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Abstract
Cardiac autonomic neuropathy (CAN) is an often over-
looked and common complication of diabetes mel-
litus. CAN is associated with increased cardiovascular 
morbidity and mortality. The pathogenesis of CAN is 
complex and involves a cascade of pathways activated 
by hyperglycaemia resulting in neuronal ischaemia and 
cellular death. In addition, autoimmune and genetic 
factors are involved in the development of CAN. CAN 
might be subclinical for several years until the patient 
develops resting tachycardia, exercise intolerance, pos-
tural hypotension, cardiac dysfunction and diabetic car-
diomyopathy. During its sub-clinical phase, heart rate 
variability that is influenced by the balance between 
parasympathetic and sympathetic tones can help in de-
tecting CAN before the disease is symptomatic. Newer 
imaging techniques (such as scintigraphy) have allowed 
earlier detection of CAN in the pre-clinical phase and 

allowed better assessment of the sympathetic nervous 
system. One of the main difficulties in CAN research 
is the lack of a universally accepted definition of CAN; 
however, the Toronto Consensus Panel on Diabetic 
Neuropathy has recently issued guidance for the diag-
nosis and staging of CAN, and also proposed screen-
ing for CAN in patients with diabetes mellitus. A major 
challenge, however, is the lack of specific treatment 
to slow the progression or prevent the development 
of CAN. Lifestyle changes, improved metabolic control 
might prevent or slow the progression of CAN. Reversal 
will require combination of these treatments with new 
targeted therapeutic approaches. The aim of this article 
is to review the latest evidence regarding the epide-
miology, pathogenesis, manifestations, diagnosis and 
treatment for CAN.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Cardiac autonomic neuropathy (CAN) is a 
complication of diabetes mellitus that is often under-
diagnosed but can lead to severe morbidity and mor-
tality, due to the associated cardiovascular burden. 
New evidence has emerged surrounding its complex 
pathways, but its full pathogenesis is yet to be under-
stood. CAN manifests in a spectrum of subclinical and 
clinical presentations, ranging from resting tachycardia 
to cardiomyopathy. Heart rate variability and scintigra-
phy have enabled the diagnosis at a subclinical stage, 
thus providing the opportunity for better prevention 
and treatment. However, no definite therapeutic ap-
proaches have been adopted to date, emphasizing the 
need for newer targeted treatments.
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INTRODUCTION
Diabetes mellitus (DM) is a global epidemic affecting 
at least 8.3% of  the global population and 371 million 
people worldwide with a significant proportion (50%) 
remaining undiagnosed. It is estimated that almost one 
in six people are currently at risk of  developing diabetes-
related complications[1]. Cardiovascular disease (CVD) is 
the leading cause of  mortality and morbidity in patients 
with diabetes and subsequently the primary goal of  dia-
betes treatment is to reduce the burden of  CVD as well 
as the vascular complications associated with diabetes[2,3]. 
Much of  the CVD prevention strategies in patients with 
DM are based on lowering blood pressure and LDL-
cholesterol levels and improving glycaemic control[4-7]. 
Despite that, CVD remains very common and a major 
cause of  mortality and morbidity in patients with DM. 
Hence, better understanding of  pathogenesis of  CVD is 
crucial to develop new therapeutic targets.

Cardiac autonomic neuropathy (CAN) is a very com-
mon and often overlooked diabetes-related complication 
that has a major impact on CVD, mortality and morbidity 
in patients with DM[8,9]. Improving our understanding of  
the pathogenesis of  CAN and its role in CVD, offers the 
potential of  new treatment targets that might reduce the 
burden of  CVD in patients with diabetes. This review 
aims to provide an overview of  the epidemiology, patho-
genesis, cardiovascular consequence, diagnosis, and treat-
ments of  CAN, with particular emphasis on the latest 
developments in the field.

LITERATURE SEARCH STRATEGY
We conducted a review of  the original papers and review 
articles indexed in PubMed, Medline and Google Scholar 
between 1975 and 2013. We have used several terms indi-
vidually or in combination including: diabetes, autonomic 
neuropathy, CAN, cardiovascular, cardiac, autonomic, 
neuropathy, dysfunction. Only articles in English and in 
adult population were reviewed.

DEFINITIONS AND EPIDEMIOLOGY
Based on the CAN Subcommittee of  the Toronto Con-
sensus Panel on Diabetic Neuropathy[10], CAN is defined 
as the impairment of  cardiovascular autonomic control in 
patients with established DM following the exclusion of  
other causes. CAN, especially at the early stages, can be 
sub-clinical and thus as the disease progresses, it becomes 
clinically evident.

The prevalence of  CAN varies between 1%-90% in 

patients with type 1 DM (T1DM) and 20%-73% in pa-
tients with T2DM (Table 1). This huge variation in CAN 
prevalence is due to the inconsistency in the criteria used 
to diagnose CAN and significant differences in the study 
populations, particularly in relation to CAN risk factors 
(such as age, gender and DM duration amongst others).

CAN has been detected at time of  diagnosis of  dia-
betes in patients with either T1DM or T2DM irrespective 
of  age, suggesting that CAN presentation is not limited 
by age or type of  diabetes and can occur before DM is 
evident clinically[11-15]. However, the duration of  diabetes 
is an independent factor for developing CAN irrespective 
to diabetes type[10,16]. CAN is detected in about 7% of  
both T1DM and T2DM at the time of  initial diagnosis[17], 
and it is estimated that the risk for developing CAN in-
creases annually by approximately 6% and 2% in patients 
with T1DM and T2DM respectively[17-19].

Poor glycaemic control is a major risk factor for 
CAN progression[14,19-21]. In the Diabetes Control and 
Complications Trial (DCCT), intensive glycaemic control 
resulted in a 50% decrease in CAN incidence over the 6.5 
years follow-up period[19]. This protective effect persisted 
14 years after the end of  the study despite the disappear-
ance of  HbA1c differences that were achieved between 
the groups during the randomised phase of  trial[18]. Simi-
larly, CAN has been shown to be associated with conven-
tional CVD risk factors, such as hypertension, smoking, 
hyperlipidaemia and obesity[22-24]. In the Steno-2 trial of  
patients with T2DM and microalbuminuria, intensive 
pharmacological intervention targeting hypertension, 
hyperlipidaemia and microalbuminuria combined with 
behavioural treatment (exercise, diet and smoking ces-
sation) reduced the risk of  autonomic neuropathy over 
the course of  a 7.8 years follow-up (HR = 0.37, 95%CI: 
0.18-0.79)[5]. After a mean of  5.5 years following the end 
of  the study, the same protective effect against the devel-
opment of  autonomic neuropathy persisted (RR = 0.53, 
95%CI: 0.34-0.81, P = 0.004). There was also reduction 
in the risk for developing CVD (RR = 0.43, 95%CI: 
0.19-0.94, P = 0.04) and overall mortality (RR = 0.54, 
95%CI: 0.32-0.89, P = 0.02) in this study[25].

Moreover, in a large cohort of  more than 1000 pa-
tients with T2DM the incidence of  CAN over a 7.5 
years follow-up correlated with age (P < 0.001) and mi-
crovascular disease (P = 0.035)[26]. Diabetic nephropathy 
(including microalbuminura), diabetic retinopathy and 
diabetic polyneuropathy have been widely identified as 
clinical predictors of  CAN[23,24,27], which is not surprising 
as diabetic microvascular complications share common 
mechanisms and risk factors. The impact of  gender on 
CAN is controversial. In a multi-centre, cross sectional 
study of  3250 patients with DM, CAN prevalence was 
no different between men and women (35% male vs 37% 
female)[28]. However, in the action to control cardiovascu-
lar risk in diabetes trial including more than 8000 patients 
with T2DM CAN was more prevalent in women (2.6% 
in men vs 4.7% in women for moderate severity CAN 
and 1.4% in men vs 2.2% in women for severe CAN, P < 
0.01 for all three definitions of  CAN in the study)[29].
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tion (Figure 1). Hyperglycaemia and the adverse metabol-
ic environment in patients with DM result in increased 
oxidative and nitrosative stress[17], which can cause direct 
neuronal damage/dysfunction as well as endothelial dys-
function resulting in neuronal ischaemia. Neuronal axons 
are rich in mitochondria which makes them particularly 
susceptible to the direct and indirect effects on oxidative 
and nitrosative stress[32].

