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Abstract
A decade of work shows that the core function of phagocytosis in engulfment and destruction of
microorganisms is only a small facet of the full spectrum of roles for phagocytosis in the immune
system. The regulation of phagocytosis and its outcomes by inflammatory pattern recognition
receptors (PRRs) is now followed by new studies strengthening this concept and adding further
complexity to the relationship between phagocytosis and innate immune signaling. Phagocytosis
forms the platform for activation of distinct members of the Toll-like receptor family, and even
dictates their signaling outcomes. In many cases, phagocytosis is a necessary precedent to the
activation of cytosolic PRRs and assembly of canonical and non-canonical inflammasomes,
leading to strong pro-inflammatory responses and inflammatory cell death.

Introduction
Phagocytosis constitutes the first line of defense deployed by the organism when it
encounters microbes. Discovered late in the nineteenth century by Elie Metchnikoff,
phagocytosis is conducted by a specialized group of innate immune cells called phagocytes,
and involves actin cytoskeleton-dependent internalization of cargo larger than 0.5μm in
diameter. Phagocytes comprise macrophages, dendritic cells (DC), monocytes and
neutrophils. After internalization, microbes are confined to intracellular vesicles called
phagosomes, which undergo a series of interactions with endosomes and lysosomes in a
process called phagosome maturation. Phagocytosis also serves to clear cells dying as a
result of infection [1]. Besides clearance and neutralization, two critical outcomes of
phagocytosis are: First, processing and presentation of microbial peptides within major
histocompatibility complex (MHC) molecules, which are recognized by T cell receptors in a
T cell co-stimulatory context, leading to activation of CD4+ and CD8+ T cells of the
adaptive immune system [2]. Second, phagocytosis of microorganisms and infected dying
cells is accompanied by the production of inflammatory cytokines that recruit innate
immune cells to the site of infection, and determine the nature of the adaptive immune
response. These inflammatory cytokines are made in direct response to the engagement of
pattern recognition receptors (PRRs) by microbial components during the course of
phagocytosis [3]. While PRRs critically impact phagocytosis and its consequences [4,5],
emerging evidence shows that phagocytosis in turn determines the outcome of signal
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transduction from these PRRs. Here, we examine the intimate links between phagocytosis
and the cell autonomous signaling pathways of host defense.

Signal dependent induction of phagocytosis and phagosome maturation
Three categories of PRRs can be engaged during phagocytosis: 1) PRRs that mediate
phagocytosis, 2) PRRs that initiate inflammatory signal transduction, and 3) PRRs that do
both. In the first category, the mannose-receptor exemplifies a phagocytic receptor: it
recognizes mannose residues on the surface of microorganisms and induces their
phagocytosis without inflammatory signaling capabilities of its own [6]. Instead, this
receptor appears to modulate signaling by PRRs of the second category, such as Toll-like
receptor (TLR) 2. Other receptors such as scavenger receptors, including SR-A, MARCO
and CD36, also function primarily as phagocytic receptors binding to a variety of microbial
components, and can modulate inflammatory signaling by TLRs [7]. As such, scavenger
receptors and mannose receptor mediate non-opsonic phagocytosis. This contrasts with
opsonic phagocytosis where opsonization of microorganisms with IgG, complement, or
pentraxins such as C-reactive protein and serum amyloid P component, enhances
phagocytosis by binding to Fcγ receptor (FcγR) or complement receptors expressed at the
surface of phagocytes [8] (Figure 1).

PRRs of the third category directly trigger both phagocytosis and inflammatory signal
transduction. For example, engagement of the FcγR by IgG-opsonized microorganisms
triggers Src family kinase-mediated phosphorylation of tyrosine residues within the
immunoreceptor tyrosine based activation motif (ITAM). Subsequent recruitment of the
typrosine kinase Syk, activation of the phophatidylinositol-3-kinase (PI3-kinase) and the
small GTPases, Rac2 and Cdc42, direct actin cytoskeletal rearrangement and engulfment
[9]. Syk also links into the CARD9-BCL10-MALT1 (CBM) complex culminating in the
activation of mitogen-activated protein kinases (MAPK) and NF-κB [10,11]. Similar events
take place downstream of the C-type lectin receptor Dectin1, which recognizes β-glucan in
fungal cell walls and initiates phagocytosis and inflammatory signaling using the Syk-CBM-
NF-κB pathway [11], but also the transcription factor NFAT [10] (Figure 1).

