 76-gene prognostic signature for node-negative breast cancer

patients in the TRANSBIG multicenter independent validation series. Clin

Cancer Res 13: 3207–3214.
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