Increased oxidative stress results in poly ADP-ribose 
polymerase activation which when coupled with other 
activated downstream pathways including the polyol 
pathway, advanced glycation endproducts produc-
tion, protein kinase C and the hexosamine pathway are 
thought to contribute to glucose toxicity[33-36]. These dif-
ferent pathways can in return exacerbate oxidative stress 
and can induce changes in gene expression, transcrip-
tion factors, diverse cellular products disrupting several 
cellular functions and the communication between the 
cell and the surrounding matrix all of  which leads to 
neuronal dysfunction and death[37-39]. These pathways 
also result in impaired microvascular-- regulation and en-
dothelial dysfunction by different mechanisms, including 
increase in plasminogen activator inhibitor-1 and endo-
thelin-1 production and impairment of  endothelial nitric 
oxide (NO) synthase and NO actions[40,41]. This can lead 
to reduction of  neurovascular perfusion, dysfunction 
and cellular apoptosis[42].

Autoimmunity
The role of  autoimmunity has also been explored par-
ticularly in patients with T1DM. The presence of  com-
plement-fixing antibodies against sympathetic and para-

Ethnicity has also been postulated to be a risk factor 
for CAN as South Asians seem to have lower rates of  pe-
ripheral neuropathy than White Europeans with DM[30]. 
More specifically, the prevalence of  small fibre neuropa-
thy was significantly lower in Indian Asians than in Eu-
ropeans (32% vs 43% respectively, P = 0.03) and mean 
nerve conduction velocity Z scores (measuring large 
fibre neuropathy) were superior in Asians compared to 
Europeans (mean ± SD 0.07 ± -0.62 vs -0.11 ± 0.60, P = 
0.007). However, using heart rate variability (HRV) spec-
tral analysis as well as frequency and time domain analysis 
showed no difference in CAN prevalence between South 
Asians and white Europeans (Tahrani et al, unpublished 
data).

PATHOGENESIS OF CAN
The exact pathogenesis of  CAN is complex and remains 
unclear. Most of  the proposed mechanisms of  neuronal 
injury are based on models of  somatic rather than auto-
nomic neuropathy. Although many of  these mechanisms 
might be shared between autonomic and somatic neurop-
athies, differences do exist as shown by the Steno-2 trial 
(described above) in which the multi-factorial interven-
tion (including intensive metabolic control and lifestyle 
changes) slowed down the progression of  autonomic but 
not somatic neuropathy.

Hyperglycaemia induced neuronal injury and ischaemia
The pathogenesis of  CAN is likely to be multi-factorial[31] 
and to involve several mechanisms and pathways that lead 
to neuronal ischaemia or direct neuronal death/dysfunc-

Hyperglycaemia

   Oxidative and 
Nitrosative stress

DNA damage

PARP activation

GAPDH suppression

Neuronal toxicity
        death

AR activation PKC activation Hexosamine activationAGE production

Vascular occlusion
     endothelial 
     dysfunction
       leakage 
     inflammation

↑ GSH, taurine myo-inositol
↓ NADH

↑ Endothelin-1, TGF-β, VEGF, PAI-1
↓ eNOS

↑ IL-1, TNF-α, TGF-β,VCAM-1
PKC stimulation

↑ N-acetyl glycosamine 
gene expression

Figure 1  Summary of the 
mechanisms that relate hy-
perglycaemia to microvascu-
lar complications in patients 
with diabetes. PKC: Protein 
kinase C; AGE: Advanced 
glycation end-products; PARP: 
Poly ADP-ribose polymerase; 
GAPDH: Glyceraldehyde-3 
phosphate dehydrogenase; 
GSH: Glutathione; NADH: 
Nicotinamide adenine dinu-
cleotide; TGF-β: Transforming 
growth factor; VEGF: Vascular 
endothel ia l  growth factor; 
PAI-1: Plasminogen activator 
inhibitor-1; eNOS: Endothelial 
nitric oxide synthase; IL-1: 
Interleukin 1; TNF-α: Tumour 
necrosis factor-α; VCAM-1: 
Vascular cell adhesion mol-
ecule 1.
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sympathetic tissues in patients with insulin-dependent 
diabetes and their correlation with CAN was described 
in the early 90s[43,44]. In a study of  78 patients with DM, 
the prevalence of  phospholipid autoantibodies (PLA) 
in the patient’s serum was significantly higher in those 
tested positive for autonomic neuropathy (88% of  the 
patients with autonomic neuropathy vs 32% of  those 
without, P < 0.001) and there was a strong correlation 
between the PLA titre and total neuropathy score (r2 = 
0.58, P = 0.0002)[45]. Granberg et al[46] demonstrated in a 
group of  patients with T1DM that patients positive for 
complement-fixing antibodies to the sympathetic gan-
glion, vagus nerve and adrenal medulla had a significant 
higher risk to develop cardiac autonomic dysfunction 
(measured by the E/I ratio during deep inspiration and 
HRV to postural change) over a 6-year follow-up (RR = 
7.5, 95%CI: 1.72-32.80). There are, however, conflict-
ing reports whether these auto-antibodies contribute to 
the pathogenesis of  autonomic neuropathy or represent 
rather incidental findings and can be attributed to auto-
immunity against concurrent conditions, such as thyroid 
disease[47]. A recent study of  mixed T1DM and T2DM 
patients concluded that neither peripheral nor CAN was 
associated with the presence or the levels of  Neuropep-
tide Y Autoantibodies[48].

Residual β -cell function
Several studies have shown a protective effect of  residual 
β-cell function (i.e., C-peptide levels) on the development 
and incidence of  microvascular complications (including 
CAN) in patients with T1DM[49,50]. The exact mechanisms 
for these associations are not clear but it is thought that 
the C-peptide activates Na/K channels, lowers inflam-
mation and improves NO bioavailability and endothelial 
function[51,52]. Small RCTs have shown beneficial effect of  
C-peptide treatment on CAN parameters[53].

Genetic factors
More recently data suggesting genetic predisposition 
to CAN have emerged. In a study of  154 patients with 
T2DM, TCF7L2 gene was found to be strongly associ-
ated with the presence of  CAN, as assessed by deep 
breathing, lying to standing, Valsalva manoeuvre and 
postural hypotension tests (OR = 8.28, P = 0.022 for the 
rs7903146 allele)[54]. Another study on healthy Japanese 
individuals showed that the T393C polymorphism of  
the gene encoding the Gs-protein-α-subunit (GNAS1) 
is significantly associated with cardiovascular autonomic 
dysfunction, detected with power spectral analysis (P < 
0.05 for TT + TC vs CC polymorphism)[55]. Twins studies, 
however, failed to show an association between CAN and 
genetic factors[56].

Obstructive sleep apnoea
Obstructive sleep apnoea (OSA) is emerging as another 
possible factor in the development of  CAN. OSA is very 
common in patients with diabetes and has been associ-
ated with increased sympathetic tone in patients without 

diabetes[57,58]. The interrelationship between OSA and 
CAN in patients with DM requires further investigation 
and is likely to be bidirectional. While the intermittent hy-
poxia that occurs in OSA could lead to increased oxida-
tive stress, nitrosative stress, and impaired microvascular 
complications which could lead to CAN[59], CAN on the 
other hand could lead to changes in upper airways tone 
and changes in respiratory drive which could predispose 
the patient to OSA. One recent study presented in the 
Diabetic Neuropathy Study Group of  the European As-
sociation for the Study of  Diabetes 2012 meeting showed 
that the prevalence of  CAN was similar in patients with 
T2DM with and without OSA, but CAN severity was 
worse in the OSA group (Tahrani et al[59], unpublished 
data). Furthermore, the presence of  CAN was associated 
with more severe apnoea/hypopnea episodes (Tahrani et 
al[59], unpublished data).