Receptors of the second category specialize in signal transduction, and here TLRs are the
best example. TLRs are strategically placed on the plasma membrane and along the
phagocytic pathway where they patrol for the presence of microorganisms and their
components. TLRs alert the immune system by signaling via two adaptors – TRIF and
MyD88 – and downstream MAPK, interferon regulatory factor (IRF) and NF-κB pathways
[3]. While TLR signals do not initiate phagocytosis, they play a dominant role in triggering
an inducible rate of phagocytosis and phagosome maturation, commensurate with the urgent
need to alert the cell to the microbial nature of the cargo it has encountered [12].
Phosphorylation of p38 MAPK downstream of MyD88 is important for this process [12]
(Figure 1). Similar studies with the soluble TLR4 ligand lipopolysaccharide (LPS)
demonstrated enhanced macropinocytosis, the process of internalizing large amounts of
extracellular fluid, upon engagement of TLR4 [13]. This enhancement was dependent on
signals later shown to involve the ribosomal s6 kinase (RsK) [14]. A soluble form of MD-2,
which binds LPS in the TLR4 membrane complex, has been shown to opsonize Gram-
negative bacteria and enhance their phagocytosis by neutrophils, likely also because of the
engagement of TLR4 signaling [15].

TLR signaling critically modulates phagosome function. Besides increasing antigen
processing and presentation [2], there is some evidence that TLRs enhance phagosomal
assembly and microbicidal function of the NADPH oxidase complex NOX2 in both
macrophages and DC [12,16,17]. One mechanism is through MyD88-dependent
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phosphorylation of the cytosolic p47phox component of NOX2 [16]. Because ROS
production consumes protons countering the activity of the v-ATPase and causing
phagosome alkalinization, enhancing NOX2 activity by TLRs appears contradictory to TLR-
regulated phagosome acidification [12,18,19]. The dynamic nature of phagosome maturation
is conducive to kinetic recruitment of distinct components to mediate unique functions
(NOX2 and v-ATPase, for example), and this is likely also tailored according to cell type –
macrophage, DC or different subsets thereof. By regulating phagosome maturation, TLR
signals could well orchestrate this sequence of events. In neutrophils, NADPH oxidase
activity has a finite duration with rapid onset and decline as the phagosome matures and the
pH drops [20]. Early NOX2 recruitment in DC serves to raise phagosomal pH preserving
peptides derived from phagocytic cargo for cross-presentation to CD8+ T cells [21].
Therefore, TLR regulation of NOX2 and v-ATPase activity could be temporal beginning
with alkalinization and followed by acidification, which would then serve other functions
such as cargo degradation and MHC class II antigen presentation.

Phagocytosis modulates innate immune signaling
The phagosome is a signaling compartment for Toll-like receptors

Among the TLR family, it is well appreciated that some members are localized specifically
to endosomes and phagosomes. These include TLR3 (sensing double-stranded RNA), TLR7
and TLR8 (sensing single-stranded RNA) and TLR9 (sensing unmethylated CpG DNA)
[3,22] (Figure 2). It has been proposed that the intracellular location of nucleic acid sensing
TLRs serves to ensure their engagement only by nucleic acids derived from internalized
viruses or bacteria, and not by self nucleic acids that may be present in interstitial fluids
[22].

