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ABSTRACT
Background and objective Electronic health records
(EHRs) are increasingly being used to complement the
FDA Adverse Event Reporting System (FAERS) and to
enable active pharmacovigilance. Over 30% of all
adverse drug reactions are caused by drug–drug
interactions (DDIs) and result in significant morbidity
every year, making their early identification vital. We
present an approach for identifying DDI signals directly
from the textual portion of EHRs.
Methods We recognize mentions of drug and event
concepts from over 50 million clinical notes from two
sites to create a timeline of concept mentions for each
patient. We then use adjusted disproportionality ratios to
identify significant drug–drug–event associations among
1165 drugs and 14 adverse events. To validate our
results, we evaluate our performance on a gold standard
of 1698 DDIs curated from existing knowledge bases, as
well as with signaling DDI associations directly from
FAERS using established methods.
Results Our method achieves good performance, as
measured by our gold standard (area under the receiver
operator characteristic (ROC) curve >80%), on two
independent EHR datasets and the performance is
comparable to that of signaling DDIs from FAERS. We
demonstrate the utility of our method for early detection
of DDIs and for identifying alternatives for risky drug
combinations. Finally, we publish a first of its kind
database of population event rates among patients on
drug combinations based on an EHR corpus.
Conclusions It is feasible to identify DDI signals and
estimate the rate of adverse events among patients on
drug combinations, directly from clinical text; this could
have utility in prioritizing drug interaction surveillance as
well as in clinical decision support.

BACKGROUND AND SIGNIFICANCE
Adverse drug reactions result in more than 100 000
deaths annually,1 with an associated yearly cost of
over $136 billion.2 Simultaneously, there is a rise in
polypharmacy, which is the use of multiple con-
comitant drugs to treat medical conditions; one
study estimated that 29.4% of elderly patients3 are
taking six or more drugs. Drug–drug interactions
(DDIs) that lead to adverse reactions are potentially
avoidable, if detected early, given that DDIs
account for more than 30% of all adverse drug
reactions.4–6

New drugs are tested for interactions with exist-
ing drugs before market approval using in vivo and
in vitro methods.7 However, owing to the sheer
number of ways in which drugs can interact,8 it is
infeasible to test for every kind of interaction.
Many DDIs manifest after a certain period of
exposure and it takes several exposures for rare

DDIs to occur.9 Therefore, postmarketing surveil-
lance is necessary to detect unanticipated interac-
tions that occur when the drug is in use in the
general population. The US Food and Drug
Administration (FDA) enables such surveillance via
spontaneous reporting systems (SRSs) such as the
FDA Adverse Event Reporting System (FAERS),
and a similar role is served internationally by the
World Health Organization’s VigiBase. Several
studies10–13 have successfully inferred DDIs from
these sources, overcoming problems of reporting
biases14 and duplicate reporting.15

Electronic health records (EHRs) are a source of
observational data that can complement SRSs and
offer the potential for active surveillance.16

Initiatives like the Observational Medical
Outcomes Partnership (OMOP) in the USA and the
Exploring and Understanding Adverse Drug
Reactions (EU-ADR) project in Europe are focusing
on building EHR based surveillance systems.
Similarly, the Mini-Sentinel Pilot Program,17 which
is part of the FDA’s Sentinel Initiative, uses data of
more than 125 million patients across the USA
from over 17 data partners for active monitoring of
medical products. These projects mainly utilize the
structured diagnosis and prescription data from
EHRs for identifying single drug adverse reactions.
Most efforts aimed at finding DDIs use reported
sources for signal detection and use EHRs as a
means of validation. For instance, Tatonetti et al10

found 171 new DDIs from FAERS and used the
EHRs at Stanford to validate them. Another study
by Duke et al18 mined MEDLINE abstracts for
hypotheses generation and validated the hypotheses
on EHRs.
In addition to structured data, EHRs contain rich

information in the unstructured notes taken by
doctors, nurses, and other practitioners. By ignor-
ing the unstructured text, we could be missing a
substantial portion of adverse events.19 Many
studies19 20 have shown that coded information
such as the ICD-9 is inadequate to accurately build
patient cohorts and there is a considerable advan-
tage in using the unstructured text of EHRs.21 22

We argue that such an advantage would also extend
to drug safety signal detection. Indeed, there has
already been some work23–26 demonstrating the
discovery of the adverse event profiles for single
drugs using unstructured notes.
Therefore, given increasing adoption and access

to medical records for research, we expect efforts
to shift toward directly mining EHRs with an
increased attention to the use of unstructured data
for generating hypotheses about drug safety.27 In
this paper, we apply data mining methods on the
textual portion of EHRs to signal adverse DDIs. To