NATURAL HISTORY OF CAN
DM affects the autonomic (as well as the peripheral) ner-
vous system in an ascending length-dependent manner. 
The vagus nerve, which anatomically is the longest au-
tonomic nerve and physiologically mediates 75% of  the 
overall parasympathetic activity, tends to be involved early 
in the course of  CAN development. The early stages 
of  CAN therefore involve reduction in parasympathetic 
activity, which results in sympathetic predominance. This 
increase in sympathetic tone continues until the latest 
stage of  CAN when sympathetic denervation ensues, 
which spreads gradually from the apex to the base of  the 
heart[60,61].

CAN is divided into a sub-clinical and a clinical stage. 
During the initial sub-clinical stage, CAN is detected 
through abnormalities in frequency and time domains of  
the spectral analysis of  HRV and the Baroreflex Sensitiv-
ity (BRS) tests, as well as an increased torsion of  the left 
ventricle (LV) on cardiac imaging before the development 
of  abnormalities in standard cardiac autonomic reflex 
testing (CART) (please see below for details)[62-67]. Studies 
have shown that these abnormalities can even be present 
at the time of  diagnosis of  DM[63]. CAN progresses and 
parasympathetic denervation is followed by compensa-
tory sympathetic overdrive, resulting in abnormal CARTs 
followed by symptomatic CAN in which the clinical man-
ifestations become apparent (please see below). At the 
stage of  sympathetic denervation, autonomic dysfunction 
correlates clinically with postural hypotension[63] (Fig-
ure 2). The time scale for the progression of  subclinical 
CAN to the development of  abnormal CART is unclear; 
similarly the natural history of  the development of  early 
cardiac abnormalities (such as torsion or deficits in myo-
cardial perfusion or cardiac energetic) and its relationship 
to subclinical CAN is also unclear. But we estimate that 
many patients with sub-clinical CAN will develop ab-
normal CART and early features of  cardiac involvement 
within 5 years of  developing abnormal frequency and 
time domain parameters.
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CLINICAL MANIFESTATIONS OF CAN
Resting tachycardia
Resting tachycardia is a common manifestation of  CAN 
that occurs at a relatively early stage of  the disease. A 
HR of  90-130 beats per minute (bpm) can be observed 
and is associated with a reduction in parasympathetic 
tone followed by increased sympathetic activity as CAN 
progresses[68]. A fixed HR which does not change dur-
ing sleep, exercise or stress is a sign of  complete cardiac 
denervation[69]. Moreover, poor HR response to adenos-
ine is associated with higher risk for adverse cardiac 
events[70], including all-cause and CVD mortality[71]. 
Hence, resting HR can be used as a diagnostic and prog-
nostic tool in patients with DM after excluding other 
causes of  tachycardia[10].

Exercise intolerance
Impaired blood pressure, HR and cardiac stroke volume 
in response to exercise in the absence of  structural or 
coronary cardiac disease are all features of  CAN[69]. As 
disease progresses, the parasympathetic-sympathetic im-
balance can lead to further impairment of  the above pa-
rameters[68] which limits the diagnostic utility of  exercise 
tolerance testing in these patients due to increased false-
negative outcomes caused by blunted HR response[72]. In 
addition, patients with CAN should be tested using stress 
cardiac imaging (usually echocardiography) prior to start-
ing an exercise program, especially those with high-risk 
profile[69].

Orthostatic hypotension
Orthostatic hypotension is a manifestation of  advanced 
CAN. Orthostatic hypotension is defined as the reduction 
in systolic blood pressure by > 20 mmHg or in diastolic 
blood pressure by > 10 mmHg 2 min following postural 
change from supine to standing[17,19,69]. Orthostatic hy-
potension occurs as a result of  the impairment of  the 
sympathetic response to postural change secondary to 
poor norepinephrine response and abnormalities in the 

baro-receptor sensitivity, resulting in inadequate HR re-
sponse and peripheral vasoconstriction[23,69]. Orthostatic 
hypotension can be aggravated by many medications that 
are commonly used in patients with DM such as diuret-
ics, vasodilators, tricyclic antidepressants and insulin[63]. 
Similar to resting tachycardia, assessing the presence 
of  orthostatic hypotension is of  prognostic value as a 
marker of  advanced CAN[10]. In the middle-aged general 
population, orthostatic hypotension has been shown to 
be an independent prognostic factor for CVD and all-
cause mortality[73].

Silent ischaemia
CAN is associated with a prolonged subjective angina 
threshold (which is defined as the time between the ob-
servation of  1 mm ST depression on the electrocardio-
gram and the development of  symptoms of  angina pec-
toris); thus rendering patients with CAN susceptible for 
experiencing silent myocardial ischaemia and potentially 
infarction, despite being asymptomatic[74]. A meta-analysis 
of  12 cross-sectional studies showed that CAN is associ-
ated with silent ischaemia in patients with DM (the Man-
tel-Haenszel estimate for prevalence rate risk was 1.96, 
95%CI: 1.53-2.51)[17]. A study of  120 patients with DM 
and no previous CVD found evidence that CAN (detected 
using the Valsalva manoeuvre, the deep breath test and 
lying-to-standing HRV) was a better predictor of  major 
cardiac events [i.e., myocardial infarction or myocardial 
infarction (MI)] than the presence of  silent ischaemia 
(OR = 4.16, 95%CI: 1.01-17.19) but when CAN was 
combined with silent ischaemia the risk was even higher (5 
out of  10 had a major event)[75]. A study from Spain that 
included 217 patients with T1DM and T2DM, found that 
the presence of  autonomic neuropathy is independently 
associated with increased risk for developing silent isch-
aemia (as demonstrated by positive exercise test) (OR = 
6.5, 95%CI: 1.3-7.9) especially when combined with other 
cardiovascular risk factors such as microalbuminuria[76]. 
In the Detection of  Ischaemia in Asymptomatic Diabetic 
subjects study which included 1123 patients with T2DM, 

Parasympathetic
denervation

Sympathetic tone
augmentation

Sympathetic
denervation

Subclinical CAN Early stages of clinical CAN Advanced or severe CAN

Impaired R-R
variability
abnormal LV
torsion decreased

Resting tachycardia
reduced exercise
tolerance

Orthostatic hypotension
sympathetic denervation
observed at the base of
the heart

Figure 2  Natural progression of CAN and correlation with clinical signs and symptoms. CAN: Cardiac autonomic neuropathy; LV: Left ventricle.

Dimitropoulos G et al . Cardiac autonomic neuropathy in diabetes mellitus



23 February 15, 2014|Volume 5|Issue 1|WJD|www.wjgnet.com

CAN (defined as abnormal Valsalva manoeuvre) was also 
a predictor of  silent ischaemia (defined using stress car-
diac perfusion imaging) (OR = 5.6, 95%CI: 2.6-12.4, P = 
0.0001)[77].

It is evident that patients with DM and CAN are 
at high risk of  sustaining a major cardiovascular event 
during exercise, due to the limited perception of  isch-
aemic pain which could delay the appropriate and timely 
response to ischaemia. A recent statement from the To-
ronto Consensus Panel on Diabetic Neuropathy has em-
phasised the importance of  integration of  cardiac auto-
nomic function testing into the current risk stratification 
pathways for patients with DM and established CVD risk 
factors[10].

The mechanisms underpinning relationship between 
CAN and silent ischaemia are not clear. Several mecha-
nisms have been proposed including altered pain thresh-
old, impaired afferent myocardial autonomic pathways 
and ischaemic processes not detected by routine electro-
cardiography. There has also been debate over whether 
the relationship between them is indeed a causative one, 
or both CAN and silent ischaemia are a product of  coro-
nary artery disease observed in diabetes[78,79].