How is the intracellular localization of endosomal TLRs determined? The protein
Uncoordinated 93 homolog B1 (Unc93B1) exerts its hallmark role in endosomal TLR
signaling [23] by binding to the transmembrane domains of endosomal TLRs when they are
still in the endoplasmic reticulum (ER), and packaging them into COPII vesicles en route to
endosomes [23,24]. At this point, Unc93B1 differentially controls endosomal delivery of
TLR7 and TLR9 by mediating recruitment of the adaptor proteins AP-4 to TLR7, and AP-2
to TLR9 [24]. Chaperoned by Unc93B1, TLR9 traffics to the plasma membrane, where
AP-2 is recruited and subsequently delivers TLR9 to endosomes [24]. Delivery to
endosomes subjects endosomal TLRs 3, 7 and 9 to proteolytic processing by cathepsins and
asparagine-endopeptidases, a step that is critical for the ability of these TLRs to recognize
their ligands [23]. It is not clear whether the Unc93B1-TLR complex is targeted specifically
to endosomes and phagosomes that contain TLR ligand, or whether constitutive endosomal
delivery ensures receptor engagement and signaling whenever ligand is detected. Besides
Unc93B1, other proteins such as the ER chaperone gp96 and a protein associated with TLR4
(PRAT4A) have been implicated in trafficking TLRs from the ER [23] (Figure 2).

Yet another adaptor protein AP-3 is necessary for the trafficking of TLR7 and TLR9 from
endosomes to lysosome-related compartments in plasmacytoid DC [25], where tumor
necrosis associated factor 3 (TRAF3) links MyD88 signaling to an IRF7-dependent type I
interferon response downstream of these receptors [25,26] (Figure 2). The production of
MyD88-NF-κB-dependent cytokines, on the other hand, proceeds independently of AP-3
function [25]. The studies above collectively demonstrate how the signaling outcome of
endosomal TLRs is dictated by sorting to proper compartments where proteolytic enzymes
and specialized signaling proteins reside.

A similar scenario is observed for TLR4 such that plasma membrane-localized TLR4
recruits MyD88 – via the sorting adaptor TIRAP – and engages MAPK and NF-κB
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signaling [27,28] while endosomal TLR4 recruits TRIF – via the sorting adaptor TRAM –
and initiates an IRF3 dependent type I IFN response [29–32] (Figure 2). Movement of TLR4
from the plasma membrane to endosomal compartments is controlled by CD14, another
LPS-binding molecule in the TLR4 complex [33]. After stimulation, CD14 activates Syk
and downstream phospholipase γC2 (PLCγ2), and thus promotes TLR4 endocytosis and
subsequent IRF3 activation [33,34]. Furthermore, and independently of TLR4 endocytosis,
intracellular pools of TLR4 residing in Rab11a-positive endosomes can be recruited to
nascent phagosomes to initiate TLR4-TRIF signaling [35]. In conventional DC, AP-3 has
also been implicated in trafficking TLR4 and MyD88 to phagosomes, influencing
subsequent pro-inflammatory cytokine production but not IFN-β [36]. This is contrary to the
role of AP-3 in facilitating TRAF-3 and IRF7 dependent signaling and IFN-β production by
plasmacytoid DC, and may be a reflection of cell type specific specialization.

Such a switch in signaling and inflammatory response from one cellular location to another
could constitute an important part of the biology of other plasma membrane TLRs.
Characterization of the TLR2 dependent type I IFN response of Ly6Chi inflammatory
monocytes to the DNA viruses, vaccinia virus and MCMV, implicated the importance of
TLR2 internalization for type I IFN but not TNF-α responses [37]. Indeed, surface TLR2
has been shown to be internalized into endosomes [38] and has been observed around
phagosomes [39].

A few years ago, microtubule-associated protein 1 light chain 3α (LC3)-associated
phagocytosis (LAP) was described as a process where autophagy-related proteins (notably
lipidated LC3, a marker of autophagy) are recruited to phagosomes in a TLR dependent
manner, accelerating fusion of phagosomes with lysosomes and subsequent degradation of
phagocytosed microbes [18]. LAP differs from canonical autophagy where a characteristic
double-membrane structure – called an autophagosome – forms within the cytoplasm,
recruits lipidated LC3, sequesters cytosolic components or microbes, and eventually fuses
with lysosomes for degradation [40]. A recent study demonstrated that LAP is critical for
TLR9-MyD88-IRF-7 dependent IFN-α production in response to phagocytosed large DNA-
immune complexes [41]. Notably, TLR9 recruitment was normal in the absence of LAP, but
phagosomes failed to acquire LAMP-1 impairing acidification and consequent TLR9
activation. Recruitment of TLR9, UNC93B1 and even LC3 to phagosomes were dependent
on engagement of Fcγ receptor, and regardless of whether phagocytosed immune complexes
contained DNA or not [41]. These findings suggest that surface engagement of Fc receptor
may signal specific recruitment of TLR9 (and LC3) to phagosomes [41,42]. Unlike the
critical role of AP-3 in TLR9 dependent type I IFN responses to endocytosed CpG-A [25],
the response to phagocytosed DNA-immune complexes was unaffected by the absence of
AP-3 [41]. Perhaps, the differential roles of LC3 and AP-3 in promoting type I IFN
signaling is dictated by whether cargo is phagocytosed or endocytosed, respectively [42]
(Figure 2).