Iyer SV, et al. J Am Med Inform Assoc 2014;21:353–362. doi:10.1136/amiajnl-2013-001612 353

Research and applications

http://dx.doi.org/10.1136/amiajnl-2013-001612
http://dx.doi.org/10.1136/amiajnl-2013-001612
http://dx.doi.org/10.1136/amiajnl-2013-001612


our knowledge, this is the first study of its kind. We validate our
methods using a gold standard built from existing knowledge
bases of DDIs, by applying our methods to two independent
large EHR datasets, and by comparing with signaling DDI asso-
ciations directly from FAERS using established methods. We
demonstrate the utility of our method for early detection of
new interactions and for identifying alternatives to risky drug
combinations. Finally, we publish a database of the rate of
adverse events among patients on all combinations of drugs
used in our study, based on the EHRs.

MATERIALS AND METHODS
Data sources
Electronic health records
We use the Stanford Translational Research Integrated Database
Environment (STRIDE) dataset comprising 9 million unstruc-
tured clinical notes corresponding to 1 million patients as our
primary source of EHR data. These textual notes span a period
of 18 years (1994–2011) and include both inpatient and out-
patient notes, that are a combination of radiology, pathology,
and transcription reports.

For validation of our results, we use a similar dataset from
the Palo Alto Medical Foundation (PAMF), comprising over
50 million outpatient notes corresponding to 1.2 million
patients for encounters during 2000–2012. The dataset includes
progress, problem visit, procedure, and H&P (history and phys-
ical) notes, as well as communication transcripts.

Structured data sources
To compare the accuracy of DDI signal detection from EHRs
with SRSs, we use over 4 million FAERS reports covering the
period from 1997 through 2012 Q1. These reports are prepro-
cessed to remove duplicate reports, correct terminological
errors, and normalize drugs. Medical Dictionary for Regulatory
Activities (MedDRA) V14.1 codes are used in FAERS to code
adverse events.

We use the Anatomical Therapeutic Chemical Classification
(ATC) and 18 ontologies from the Unified Medical Language
System (UMLS) Metathesaurus and BioPortal28 (19 ontologies
in total; see online supplementary materials S1) for building a
lexicon and for normalizing drugs and diseases. Additionally, we
use DrugBank,29 Medi-Span Drug Therapy Monitoring System
(Wolters Kluwer Health, Indianapolis, Indiana, USA), Drugs.
com,30 the National Drug File–Reference Terminology
(NDF-RT), and Side Effect Resource (SIDER)31 as sources of
drug indications and known DDIs.

Annotation of clinical text
We use sets of terms derived from 19 biomedical ontologies to
define drug and event concepts (see online supplementary mate-
rials S2) as described in our previous work.26 32 For drugs, we
include trade names and other forms of the drug from
RxNorm, but ignore the dosage of the drug. For adverse events,
we identify a SNOMED CT concept most similar to the event
and systematically including synonyms and hyponyms via the
is-a relationship graph. To improve the precision of recognizing
drug and event concepts, based on prior work on identifying
and removing non-informative terms,33 34 we remove terms that
occur in common English usage from the automatically com-
piled term-sets.35 Finally, using frequency based sorting,36 37 we
manually identify ambiguous terms that belong to more than
one semantic group (drug, disease, device, procedure),36 38 and
we suppress their least likely interpretation. For example, ‘clip’
is more likely to be a device than a drug in clinical text, so we

suppress its interpretation as ‘corticotropin-like intermediate
lobe peptide’.

We then use a fast text annotator to process clinical notes for
mentions of these concepts and order the mentions by the note’s
timestamp, thus forming a concept timeline for every patient
(figure 1). The annotator also takes into account negation and
family history contextual cues to restrict concepts to positive
mentions referring to the patient. For example, if the clinical
note mentions ‘no evidence of active colitis’ or ‘family history of
cancer’, then the note is not tagged with colitis or cancer. We
follow a similar approach for the PAMF dataset. We achieve 74%
sensitivity and 96% specificity in recognizing diseases on a gold
standard from the 2008 i2b2 obesity challenge39 and our per-
formance varies by condition (see online supplementary materi-
als S3). Drug recognition is done in a similar manner using
strings from RxNorm. An independent study at the University of
Pittsburgh, which examined the annotations on 1960 clinical
notes manually,40 estimated over 84% recall and 84% precision
for recognizing drugs (personal communication, Richard Boyce).