Diabetic cardiomyopathy and LV dysfunction
Diabetic cardiomyopathy is a clinical entity that is char-
acterised by changes in the biochemical signalling in the 
presence of  a sympathetic-vagal imbalance resulting ul-
timately in left ventricular hypertrophy and remodelling, 
and therefore cardiac dysfunction in patients with DM 
in the absence of  coronary artery disease[63]. Diabetic 
cardiomyopathy results in variable degrees of  systolic and 
predominantly diastolic dysfunction in the absence of  
structural or valvular cardiac disease, coronary vessel dis-
ease, or hypertension[80,81]. Changes in the diastolic and/or 
systolic function can be identified on various diagnostic 
imaging modalities in otherwise asymptomatic patients 
and can precede the occurrence of  macrovascular dia-
betic complications[82]. Frequently, the only detectable 
abnormality in the early stages of  CAN is an isolated dia-
stolic dysfunction with a normal LV ejection fraction[83] 
associated with high CVD morbidity[84,85].

Conventional echocardiography studies, with or with-
out Doppler technique, showed that CAN is associated 
with significant reduction in the peak diastolic filling 
and an increase in the atrial component of  diastole[69]. 
The introduction of  new diagnostic modalities, such 
as the cardiac magnetic resonance imaging has allowed 
even more sensitive means of  diagnosing and classify-
ing diabetic cardiomyopathy even in the early stages by 
examining myocardial twist, torsion and strain[86]. Torsion 
is a measure of  the apical rotation along the long axis of  
the heart and is followed by a rapid untwisting, occurring 
during the isovolumic relaxation phase[87]. Both torsion 
and maximal torsion rate have been found to be increased 
in patients with T2DM and preserved systolic function[86]. 
In patients with T1DM, increased torsion appears to be 
independent of  energetic deficits but related to micro-
vascular perfusion deficits and correlates with changes in 

sympathetic denervation[88,89]. Myocardial Perfusion Re-
serve (another diagnostic tool used for the detection of  
microvascular abnormalities) has been shown to detect 
the early stages of  CAN in asymptomatic patients and to 
assess CAN severity[90].

There are several proposed mechanisms for the devel-
opment of  diabetic cardiomyopathy. The parasympathet-
ic denervation observed in the early stages of  the disease 
leads to a dominant sympathetic tone[91], which promotes 
a cascade of  intrinsic metabolic changes, including the 
release of  high myocardial catecholamine levels and cat-
echolamine toxicity[92,93]. This catecholamine rise has been 
shown to induce mitochondrial uncoupling[94,95], switch-
ing energy generation on a cardiac level from myocardial 
glucose to free fatty acids, which is considered an ineffi-
cient energy source[96] and therefore increases the oxygen 
demand[94,95]. These alterations on the cardiac biochemical 
and cellular level, lead ultimately to programmed cell 
death and fibrosis[97,98], elevated oxygen consumption 
relevant to the cardiac work[99,100] and finally hypertrophy 
and remodelling of  the LV[101]. Crucial mediators in the 
above process are the mitochondrial reactive oxygen spe-
cies[102,103], insulin resistance[104] and calcium dependent 
apoptosis[102,105,106].

On a macroscopic level, diastolic dysfunction in CAN 
is associated with delayed relaxation, impaired filling 
and increased stiffness of  the LV[107]. The previously de-
scribed sympathetic predominance is a stimulator of  the 
rennin-angiotensin-aldosterone axis, resulting in increased 
HR, cardiac output and peripheral vasoconstriction[108]. 
Studies have shown that this alteration on the cardiac 
profile can lead to reduction of  coronary blood perfusion 
and diastolic dysfunction in patients with evidence of  
early microangiopathy[60]. Sympathetic overdrive may also 
lead LV wall stress and LV hypertrophy. Pop-Busui et 
al have recently shown in a large cohort of  the DCCT/
EDIC study, that CAN is associated with a mass increase 
as well as a concentric remodelling of  the LV, indepen-
dent of  other risk factors[109].

Mortality/sudden death
CAN is associated with an increased mortality risk (Table 
2). This was described in longitudinal studies in the early 
1990s showing a 50% increase in 5 year-mortality risk in 
patients with DM and autonomic neuropathy compared 
to those without[110-113]. In a meta-analysis of  15 studies 
on the basis that they included patients with DM who 
had baseline assessment of  HRV using one or more tests 
described by Maser et al[114] showed that the pooled esti-
mated relative mortality risk was 2.14, (95%CI: 1.83-2.51, 
P < 0.0001), for those who had CAN. CAN was also 
found to have the strongest association with mortality 
amongst other risk factors in the EURODIAB IDDM 
Complications Study[115].

Even in patients with high CVD risk profile such as 
the population of  the ACCORD trial, CAN was an in-
dependent predictor of  all-cause mortality (HR = 2.14, 
95%CI: 1.37-3.37) as well as CVD mortality (HR = 2.62, 
95%CI: 1.4-4.91) after a mean follow-up of  3.5 years[29]. 
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Interestingly the relationship between CAN and mortal-
ity was similar regardless of  treatment allocation to the 
intensive or standard glycaemic control groups[29].

CAN was also found to be associated with a higher 
mortality risk in patients who had myocardial infarc-
tion[116], suggesting that screening for CAN in patients 
with DM who suffered a myocardial infarction can be 
used for risk stratification[117].

CAN is also associated with increased risk of  sud-
den cardiac death[112,113,118]. This can be explained by the 
increased rate of  fatal cardiac arrhythmias due to the 
imbalance between the sympathetic and parasympathetic 
autonomic function[119], as well as cardiac sympathetic de-
nervation[67]. QT prolongation which has been associated 
with autonomic neuropathy in several studies[120-122], can 
also provide an alternative mechanism, rendering patients 
with CAN more susceptible to suffer life-threatening 
cardiac arrhythmias, including Torsades de Pointes[69]. 
The exact relationship between CAN and sudden cardiac 
death remains, however, under question. As shown by 
the Rochester Diabetic Neuropathy Study, sudden death 
cases are also related to severe coronary artery disease 
or LV dysfunction rather than CAN itself[123]. Nonethe-
less, as we discussed above, CAN seems to contribute to 
cardiovascular mortality even in those with established 
coronary artery disease.

Several mechanisms have been implicated in explain-
ing the relationship between CAN and mortality in 
patients with DM. Autonomic neuropathy can lead to 
impaired response to hypoxic state[124], reduced hypo-
glycaemia awareness and prolonged hypoglycaemic epi-
sodes[111]. The observed mortality can also be attributed 
to a direct effect of  autonomic neuropathy and its micro-
vascular complications[125] as well as to an indirect associa-
tion with end-organ complications, such as nephropathy, 
left ventricular hypertrophy and diastolic dysfunction[100]. 
In addition, the lack of  the physiological nocturnal para-
sympathetic dominance in patients with CAN can lead 
to nocturnal hypertension, causing LV hypertrophy[126,127] 
and increasing the CVD burden[93,128].

Perioperative and intraoperative complications
Patients with CAN exhibit 2- to 3-times fold increase 
in perioperative morbidity (perioperative complications, 
impaired wound healing, impaired drug metabolism) and 
mortality[129,130]. Patients with CAN are more likely to re-
quire vasopressor support in the theatre setting[130]. They 
are also prone to experience a blood pressure and HR 
reduction during the induction of  anaesthesia, as well as 
severe intraoperative hypothermia[131]. The above findings 
can be explained by an impairment or absence of  the 
normal vasoconstrictive response to vasodilating anaes-
thesia in patients with CAN[130].

Cerebrovascular disease
Unlike the strong links between CAN and CVD, there 
is only limited data regarding the impact of  CAN on 
cerebrovascular disease. In a study conducted by Töyry 
et al[132] that included 133 patients with T2DM, CAN was 

found to be an independent risk factor for developing 
stroke after 10 years of  follow-up (OR = 6.7, 95%CI: 
1.5-29.9 for HRV response to deep breathing and OR 
= 1.1, 95%CI: 1.01-1.2 for lying-standing BP). In a sub-
analysis of  the Appropriate Blood Pressure Control in 
Diabetes population, including 950 patients with T2DM 
over a 5-year period, CAN was significantly associated 
with the occurrence of  stroke, independent to other risk 
factors[133]. The later was also confirmed by a recent study 
including 1458 patients with T2DM who were followed 
up for 7 years[134].