Phagocytosis participates in the activation of inflammasomes
During innate immune response to infection, cytosolic PRRs can also be involved in the
recognition of microbial derived molecules. While some of these cytosolic receptors trigger
subsequent transcriptional initiation of inflammatory immune response genes, others such as
AIM2 (a HIN200 protein family member) and distinct members of the Nod-like receptor
(NLR) family initiate the assembly of a cytosolic multiprotein complex termed the
inflammasome (reviewed in [43]). Core components of inflammasomes are: sensor receptor,
adaptor ASC and pro-caspase-1 proteins. When stimulated, inflammasomes activate
caspase-1, which undergoes autocatalytic cleavage and in turn cleaves pro-forms of IL-1β
and IL-18 leading to secretion of the mature pro-inflammatory cytokines. Active caspase-1
can also induce an inflammatory form of cell death called pyroptosis [43,44]. Six
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inflammasomes have been identified so far: the NLRP1, NLRP3, NLRC4, NLRP6, NLRP12
and AIM2 inflammasomes [43]. Besides these canonical inflammasomes, a non-canonical
cytosolic pathway leading to pyroptosis, HMGB1 and IL-1α secretion proceeds
independently of NLRP3/NLRC4 and ASC, and is mediated by caspase-11 in response to
distinct stimuli such as cholera toxin B (CTB), E. coli, C. rodentium and V. cholera [45].
This pathway could also lead to caspase-1 cleavage with subsequent IL-1β and IL-18
secretion [45]. The activating ligands of inflammasomes can be brought to the cytoplasm
after phagocytosis of microbes [44].

Phagocytosis and the canonical inflammasomes—The first indication that
phagocytosis enables inflammasome activation came from studies examining the response
of macrophages to the activity of virulence factors made by pathogenic bacteria.
Phagocytosed Salmonella typhimurium or Legionella pneumophila inject effector proteins
into the macrophage cytosol via type III and type IV secretion systems (T3SS and T4SS,
respectively) that assemble on host cell membranes in needle-like structures and terminate in
a translocation pore [46,47]. Along with effector proteins, T3SS rod proteins and flagellin
are also translocated into the cytosol and are responsible for activating the NLRC4
inflammasome [48,49]. Early work had shown that Salmonella deficient in SipB, a T3SS
translocon inserted into phagosomal membranes [50,51], were unable to activate caspase-1
cleavage or subsequent pyroptosis [52]. Although the precise mechanism through which
bacterial proteins like flagellin access the cytosol has not been pinpointed, in the case of
Salmonella, the T3SS translocon SipB may mediate its release, as well as that of other
bacterial components, into the cytosol leading to the activation of cytosolic PRRs. Once in
the cytosol, flagellin and PrgJ-like proteins do not activate NLRC4 directly, but rather
flagellin binds to NAIP5 and PrgJ binds to NAIP2, two other members of the NLR family
that are required for activation of the NLRC4 inflammasome [53,54]. How NAIP5 and
NAIP2 activate NLRC4 is not known. Activation of these pathways leads to IL-1β and
IL-18 production as well as the induction of pyroptosis, which leads to the release of
bacteria from macrophages and their subsequent phagocytosis and killing by neutrophils
[55] (Figure 3A).