We focus our study on a set of 14 adverse events based on
existing literature,41 the availability of known DDIs causing
them, their population event rate in STRIDE, and our ability to
successfully detect their presence in text from EHRs. For inter-
operability with FAERS, which uses MedDRA codes, we manu-
ally assign to each event concept, the most closely matching
MedDRA code (see online supplementary materials S4).

Computing drug–drug–event association scores
To compute the association score for a drug–drug–event tuple
using EHRs, we treat the combination of two drugs as a single
drug and use standard methods that measure the disproportion-
ality of the mention of the adverse event, between exposed and
comparison groups. Similarly, for FAERS based analysis, we use
the Multi-Item Gamma Poisson Shrinker (MGPS)42 algorithm
to measure the disproportionality of the observed number of
reports for a drug–drug–event tuple compared to the expected
number of reports. We signal an interaction if the association
score is greater than some threshold, which is chosen based on
the receiver operator characteristic (ROC) curve for the desired
sensitivity and specificity.

DDI associations from EHRs
We first construct a 2×2 contingency table (figure 2) where the
exposed group comprises patients who have taken both drugs
and the comparison group comprises patients who have taken at
most one drug (or no drug). Patients are assigned to one of the
cells of the contingency table based on the ordering of the first
mention of the two drugs and the event in the patient’s timeline
(figure 2). For example, if both drugs appear in notes whose
timestamp is earlier than the note with the adverse event, the
patient is counted into the ‘a’ cell. Any drugs that appear after
the first occurrence of the event are ignored. The population
event rate among patients on the drug combination can be cal-
culated from this table as a/(a+b).

We calculate an unadjusted OR (UOR) from this contingency
table, and use the lower bound of the 95% CI,43 which we
denote as UOR025, as an unadjusted association score. To
compute an adjusted OR (AOR), we use propensity score match-
ing (PSM) using a standard caliper of 0.05 (Matching package
in R44), to match 10 patients in the comparison group to each
patient in the exposed group without replacement, followed by
conditional logistic regression45 (Survival package in R46). Once
again, we use the lower bound of the 95% CI of the AOR,
denoted as AOR025 as an association score. We compute the
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propensity score using age, gender, race, note count, drug
count, and disease count. For patients taking at least one of the
drugs, we use the average age at the time of drug exposure
whereas for patients not taking either drug, we use the average

age of the patient in our dataset. Drug count and disease count
serve as proxies for the overall health of the patient,27 47 and
including the note count serves to adjust for the quantity of data
for each patient.

Figure 1 The annotator workflow. (A) The annotator uses a lexicon of approximately 5.6M terms derived from the Unified Medical Language
System (UMLS) and BioPortal, as well as trigger terms for NegEx and ConText. (B) It uses term frequency and syntactic type information from
Medline to prune the set of strings into a clean lexicon. (C) It then uses the lexicon for exact string matching on the textual notes, followed by
negation detection (red) and family history detection (blue). The output is a list of positively mentioned terms recognized in the text. (D) UMLS and
BioPortal terms are used to define concepts (a set of terms), making use of the relationships in the ontologies to expand the set. (E) Each note is
tagged with a concept if any one of the defining terms appears in the note as a positive mention. The concepts are ordered by the note’s
timestamp, creating a concept timeline for each patient.

Figure 2 Assignment of patients to
various cells of the 2×2 contingency
table. The portion of the timeline after
the first occurrence of the event is
ignored. D, drug; E, event.
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DDI associations from FAERS
We use the MGPS, which is a commonly applied algorithm
endorsed by the FDA for FAERS based disproportionality ana-
lysis,48 to generate a DDI signal based on FAERS. MGPS is based
on a Bayesian framework that accounts for uncertainty of a dis-
proportionality ratio by ‘shrinking’ it towards a baseline case of
no association to an extent proportional to its variance. We make
use of the EB05 measure, which is the lower 5th percentile of the
posterior distribution of the disproportional reporting ratio for
our drug–drug–event tuple. The MGPS algorithm performs strati-
fication on age, gender, and year of report to adjust for con-
founding by these variables. Drug combinations with fewer than
five reports are ignored and are given a score of 0.

Preparation of gold standard
We use three sources to define our list of drugs: RxNorm (4993
drugs, counted as unique ingredients), DrugBank (6711 drugs),
and ATC (4406 drugs). We limit our study to 1165 drugs
present in all three sources. We use known interactions from
DrugBank and Medi-Span as positive interactions in our gold
standard. Using our concept definitions to identify adverse
events from the interaction monographs, we form drug–drug–
event relations and manually validate them. For estimating the
false discovery rate, we simulate a set of negative interactions by
generating random drug–drug–event tuples, and removing any
known interactions according to DrugBank, Medi-Span, or
Drugs.com. We also remove tuples for which the event is an
indication (from Medi-Span, DrugBank, Drugs.com, UMLS,
and SIDER) for either drug individually.