Diabetic nephropathy
Several authors have hypothesized that CAN is involved 
in the pathogenesis of  diabetic nephropathy, although 
causation has not been proven[135]. Sympathetic overac-
tivity has been shown to cause glomerular and tubular 
dysfunction in diabetic animal models via indirect (hyper-
tension and angiotensin Ⅱ) and direct (vascular smooth 
muscles proliferation, vasoconstriction, podocytes in-
jury) insults[136]. CAN is associated with increased CVD 
morbidity and mortality[63,135] and with haemodynamic 
changes such as lack of  nocturnal BP dipping (causing 
increased intra-glomerular pressure resulting in albumin-
uria)[137] and diurnal postural falls in BP (resulting in lower 
intra-glomerular pressure)[138] and endothelial dysfunction 
in humans. In addition, CAN is associated with deficits 
in erythropoietin production and, as a result, erythropoi-
etin-deficiency anaemia[137]. Subsequently, CAN patients 
are deprived from the direct nephroprotective action 
of  erythropoietin and thus, anaemia becomes a strong 
predictor of  nephropathy and progression of  chronic 
kidney disease[68]. In streptozotocin-diabetic rats, sympa-
thetic overactivation has been shown to be involved in 
the pathogenesis of  diabetic nephropathy[139] and renal 
denervation was shown to prevent glomerular hyperfiltra-
tion[140]. Hence it is plausible that CAN is involved in the 
development and progression of  diabetic nephropathy. 
Several studies examined the association between CAN 
and either albuminuria and/or glomerular filtration 
rate[141-145], but all these studies had a cross-sectional de-
sign, hence causation cannot be proven, particularly that 
the pathogenesis of  CAN is similar to other microvascu-
lar complications including diabetic nephropathy. Longi-
tudinal studies are scarce and limited to a small number 
of  patients with T1DM[138,146]. Hence, data regarding the 
longitudinal impact of  CAN on diabetic nephropathy in 
patients with T2DM is lacking.

Lower limb complications
CAN has been proposed as a contributing factor in the 
development of  lower limb vascular and neurological 
complications. Autonomic neuropathy can cause altera-
tions in microvascular blood flow (MBF), which predis-
pose to changes in skin structure and quality and impair-
ment of  sweat glands’ innervation resulting in dry skin 
and increased risk of  oedema and foot deformity which 
increases pressure on certain areas causing ulceration[147]. 
It is also believed that CAN, through the sympathetic 
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denervation of  the lower limb vasculature, can induce 
lower extremity hyperaemia, increase inflammation and 
erosion into the joints/bones and therefore contribute in 
Charcot’s neuroarthropathy. As a result, the patient with 
Charcot will typically present with prominent peripheral 
pulses due to vasodilatation and autonomic neuropathy. 
Power Spectral Analysis and HRV has been employed 
in trials for the detection of  autonomic neuropathy in 
patients with Charcot’s disease[148]. Similarly to Charcot’s 
arthropathy, patients with recurrent vascular neuropathic 
ulcers appear to share analogous cardiac autonomic dys-
function, as shown by the use of  HRV, Valsalva ratio and 
orthostatic hypotension[149].

THE DIAGNOSIS OF CAN
CARTs
Ewing et al[150] proposed in early 1970s five simple non-
invasive tests to measure cardiac autonomic function 
based on the HR and blood pressure response to certain 
physiological manoeuvres. These tests include: (1) the HR 
response to deep breathing, which assesses beat to beat 
HR variation (R-R variation) during paced deep breathing 
[expiration-to-inspiration ratio (E:I)]; (2) the HR response 
to standing, which is expressed as the 30:15 ratio which 
is the ratio of  the longest R-R interval (between the 
20th and 40th beat) to the shortest R-R interval (between 
beats 5-25) elicited by a change from horizontal to verti-
cal position; (3) the Valsalva manoeuvre which evaluates 
the HR response during and after a provoked increase in 
the intra-thoracic and intra-abdominal pressures (the pa-
tient normally exhales for a period of  15 seconds against 
a fixed resistance); (4) the blood pressure response to 
standing, which assesses the baro-reflex mediated blood 
pressure change following postural change; and finally; 
and (5) the blood pressure response to sustained hand-
grip, as defined by the diastolic blood pressure increase 
caused by the sustained muscle contraction with the use 
of  a handgrip dynamometer[17]. The first two tests reflect 
defects in the parasympathetic activity (i.e., the ability of  
the vagal nerve to slow the HR during the procedures 
which increases the R-R interval and hence increases the 
ratios), while the last two also describe changes in the 
sympathetic function (i.e., the ability to provide appropri-
ate BP and HR response to the activity involved)[151,152]. 
The autonomic changes that occur during the Valsalva 
manoeuvre are complex and involve both the sympa-
thetic and parasympathetic systems[153], although the 
Valsalva ratio mostly represents parasympathetic activity. 
For more details about the autonomic changes during 
Valsalva please see[17].

While the above described CARTs have been widely 
used since their introduction, there is no evidence on 
the superiority of  one test over another when it comes 
to assessing CAN[10]. However, the HR response to deep 
breathing is the most commonly utilised, because of  its 
high reproducibility and specificity[154] and its ease of  
use[10,155]. All the tests are considered to be valid markers 
of  autonomic dysfunction, given that end organ failure is 

excluded and parameters such as concomitant illness, use 
of  over the counter medications and lifestyle factors (ex-
ercise, smoking, exercise) are taken into consideration[156].

HRV
A reduction in HRV has been associated with the early 
stages of  clinical CAN. In healthy individuals, the beat-
to-beat variability with aspiration is predominantly affect-
ed by the direct sympathetic and parasympathetic activ-
ity[62,157], as well as various other stimuli, including certain 
neurohumoral factors (catecholamines, thyroid hor-
mones), temperature changes and mechanical and ionic 
changes in the sinus node[158]. The efferent sympathetic 
and vagal stimulation is characterised by synchronised 
discharges, modulated by central and peripheral oscilla-
tors, with the former referring to vasomotor and respira-
tory centres and the later to respiratory movements and 
arterial pressure. These synchronous neural discharges 
can manifest as short and long -term oscillations in the 
HR[63].

The R-R intervals recorded under paced breathing are 
transformed to generate the time and frequency domains. 
Conceptually, if  the faster respiratory sinus arrhythmia 
signal and the slower mean HR changes could each be 
separated from the patient’s cardiogram and analyzed 
independently, the result would yield a measure of  Vagal 
outflow from the respiratory sinus arrhythmia and a mea-
sure of  sympathetic activity from the changes in mean 
HR. Effectively this is what is accomplished in the fre-
quency- or spectral-domain. Spectral analysis of  respira-
tory sinus arrhythmia provides the indication of  where in 
the frequency domain the Vagus is influencing the heart. 
The frequency domains are generated using continu-
ous wavelet transform method (Fourier transform) and 
separated to three basic components: very-low-frequency, 
low-frequency (LF) and high-frequency (HF)[61,159]. HF 
represents vagal activity, whereas LF is attributed to the 
combined effect of  sympathetic and parasympathetic 
influence[62,160]. Modern software (such as ANSAR tech-
nology) adjusts for the respiratory rate, hence simplifying 
the process. Parameters generated include: respiratory 
frequency (Rfa, 0.15 to 0.4 Hz, represents parasympa-
thetic function), and LF (Lfa, 0.04 to 0.15 Hz, represents 
sympathetic function). The HRV and BP are recorded 
with the patient in sitting position during resting, deep 
breathing, Valsalva manoeuvre and standing position.

The electrocardiogram (ECG) recordings were ini-
tially longer in duration, usually over a period of  24 h but 
recent data has demonstrated that recording of  shorter 
duration can provide equally reliable information[16,158,161]. 
Time domain analysis is a useful tool in the assessment 
of  parasympathetic activity by measuring the normal R-R 
intervals, whereas the frequency domain is based on the 
spectral analysis of  R-R interval and other cardiovascular 
and respiratory signals based on short-term ECG record-
ings (2-5 min)[69,158].