Similar to the translocation of microbial components through T3SS or T4SS, pore-forming
toxins (PFT) released by phagocytosed bacterial pathogens can also lead to the formation of
pores in phagosomal membranes enabling bacterial components to gain access to the cytosol
[56]. So far, it appears that PFT such as Listeriolysin O (LLO) secreted by phagosomal
Listeria monocytogenes and pneumolysin secreted by Streptococcus pneumoniae, favor the
activation of the NLRP3 inflammasome most likely due to their ability to disrupt
phagosomal membranes and perturb levels of intracellular K+ [57,58] (Figure 3B).

In contrast to inflammasome activation in response to the activity of virulence factors like
T3SS, T4SS and PFT, activation of the NLRP3 inflammasome – together with induction of
a TRIF dependent type I interferon response – is a characteristic immune response to viable,
but not dead, avirulent Gram-negative bacteria [59–61]. Bacterial mRNA present in live and
lost from dead bacteria is responsible for triggering viability-associated responses leading to
its classification as a vita-PAMP [61]. Phagocytosis is the physiological context in which
bacterial mRNAs are delivered to the cytosol where they activate the NLRP3 inflammasome
leading to pyroptosis and IL-1β secretion [61,62]. Fluorescein-dextran could be
demonstrated to gain cytosolic access from phagosomes carrying either live or dead bacteria,
and presumably bacterial mRNAs could do so as well [61] (Figure 3C). The mechanism
enabling cytosolic access of bacterial mRNAs is not yet clear.

The NLRP3 inflammasome can also be activated in response to meso-diaminopimelic acid
(DAP)-type peptidoglycan (PGN) from E. coli or L-Lysine (Lys)-type PGN from
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Staphylococcus aureus [63,64]. The particulate nature of PGN lends to its phagocytosis by
macrophages. Blocking phagocytosis or solubilization of PGN destroyed its ability to
activate the NLRP3 inflammasome [64]. Neither the NADPH oxidase nor lysosomal rupture
played a role, while inhibiting lysozyme-dependent phagosomal degradation of PGN
suppressed IL-1β secretion. Despite the presence of abundant PGN in S. aureus cell walls,
these bacteria failed to induce appreciable levels of IL-1β secretion, unless O-
acetyltransferase A (OatA), which catalyzes O-acetylation of PGN N-Acetylmuramic acid
rendering it lysozyme resistant, was deleted [64]. These data illustrated the importance of
phagosomal degradation of PGN upon phagocytosis of S. aureus for triggering subsequent
NLRP3 inflammasome activation (possibly again via cytosolic PGN translocation). These
observations are in line with the ability of other particulates such as silica, alum, uric acid
crystals, and β-amyloid to activate the NLRP3 inflammasome [43,44]. In related
observations, active caspase-1 was found to accumulate around Staphylococcus-containing
phagosomes upon early NLRP3 inflammasome activation, leading to acidification of
phagosomes [65]. Active phagosomal caspase-1 could hydrolyze components of the NOX2,
like Rac1 and gp91phox, thus inhibiting the ability of NOX2 to counteract the v-ATPase. As
a consequence, phagosomal degradation of Staphylococcus aureus is enhanced leading to
NLRP3 inflammasome activation (Figure 3D). Thus, casapse-1 functions here in regulating
the pH of phagosomes, and specifically those containing Gram-positive and not Gram-
negative bacteria, and independently of its role in processing IL-1β and IL-18. These studies
together demonstrate reciprocal regulation of phagocytosis and the NLRP3 inflammasome.