RESULTS
Characteristics of datasets
We include 1165 drugs and 14 adverse events in our study and
the defining term sets are available as online supplementary
materials S2. Out of 1.04 million patients, there are 565 998
patients (53% female) in the STRIDE dataset, with at least one
drug or event concept from our study mentioned in their
records. Out of the 1165 drugs, 858 (73.6%) appeared at least
once. Similarly, out of 1.2 million patients, there are 969 511
patients (54% female) in the PAMF dataset, covering 1048
(90%) drugs. Table 1 shows the number of patients correspond-
ing to each adverse event in STRIDE and PAMF datasets.

Evaluation using gold standard and an independent dataset
DrugBank contains 10 906 DDI monographs and Medi-Span
contains 40 475 DDI monographs. Together, there were 46 434
interactions that result in 6346 drug–drug–event tuples (13.66%)
corresponding to our set of drugs and events (figure 3). Of these,
849 (13.4%) interactions (comprising 443 drugs and 14 events)
satisfy the support threshold of exposure of at least 100 patients
in the STRIDE data and these form our set of positive test cases.
Table 1 shows the number of positives test cases per event. For
each event, we generate as many negative test cases as there are
positives (see Methods), thus resulting in 849 randomly gener-
ated negative test cases.

We use ROC curves that show all possible values of sensitivity
and specificity that can be achieved by our association scores on
our gold standard by varying the threshold parameter, as a
measure of performance. Using UOR025, the area under the
ROC (AUC) curve is 71.4% and we obtain a specificity of
81.27% and a positive predictive value (PPV) of 72.78% at a
sensitivity of 50%. We found that acute renal failure (ARF),
nephrotoxicity, hypokalemia, and hyperglycemia did not

perform well (AUC ≈0.5, see Discussion). On removing these
events (1320 remaining interactions), the AUC improves to
78.3% and the use of AOR025 further increases the AUC to
82.3% (figure 4). Additionally, specificity improves to 94.24%,
with a PPV (precision) of 89.67% at 50% sensitivity (recall)
(see online supplementary materials S5 for precision–recall
curves). Overall performance suggests that the unstructured text
contains relevant information for signaling DDIs. We also
observe differential performance when we look at event specific
ROC curves (figure 5).

Of the 1320 interactions in our gold standard, 1132 interac-
tions contain enough support (exposure of at least 100 patients)
to signal an interaction in the PAMF dataset, and using AOR025,

Table 1 Characteristics of datasets and gold standard by adverse
event

Event
No. patients
in STRIDE

No. patients
in PAMF

No. positive
test cases

Total 565 998 969 511 849
Cardiac arrhythmias 88 555 109 601 65
Acute renal failure 32 197 28 994 15
Bradycardia 22 906 24 162 52
Hyperglycemia 19 189 41 574 47
Neutropenia 14 322 6783 13
Hypoglycemia 11 150 28 320 43
Pancytopenia 8718 2850 2
Hypokalemia 8405 10 356 44
Hyperkalemia 4973 7691 142
Parkinsonian
symptoms

3541 4605 9

Nephrotoxicity 1460 639 83
Rhabdomyolysis 1378 1948 30
QT prolongation 1260 1441 150
Serotonin syndrome 674 1511 154

We consider 14 adverse events for our study; our gold standard contains a total of
849 positive test cases and 849 randomly generated negative test cases.
PAMF, Palo Alto Medical Foundation; STRIDE, Stanford Translational Research
Integrated Database Environment.

Figure 3 Preparation of Gold standard. We use known interactions
from DrugBank and Medi-Span having at least 100 patients on the
drug combination in the Stanford Translational Research Integrated
Database Environment (STRIDE) as the true positives in our gold
standard. The number of drugs (D) and interactions (I) at each stage
are specified.
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we achieve an AUC of 85.6% (figure 4), with a specificity of
95.8% and a PPV (precision) of 92.7% for a sensitivity (recall)
of 50% (see online supplementary materials S5).