The key element in the accurate use and interpretation 
of  HRV models is the standardisation of  the conditions 
under which the test is carried, including age, blood pres-
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sure, HR, tobacco smoking or caffeine use and, above all, 
respiration control[69].

Baro-reflex sensitivity
The BRS measures the cardiac vagal and sympathetic 
baro-reflex function. The idea behind its function is that 
an increase in the BP normally induces a reflective in-
crease in the vagal cardiac efferents and a reduction to the 
efferent sympathetic activity, resulting in bradycardia and 
hypotension, due to the reduction in cardiac output as 
well as the peripheral vasodilation[158]. A reduction in BP 
induces opposite responses. Thus, to correctly measure 
the baro-reflex function, both the vagal efferent activity 
(evidenced by changes in HR in response to changes in 
BP), and the sympathetic efferent activity (affecting the 
arterial vessels) should be taken into account.

In practice, the term “baro-reflex sensitivity” nor-
mally applies to the cardiac-vagal arm, and to methods 
measuring changes in HR in response to changes in (sys-
tolic) BP. The test can be performed either with the use 
of  pharmacological methods (intravenous bolus injection 
of  epinephrine)[162] or non-pharmacological techniques 
(physical manoeuvres such as postural change). Although 
the former is considered the gold standard to date for 
evaluating BRS, both of  them correlate well clinically 
with each other[163]. Both techniques require a continuous 
measure of  BP and a continuous and synchronised mea-
sure of  HR (R-R interval)[158].

BRS can be used for detecting sub-clinical CAN[63], 
since BRS can be abnormal in diabetes, before the dem-
onstration of  any clinical signs of  CAN or other con-
ventional autonomic function tests detect any abnormali-
ties[64,65]. Several studies on patients with diabetes have 
concluded that BRS is a strong independent risk factor 
for mortality[164], especially in cohorts suffering from 
heart failure or following a myocardial infarction[162,165].

Scintigraphy
The use of  Single-photon emission computed tomog-
raphy (SPECT) and/or positron emission tomography 
(PET) and sympathetic neurotransmitter analogues, such 
as the 123I-metaiodobenylguanide (123I-MIBG) (SPECT), 
the 11C-metahydroxyephedrine (11C-HED) (PET) and 
11C-epinephrine has enabled the quantitative scintigraphic 
evaluation of  cardiac sympathetic innervation[63].

123I-MIBG undergoes rapid uptake in the myocardium 
but as it is semi-quantitative is not a precise indicator 
of  neuronal uptake[158]. Metabolically stable 11C-HED 
demonstrates a highly specific uptake by the sympathetic 
nerves mediated by norepinephrine transporters[166]. It is 
important, however, to take myocardial perfusion (which 
affects the delivery of  the tracer of  interest) into consid-
eration before interpreting the results of  these imaging 
techniques. Retention defects of  both 123I-MIBG and 
11C-HED have been reported in patients with T1DM and 
T2DM and have been variably correlated with abnormal 
but also normal CARTs[60,67,167]. The consistent pattern 
of  sympathetic denervation in patients with T1DM sup-
ports the notion that 11C-HED can be used to monitor 

the population of  sympathetic nerves and evaluate the 
regional autonomic deficits of  sympathetic innerva-
tions[66,166,167]. In patients with CAN and T1DM, the wash 
rates of  11C-epinephrine have been shown to correlate 
well with those of  11C-HED[158]. The development of  
microvascular complications has been associated with the 
augmentation in sympathetic tone and adrenergic hyper-
responsiveness, by the use of  11C-HED[63]. As CAN 
reaches an advanced stage, a heterogenous pattern of  
11C-HED retention is observed, with a reduced 11C-HED 
retention in the distal LV and a persistent or increased 
11C-HED retention seen proximally, indicating a proximal 
to distal pattern of  sympathetic denervation of  the LV[63].

Increases in the sympathetic nervous tone and elevat-
ed epinephrine levels can affect the retention of  sympa-
thetic neurotransmitter analogues, making the interpreta-
tion of  the above scintigraphic models rather challenging. 
Furthermore, the lack of  standardisation, the high cost 
and the demand on highly skilled operators, restricts the 
role of  scintigraphy as a valuable research tool and not a 
part of  daily clinical routine[68].

When it comes to radiation exposure, 123I-MIBG lacks 
a β-particle emission and has a half-life of  13.2 h, where-
as its energy of  the primary imaging photon is calculated 
at 159 keV (kiloelectron volt)[168]. When compared to 131I, 
123I-labelled agent is to be considered the radiopharma-
ceutical of  choice as it has a more favourable dosimetry 
and better radiation profile. Whole-body radiation is 
markedly lower using 11C-HED PET [effective dose 
equivalent in adults, 1.2 milliSieverts (mSv)] compared 
with 123I-MIBG scintigraphy (effective dose equivalent in 
adults, 6.0 mSv)[169]. The radiation dose to the whole body 
from 20 milliCuri (mCi) 11C-HED is 0.186 rad, less than 
that from 0.5 mCi 131I-MIBG IBG (0.45 rad) or 10 mCi 
123I-MIBG (0.53 rad)[170].

Muscle nerve sympathetic nerve activity
Muscle sympathetic nerve activity (MSNA) is based on 
the ability to record efferent sympathetic nerve signals 
in the skeletal muscles either at rest or in response to 
physiological perturbations with the use of  microelec-
trodes into a fascicle or a distal sympathetic nerve of  the 
skin or muscle (microneurography)-usually the peroneal 
nerve[171].

MSNA is the most direct measure of  peripheral sym-
pathetic activity and therefore a useful research tool. How-
ever, its invasiveness, cost and time-consuming nature is 
not recommended for routine autonomic assessment[158].

Other tests
Occasionally, various tests have been proposed for the 
assessment, diagnosis and monitoring of  CAN. A recent 
study on 167 patients with type Ⅰ diabetes conducted by 
the University of  Liege, found the use of  pulsatile stress, 
which measures the arterial stiffness, correlates well with 
baro-reflex sensitivity, suggesting therefore that arterial 
stiffness can be used as a marker of  CAN[172]. The as-
sociation between arterial stiffness (expressed as carotid-
femoral wave velocity (PWV)) had already been explored 
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by another study. After multivariable linear regression, 
the association between CAN (E/I index in particular) 
and PWV not only remained significant but E/I index 
was the strongest predictor of  PWV in the model (β co-
efficient: -0.326, 95%CI: (-3.110)-(-0.750), P = 0.002)[173]. 
Catecholamine kinetics, most specifically epinephrine and 
norepinephrine plasma clearance have been labelled as 
the biochemical equivalent of  MSNA but they have failed 
to date to produce reliable diagnostic data[158].

Another aspect of  autonomic function is the assess-
ment of  cutaneous MBF. The skin offer an accessible 
organ to asses MBF and endothelial function, which is 
often involved in the development of  micro and macro-
vascular diabetes, correlates with systematic endothelial 
function measures and myocardial microcirculation[174]. 
Several methods are available to assess skin MBF[175]. La-
ser Doppler (LD) allows the determination of  blood flow 
under basal conditions or following physical (e.g., heating) 
or pharmacological (e.g., acetylcholine and/or sodium 
nitroprusside) stimulation; allowing the differentiation 
between endothelial-dependant and independent respons-
es[174]. Furthermore, LD allows the measurement of  nerve 
axon reflex-related vasodilation following acetylcholine 
iontophoresis which is the result of  C-fibre stimula-
tion[176]. LD techniques include LD flowmetry, LD perfu-
sion imaging and laser speckle contrast imaging[158,174].