Besides NLRC4 and NLRP3, activation of the AIM2 inflammasome in response to
Francisella tularensis was reported to require phagocytosis and phagolysosomal
acidification [66,67]. AIM-2 dependent caspase-1 cleavage and pyroptosis were blocked
when actin polymerization was blocked with cytochalasin D or phagosomal acidification
was inhibited with bafilomycin A and NH4Cl [66]. These effects were not due to decreased
bacterial uptake or replication. Notably, Francisella derived DNA was detected in the
cytosol of infected cells and co-localized with AIM2 and ASC inducing their
oligomerization [66,67]. However, the exact mechanism of DNA delivery into the cytosol
was unclear. Because phagosome acidification acts as a cue for escape of F. tularensis into
the cytosol, it has been proposed that some cytosolic bacteria lyse during infection releasing
DNA into the cytosol [67]. This was based on the observation that AIM2 specks were
associated with bright DAPI-staining material, likely leaked DNA, which was present in the
vicinity of irregular shaped bacterial remnants [67] (Figure 3C). Notably, a mutant strain of
L. pneumophila deficient in a T4SS translocated effector SdhA, which enables establishment
of distinct vacuoles that protect Legionella from phagolysosomal fusion, induces elevated
caspase-1 cleavage, IL-1β production, and pyroptosis independent of flagellin-NAIP5-
NLRC4 and in an AIM2-ASC dependent manner [68]. This correlated with increased
cytosolic detection of a Legionella-derived reporter plasmid, implicating a function for
SdhA in inhibiting release of Legionella DNA into the cytosol of infected macrophages.
Notably, these observations were made in human macrophage cell lines where unlike murine
NAIPs, hNAIP does not respond to T3SS rod proteins or flagellin [54]. While hNAIP could
turn out to detect other proteins (T3SS needle proteins, for example [54]), DNA-AIM2
rather than flagellin-NLRC4 inflammasome activation may be the dominant response in
human cells to flagellated pathogenic bacteria.

Phagocytosis and the non-canonical inflammasome—Unlike the examples
discussed above, pyroptosis in response to Burkholderia, a naturally cytosolic Gram-
negative bacterial pathogen equipped with both a T3SS and type VI secretion system (T6SS)
proceeded independently of all known canonical inflammasomes [69]. While T3SS was
necessary for pyroptosis, the virulence-associated T6SS was dispensable suggesting that
macrophages detect either phagosomal lysis or bacterial release into the cytosol. Indeed,
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mutant strains of S. typhimurium and L. pneumophila that expressed neither flagellin (to
prevent NLRC4 activation) nor the T3SS and T4SS effectors SifA and SdhA, respectively (to
prevent phagosome rupture), induced caspase-11 dependent pyroptosis. Therefore, it appears
that caspase-11-mediated pyroptosis is important for inducing a host defence response
against cytosolic bacteria such as Burkholderia. Unlike Salmonella and Legionella,
Burkholderia do not possess the effectors that inhibit phagosomal rupture, and thus cannot
similarly evade caspase-11 activation(Figure 4A).

A pathway for caspase-11 mediated pyroptosis and IL-1α secretion that relies on a
functional T4SS, but independent of flagellin-NAIP5/NLRC4, was also revealed using
ΔFlaA L. pneumophila [70,71]. This pyroptosis proceeded with kinetics that were delayed
compared to those induced by flagellin-NAIP5/NLRC4 reflecting the necessity to induce
caspase-11 expression. In parallel to the NAIP5/NLRC4 caspase-1 pathway, caspase-11
activation in response to phagocytosed Legionella induced pyroptosis and IL-1α
independently of NLRP3, while promoting the canonical NLRP3 dependent pathway of
caspase-1 activation. Similar results were obtained with Yersinia pseudotuberculosis that
expresses a T3SS but lacks the six known secreted effectors (Δ6 Yp) [71]. These results
collectively show the necessity for cytosolic access in activating caspase-11 dependent non-
canonical inflammasome pathway independently of the activity of microbial effectors and
virulence factors.

A role for caspase-11 has also been shown in orchestrating TRIF-dependent NLRP3
inflammasome activation in response to phagocytosed C. rodentium and enterohemorrhagic
E. coli [60]. TRIF dependent IFN-β production downstream of TLR4 engagement by Gram-
negative, but not Gram-positive bacteria, led to the subsequent engagement of IFNAR
signaling and induction of caspase-11 expression and auto-activation. Active caspase-11 did
not regulate assembly of the NLRP3 inflammasome [60], which could be induced in
response to bacterial mRNAs released by phagocytosed viable bacteria [61], but rather
synergized with the activated NLRP3 inflammasome to mediate IL-1β and IL-18 secretion
[60] (Figure 4B). While expression of caspase-11 may be dependent in part on TRIF and
IFNAR signaling, it appears the activity of caspase-11 is subject to regulation by an
undefined factor, induction of which requires TRIF and IFNAR signaling [72].

Recent studies have shown that caspase-11 dependent pyroptosis could be induced in
response to phagocytosed Gram-negative bacteria or LPS that was experimentally delivered
into the cytosol via transfection [73,74]. Cholera toxin B naturally translocates a unique
serotype of LPS into the cell [74], and presumably LPS from phagosomal Gram-negative
bacteria could access the cytosol perhaps by phagosomal rupture, leakage or active
translocation. Importantly, these events were preceded by a priming step necessary for
inducing caspase-11 expression. The presence of LPS – in particular the hexacylated but not
tetraacylated lipid A component – in the cytosol triggered pyroptosis independently of
NLRC4 and ASC, and notably in the absence of the classical LPS receptor TLR4. These
findings provide compelling evidence for the presence of a new unidentified receptor that
senses cytosolic LPS and mobilizes a non-canonical inflammasome pathway of caspase-11
activation [73,74](Figure 4A).

Conclusions
A reciprocal relationship between innate immune signaling and phagocytosis is now evident.
It starts from the early steps of phagocytosis where distinct receptors mediating
internalization of microbes also engage a cell-autonomous inflammatory response.
Phagocytosis enables the activation of certain PRRs, notably TLRs, which signal uniquely
from intracellular compartments or induce specific innate immune responses from
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phagosomes. In turn, signals from TLRs regulate phagocytosis. Moreover, phagocytosis
links detection of extracellular microbes to cytosolic PRRs, which trigger inflammasome
assembly, while the inflammasome could reciprocally modulate phagosomal function. By
many aspects, these interconnections between phagocytosis and innate immune signaling
remain intriguing. Deciphering the molecular mechanisms allowing this tight relationship
should lead to crucial insights into the regulation of innate immune responses to infection.
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Highlights

• Phagocytosis leads to degradation of internalized microbes

• Phagocytosis is induced by PRRs, some of which engage immune signaling
cascades

• Phagocytosis activates endosomal TLRs and subsequent specific signaling
pathways

• Phagosomal release of microbial nucleic acids or proteins activates
inflammasomes