Another assessment of  the peripheral autonomic 
system is intra epidermal nerve fibre density (IENFD) 
using immuno staining[177]. IENFD is highly sensitive and 
specific to diagnose small fibre neuropathy (88%-98% 
and 88.8%-95% respectively)[178]. IENFD correlates also 
inversely with thermal thresholds[178]. In addition, IENFD 
innervates the sweat glands. Reduction in sweat produc-
tion in the feet contributes to the development of  dry 
skin/callus and hence predispose to the development of  
foot ulceration. This function can be assessed by several 
methods such as Neuropad[147] and Sudoscan[179].

CRITERIA FOR DIAGNOSIS AND 
STAGING
HR responses to deep breathing, standing and Valsalva 
manoeuvre, as well as blood pressure response to stand-
ing (CART) are considered as the gold standard in clinical 
testing for autonomic neuropathy[10]. Their applicability 

in bedside clinical practice is based on their sensitivity, 
specificity, reproducibility, ease and safety of  use and 
standardisation.

According to the CAN Subcommittee of  the Toronto 
Consensus Panel statement following the 8th international 
symposium on diabetic neuropathy in 2010[10], the criteria 
for diagnosis and staging of  CAN are as follows: (1) A 
single abnormal CART result suffices for the diagnosis of  
possible or early CAN; (2) The presence of  two or three 
abnormal test among the seven autonomic cardiovascular 
indices (5 CARTS, time-domain and frequency-domain 
HRV tests) are required for the diagnosis of  definite or 
confirmed CAN; and (3) The presence of  orthostatic 
hypotension in addition to the above criteria signifies the 
presence of  severe of  advanced CAN.

SCREENING FOR CAN
The majority of  diabetes patients with CAN have sub-
clinical or asymptomatic disease, rendering the diagnosis 
and appreciation of  CAN in clinical practice rather dif-
ficult[63]. Once CAN reaches the stage that becomes clini-
cally evident, the disease might have reached an advanced 
level and management becomes more difficult. Screening 
for early CAN is therefore considered good clinical prac-
tice several reasons as summarised in Figure 3[10].

The Toronto Diabetic Neuropathy Expert Group 
in a recent statement have recommended that screening 
should be considered for patients at time of  diagnosis of  
T2DM and within 5 years of  diagnosis of  T1DM, partic-
ularly in patients with other macro- and/or microvascular 
complications[180]. Patients with a history of  poor glycae-
mic control are especially at risk for developing CAN, 
as demonstrated in several studies, suggesting that this 
clinical group may benefit from screening[17]. Due to its 
impact on exercise tolerance, testing for CAN should be 
a part of  the screening in patients that are about to begin 
a new exercise programme that involves more intense 
physical activity than brisk walking[69,181]. Evidence also 
suggests that screening for CAN could be incorporated 
into the perioperative assessment of  patients with poor 
glycaemic control and coronary artery disease, due to the 
association between CAN and haemodynamic instability 
peri- and intra-operatively[182]. Finally, testing for CAN 
could potentially be of  benefit in patients with DM that 
have suffered MI, as this would serve in the risk stratifica-

Figure 3  Current recommendations on screening 
for cardiac autonomic neuropathy. CAN: Cardiac 
autonomic neuropathy; DM: Diabetes mellitus.
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Significance of CAN
     According to the Toronto Consensus Panel on Diabetic Neuropathy statement,
     screening for CAN in the patients with DM should be considered good clinical practice,
     due to the following:
(1) It enables the accurate and clinical relevant diagnosis of various CAN forms
(2) It assists in the appropriate detection and subsequently the tailored treatment of CAN
     multiple clinical manifestations as described in the previous section
(3) It provides a clinical tool for the risk stratification for diabetic complications as well as
     the cardiovascular morbidity and mortality
(4) It can be used for the modulation of targets of diabetes treatment
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tion of  this subgroup and assist into adapting a more ag-
gressive therapeutic approach for those at risk of  sudden 
cardiac death or life threatening arrhythmias.

THERAPEUTIC APPROACHES FOR CAN
CAN treatment can either be symptomatic or aimed at 
slowing or reversing CAN progression. However, effec-
tive therapies to slow or reverse CAN progression are 
rather limited as the complete underlying pathogenesis 
remains unclear. However, based on our current under-
standing of  CAN pathogenesis and risk factors, several 
potential treatments have been examined.

Lifestyle modification
Lifestyle changes have been shown to have a beneficial 
impact on the prevention of  CAN progression in the 
Steno-2 trial[5] and the Diabetes Prevention Program 
(DPP)[183]. In the Steno-2 study, patients with T2DM and 
microalbuminuria were randomised to a multi-factorial 
cardiovascular risk factor intervention that included be-
havioural therapy (diet, physical exercise and smoking 
cessation) and pharmacological intervention (to control 
BP, lipids and hyperglycaemia) or conventional treatment 
in accordance to the national guidelines. After an average 
of  7.8 years of  follow-up, the risk for developing CAN 
was significantly lower on the intervention arm (49% in 
the intensive group vs 65% in the conventional group, 
HR = 0.37, 95%CI: 0.18-0.79, P = 0.002). In the DPP, 
lifestyle modification demonstrated superior results in the 
improvement of  autonomic dysfunction (assessed with 
HRV and QT indexes) as compared to the use of  met-
formin or placebo.

Weight loss and dietary intervention accompanied[69] 
or not[184] by supervised training was associated with im-
provement on CAN indices. Aerobic training has also 
been shown to improve CAN, with some indication that 
mild physical exercise is recommended in less severe 
CAN cases. A recent review summarising the evidence 
for the impact of  life style interventions on CAN has 
concluded that moderate endurance and aerobic exercise 
in both T1DM and T2DM, improve HRV and cardiac 
autonomic function significantly, in favour of  parasympa-
thetic dominance, independent of  BMI, glycaemic or BP 
control and duration of  diabetes[185].

Intensive glycaemic control
Hyperglycaemia is a major risk factor for CAN develop-
ment and progression. Intensive glycaemic control has 
been shown to slow the progression and prevent/delay 
the development of  CAN[18,66,186,187]. In the DCCT trial, 
intensive glycaemic control in a group of  patients with 
T1DM reduced the CAN incidence by 50% over 6.5 
years follow-up compared with conventional therapy (7% 
vs 14% respectively)[19]. These beneficial effects persisted 
13-14 years after close-out of  the trial[18]. Although both 
former treatment arms exhibited deterioration in CAN 
during follow-up after the end of  the DCCT, the former 

intensive treatment group continued to demonstrate a 
statistically significant slower decline in CAN.

PET cardiac imaging with the use of  11C-HED 
showed similar beneficial effects in a 3-year prospective 
trial. Good glycaemic control (defined as mean HbA1c < 
8%) was associated with reduction of  sympathetic dener-
vation as opposed to the group of  poor diabetes control 
(HbA1c ≥ 8%)[167]. In the SEARCH CVD study, 354 
young patients with T1DM were assessed for the pres-
ence of  sub-clinical autonomic dysfunction, as demon-
strated by the use of  HRV parameters and the presence 
parasympathetic loss with sympathetic override. Poor 
glycaemic control, as defined by HbA1C > 7.5%, was 
independently associated with the presence of  subclinical 
CAN as compared to a frequency-matched control group 
without DM[188].

The effects of  glycaemic control in T2DM are not 
similarly encouraging. Data from recent studies have 
failed to demonstrate differences in the incidence of  
CAN based on the application of  intensive therapy in 
T2DM patients[189,190]. The sensitivity of  tests utilised for 
the diagnosis of  CAN in those trials, however have been 
questioned, suggesting that more research is needed to 
investigate the relationship between metabolic control 
and CAN in patients with T2DM.

Therapies based on CAN pathogenesis
There is limited but increasing data on the use of  phar-
macotherapy targeting specific pathogenic pathways. The 
use of  the specific antioxidant α-lipoic acid improved 
CAN in patients with T2DM in a 4-mo controlled ran-
domised trial[191]. In animal models, the pharmacological 
agents FP15 and FeTMPS, which act by catalysing the 
decomposition of  peroxynitrite, have shown promising 
results in improving neuronal function[192-194]. The use of  
glucagon-like peptide 1 analogues or the dipeptidyl pep-
tidase 4 inhibitors have demonstrated cardioprotective[195] 
and neuroprotective properties[196], raising the possibility 
of  their use for treatment not only for peripheral neu-
ropathy, but autonomic neuropathy as well. In small scale 
studies, aldose reductase inhibitors have been shown to 
improve LV function in patients with DAN without any 
alteration on CAN indices[197]. There is also evidence sug-
gesting the vitamin E and C-peptide can both improve 
HRV indices[10]. In a randomised controlled trial, vitamin 
E when compared to placebo managed to increase the 
R-R interval (P < 0.05) and the HF component of  HRV 
(HF; P < 0.05) in 50 patients with T2DM over a period 
of  4 mo[198]. Small RCTs have shown beneficial effect of  
C-peptide treatment on CAN parameters[53]. In a recent 
randomised placebo-controlled trial of  44 patients with 
T1DM, treatment with a triple antioxidant regime (allo-
purinol, α-lipoic acid and nicotinamide) over the course 
of  2 years failed to prevent progression of  CAN and had 
no benefit on myocardial perfusion as demonstrated with 
scintigraphic imaging modalities[199]. Further research is 
required to confirm these findings and explore other po-
tential pathogenetic therapies.
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The renin-angiotensin-aldosterone axis
There is substantial data to support the use of  certain 
pharmacological agents in the improvement of  the left 
ventricular dysfunction associated with autonomic neu-
ropathy in diabetes. In patients with heart failure, the 
use of  bisoprolol[200] or the addition of  spironolactone 
to enalapril, furosemide and digoxin[201], demonstrated 
a beneficial effect on autonomic function, as shown by 
HRV testing and sympatho-vagal balance respectively. 
The use of  angiotensin-converting enzyme (ACE) inhibi-
tors could potentially improve the parasympathetic/sym-
pathetic balance[202] and improve prognosis in cardiac 
failure[203]. The addition of  angiotensin receptor blockers 
to ACE inhibitors may be superior to monotherapy[204-206], 
due to the enhanced blockade on the renin-angiotensin-
aldosterone axis[207]. In a small study by Didangelos et 
al[208], including 62 patients with type Ⅰ and type Ⅱ DM, 
the use of  ACE inhibitors or ARBs, as well their com-
bination, managed to improve both diabetic autonomic 
neuropathy and LV diastolic dysfunction.

Symptomatic treatment of orthostatic hypotension
Treatment of  orthostatic hypotension is required in 
symptomatic patients with autonomic neuropathy. There 
are several strategies available, including lifestyle and be-
havioural measures as well as pharmacological options. 
The former include advice provided to the patients to 
avoid sudden changes in body posture, eat smaller and 
more frequent meals, avoid drugs-precipitants of  pos-
tural hypotension (diuretics, tricyclic antidepressants, 
α-adrenoreceptor antagonists), perform physical counter-
manoeuvres (leg crossing, stooping and squatting), in-
crease fluid and salt intake, avoid physical activity that 
leads to straining and finally use garments over legs and 
abdomen[69,209].

If  the above measures fail to improve symptoms, 
pharmacological intervention may be considered. A risk-
benefit consideration should take place for each individu-
al before starting a medication, especially weighing up the 
risk of  developing marked supine hypertension against 
the benefit of  preserving the erect blood pressure. Should 
a pharmacological agent be considered appropriate by the 
clinician, there are several options available[210-212].

Midodrine, a peripheral selective α1-adrenergic ago-
nist, is considered a first line agent that acts through 
peripheral vasoconstriction of  arterioles and veins. It 
remains to date the only drug approved by the food and 
drug administration (FDA) for the treatment of  ortho-
static hypotension[213,214]. However, post-market trials to 
prove drug’s efficacy are still ongoing and the final results 
on midodrine’s benefits are scheduled to be published in 
2014, 18 years after the drug was given FDA approval[215]. 

9-α-fluorohydrocortisone, a synthetic mineralocor-
ticoid, is another first line option that acts through so-
dium retention and plasma expansion[216]. In a double-
blinded crossover study, 9-α-fluorohydrocortisone 
treated successfully the orthostatic hypotension of  
patients with diabetes and autonomic neuropathy[216]. 
9-α-fluorohydrocortisone doses between 100 and 400 

micrograms decreased significantly the orthostatic hy-
potension in 14 symptomatic patients with DM over a 
mean period of  12 mo (P < 0.001)[217]. Extra care should 
be taken when prescribed in patients with cardiac failure, 
as it can lead to fluid overload. There is usually a period 
of  10-14 d before its effects can become clinically evi-
dent[212].

Somatostatin and somatostatin analogues (octreo-
tide) inhibit the release of  vasoactive peptides from the 
GI tract and thus increase splanchnic vasoconstriction, 
leading to increase in mean blood pressure[218]. The use 
of  long acting octreotide in patients with autonomic neu-
ropathy increased the mean systolic BP from 83.8 ± 7.1 
mmHg to 104.1 ± 3.1 mmHg (P < 0.025) within eight 
weeks, improving orthostatic dizziness and fatigue[219]. In 
a study of  18 patients with idiopathic orthostatic hypo-
tension, octreotide reduced postural, postprandial and 
exertion-induced hypotension, as demonstrated by 24-h 
ambulatory blood pressure profiles and cusum analy-
ses[220].

Other available pharmacological strategies include 
the use of  erythropoietin which can increase the erect 
BP through the increase of  red cell mass and circulating 
volume, the improvement of  anaemia and its regula-
tory effect on vascular tone[221] and desmopressin acetate 
whose efficacy is mainly observed in morning time hypo-
tension[212]. Finally, caffeine and acarbose can potentially 
be used in the management of  post-prandial hypoten-
sion[212]. In a case report of  58 years old patient with DM 
and severe postprandial hypotension refractory to the 
use of  midodrine and octreotide, acarbose (an alpha-
glucosidase inhibitor) reduced the postural drop from 50 
mmHg to 18 mmHg, improving the patients symptoms 
dramatically[222].

Unfortunately, despite the different options available, 
postural hypotension remains a difficult condition to treat 
and many patients require multiple therapies and develop 
severe intractable disabling symptoms. Beta blockers 
might help controlling the tachycardia in some patients[69].

CONCLUSION -SYNOPSIS AND FUTURE 
CONSIDERATIONS
CAN is very common and is an underdiagnosed com-
plication of  DM. CAN is associated with significant in-
crease in morbidity and mortality and plays an important 
role in the development of  diabetic cardiomyopathy and 
silent ischaemia. Clinicians interpreting exercise tolerance 
testing should be aware of  the reduced accuracy of  this 
test in patients with CAN. In addition, CAN might play 
a role in the pathogenesis of  diabetes-related microvas-
cular complications and the development of  lower limb 
complications. However, before CAN is symptomatic 
and evident clinically, patients might have sub-clinical 
CAN for several years. The time scale for the progression 
from sub-clinical to clinically evident CAN is unknown. 
In addition, the time scale for the progression from early 
abnormalities (such as increased LV torsion) to clini-
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cally detectable cardiac disease is also unknown. Recent 
guidelines have recommended screening for CAN in 
patients with diabetes and issued guidance regarding the 
criteria used to diagnose CAN. CAN is assessed using 
several methods including CARTs, HRV, and imaging 
amongst others. The use of  HRV and spectral analysis 
has simplified CAN testing which nonetheless remains 
time consuming. Despite our improved understanding of  
the pathogenesis of  CAN, disease modifying treatment 
is lacking. Improving glycaemic control, life style changes 
and CVD risk factors management are the mainstay of  
treatment, which generally slow the progression of  CAN 
rather than reversing it.

Further research exploring the natural history of  
CAN and the natural history of  the impact of  CAN on 
CVD is needed. Better understanding of  CAN pathogen-
esis is also required in order to develop disease modifying 
treatments. OSA is increasingly recognised as an impor-
tant contributor to the development of  microvascular 
complications in DM, hence it is important to clarify the 
relationship between CAN and OSA as this might iden-
tify new treatment targets.
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