• PRR signaling and activated inflammasomes modulate phagosome maturation
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Figure 1. Signal-dependent induction of phagocytosis and phagosome maturation
Phagocytosis is an actin-driven, receptor mediated process initiated upon recognition of
microorganisms by Pattern Recognition Receptors (PRRs) expressed at the plasma
membrane of phagocytes. Microorganisms can also be opsonized by immunoglobulins,
serum amyloid P component or complement proteins, which engage specific PRRs and
trigger opsonic phagocytosis. Some receptors like scavenger receptors and mannose receptor
serve as phagocytic PRRs, while others like Dectin-1 and FcγR serve dual roles transmitting
inflammatory signals receptor that activate NF-κB and/or NFAT transcription factors, and
triggering actin polymerization via Rac2, Cdc42, and RhoG [75]. Toll-like receptors (TLRs)
are signaling PRRs engaged by microbial components during phagocytosis leading to the
activation of NF-κB, MAPK and other transcription factors. TLR signals also trigger an
inducible rate of phagocytosis and phagosome maturation via MyD88-dependent activation
of the MAPK p38. Signals from TLRs also induce assembly of the NADPH oxidase NOX2
and the vacuolar v-ATPase.
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Figure 2. The phagosome is a signaling compartment for TLRs: cases of endosomal TLRs and
TLR4
(A) TLR3, TLR7, TLR8 and TLR9 are endosomal receptors. Trafficking of these receptors
from the endoplasmic reticulum (ER) to endosomes requires chaperone proteins such as
UNC93B1, gp96, AP-4 (for trafficking TLR7 directly to endosomes) or AP-2 (for
trafficking TLR9 from the intermediate plasma membrane step between ER and
endosomes). Microbial nucleic acids released upon degradation of microorgamisms activate
endosomal TLRs delivered to phagosomes. TLR3 is activated by dsRNA and signals
through TRIF to activate IRF3 and IFN-β transcription. TLR7, TLR8 (both activated by
ssRNA) and TLR9 (sensing CpG DNA) signal through MyD88 and activate NF-κB and
MAPK signaling pathways, leading to the transcription of genes such as TNF-α or IL-6.
AP-3 and LC3 enable trafficking and signaling of TLR7 and TLR9 to lysosome-related
compartments, where these receptors specifically activate the transcription of IFN-α genes
in a MyD88- and IRF7-dependent manner.
(B) At the plasma membrane, TLR4 recognizes LPS and signals through MyD88 to activate
NF-κB and MAPK. CD14 mediates the endocytosis of TLR4, which undergoes a signaling
switch from plasma membrane MyD88 to endosomal/phagosomal TRIF signaling and
activation of the IRF3-dependent transcription of IFN-β genes.
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Figure 3. Phagocytosis enables activation of inflammasomes
A. Activation of the NLRC4 inflammasome through the activity of microbial virulence
factors. Phagocytosed Salmonella or Legionella inject proteins into the cytosol of
phagocytes via type III and type IV secretion systems (T3SS and T4SS, respectively) or
associated translocon proteins such as SipB (from T3SS). Flagellin or PrgJ-like proteins
(T3SS rod proteins) are released into the cytosol where they activate the NLRC4
inflammasome. Flagellin binding to NAIP5 and PrgJ binding to NAIP2 are required for
NLRC4 activation. Inflammasome-dependent pyroptosis leads to the release of bacteria
from macrophages and their subsequent phagocytosis and killing by neutrophils (also the
case in panels B, C and D).
B. Activation of the NLRP3 inflammasome by the pore-forming toxin Pneumolysin.
Phagocytosed Streptococcus pneumoniae secrete the pore-forming toxin Pneumolysin in
phagosomes inducing disruption of phagosomal membranes. Subsequent potassium efflux,
or release of the lysosomal protease Cathepsin B into the cytosol can lead to activation of
the NLRP3 inflammasome.
C. Activation of NLRP3 and AIM2 inflammasomes by microbial nucleic acids. E. coli
mRNA is a signature of microbial viability, which is detected upon or after phagocytosis of
bacteria (potentially via a TLR or cytosolic RNA sensor), activates the NLRP3
inflammasome, and triggers IL-1β and IL-18 production and pyroptosis. Phagocytosis of F.
tularensis phagocytosis leads to access of bacterial DNA to the cytosol where it activates the
AIM2 inflammasome.
D. Interaction between phagosome and NLRP3 inflammasome. The NLRP3 inflammasome
can be activated upon phagocytosis of Staphylococcus aureus when its PGN lacks
modifications rendering it sensitive to lysozyme degradation. Active caspase-1 has been
demonstrated around Staphylococcus-containing phagosomes, where it inhibits the NADPH
oxidase NOX2. As a consequence, phagosomes acidify and Staphylococcus degradation in
phagosomes is enhanced.
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Figure 4. Phagocytosis and activation of non-canonical inflammasome and caspase-11
A. Activation of the non-canonical inflammasome after phagosomal lysis and leaking of
bacterial components. Direct delivery of LPS into the cytosol either experimentally with
cholera toxin B or via transfection, or physiologically upon infection with Gram-negative
bacteria, enables its detection by an unidentified cytosolic LPS-sensor. This sensor detects
specifically hexa- or penta-acylated LPS, and then activates the non-canonical
inflammasome pathway and caspase-11 within a few hours following infection. Active
caspase-11 then promotes pyroptosis, and could also participate in the activation of the
NLRP3 inflammasome or regulate phagosome-lysosome fusion [76]. Note that a priming
step is required to induce caspase-11 transcription.
B. Activation of caspase-11 and its role in activation of the NLRP3 inflammasome. Upon
phagocytosis of viable E. coli, microbial mRNA induces the assembly and activation of the
NLRP3 inflammasome, while TRIF-dependent TLR4 signaling activates the transcription of
IFN-β genes. Secreted IFN-β binds to the type I IFN receptor (IFNAR), which induces the
transcription of caspase-11 gene. Pro-caspase-11 is then cleaved into active caspase-11 and
synergizes with bacterial mRNA in NLRP3 inflammasome. Note that TRIF and IFNAR
signaling are involved in late stage (12–16 hours post infection) caspase-11 activation via as
yet unidentified steps.
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