Evaluation using FAERS
Of the 1320 interactions, 879 did not satisfy the support thresh-
old for FAERS (EB05=0); 293 of these 879 were known true
interactions, illustrating that several interactions can be missed
in FAERS. The EB05 measure on FAERS achieves an AUC of
74.6% on the gold standard (figure 4), showing that perform-
ance of our method on EHRs seems to be comparable with that
of current methods on FAERS—as assessed by our gold stand-
ard. Additionally, on running our workflow on STRIDE using
data up to each year between 2000 and 2011, we find that the
interaction between amiodarone and haloperidol known to
cause QT prolongation is signaled using STRIDE data as early
as 2007. FAERS reports for this interaction started appearing in
2009, possibly correlated with a research publication at that
time by Bush et al,49 demonstrating the ability of EHRs to com-
plement FAERS for early detection.

Population rate of adverse events
Using our set of 1165 drugs and 14 events, there are 569 398
drug–drug–event tuples with at least 100 patients on both drugs
in STRIDE. We publish the 2×2 contingency tables along with
population event rate and UOR025 for these tuples in STRIDE
as online supplementary materials S6; this population event rate
information has potential utility in prioritizing DDIs in several
settings. Table 2 shows the drug combinations with the highest
event rates in STRIDE, for each event from our gold standard.

Utility of association scores
We compute AOR025 for those tuples that are highly likely to rep-
resent an interaction. To choose these tuples, we use a three-step
strategy. We first obtain thresholds that result in 95% specificity for
UOR025 on STRIDE (threshold=4.7) and EB05 in FAERS (thresh-
old=1.5) as assessed by our gold standard. We then compute
EB05 using FAERS for all 569 398 tuples; we already have
UOR025 for these 569 398 tuples. Finally, we compute AOR025

for those 9306 tuples that satisfy the UOR025 and EB05 thresholds
for 95% specificity (see online supplementary materials S6).

Based on AOR025, a threshold of 1.1 gives us 95% specificity
with respect to our gold standard. Of the 9306 tuples, 5983
satisfy this threshold and have a high likelihood of representing
true interactions. We also find that 49 of these 5983 tuples (see
online supplementary materials S7) were added to Drugs.com in
the period between May 2011 and November 2012 (STRIDE
data is up to March 2011). Therefore we believe that EHRs can
be used for hypothesis generation to identify new DDI signals.

Table 3 shows AOR025 for the combination of statins with cal-
cineurin inhibitors, tacrolimus, and cyclosporine A, associated
with rhabdomyolysis. Using a threshold of 1.1 (95% specificity),
the combination of tacrolimus and statins is relatively less asso-
ciated with rhabdomyolysis. This is in agreement with a study
by Lemahieu et al50 in 2005, which argues that patients
exposed to statins and cyclosporine A are at an increased risk of
rhabdomyolysis, whereas tacrolimus is safer. This result illus-
trates a potential utility of the EHR-derived association scores
for clinical decision support—to choose between several viable
treatment alternatives.

DISCUSSION
The early identification of DDIs is important and testing for
interactions between all drugs by experimental methods is
infeasible. Significant research exists on generating models for
metabolic interactions of drugs,51 mainly for interactions related
to CYP enzymes. There is also work on predicting interactions
based on molecular similarity with drugs already known to
interact.52 Although these methods are successful at finding new
interactions, their results are limited by their modeling assump-
tions and the limited mechanistic understanding of known inter-
actions. A data-driven way to identify interactions is by
analyzing the effect of drugs in the general population via post-
marketing surveillance.

Most existing methods for such surveillance use SRS data-
bases to identify interactions, and use coded information
present in EHRs for validation and prioritization. We have
shown that it is possible to identify significant (drug–drug–
event) associations and compute their event rates, directly from

Figure 4 Performance on the Stanford Translational Research Integrated Database Environment (STRIDE), Palo Alto Medical Foundation (PAMF),
and FDA Adverse Event Reporting System (FAERS) datasets as evaluated by the gold standard: receiver operator characteristic curves showing
sensitivity and specificity levels that can be achieved by varying the threshold. Performance improves after propensity score based matching (red
curve in STRIDE and PAMF). For STRIDE, we use our gold standard of 1320 interactions on 10 adverse events. 1132 out of 1320 interactions have
enough support for signaling from PAMF. FAERS uses all 1320 test cases, and test cases without enough reports in FAERS were given a score of 0.
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the unstructured text of EHRs. This can serve as an active moni-
toring tool for signaling unknown interactions for new and
existing drugs; advancing phase IV surveillance of drugs and
meaningful use of EHRs simultaneously.

We perform text mining on two large corpora of clinical
records to successfully detect DDIs with a simple and fast

approach to text annotation,53 where we sacrifice some accuracy
in tagging concepts at the note level in exchange for population
level trends (see online supplementary materials S3). We test our
results using a gold standard comprising known DDIs as positive
examples and an equal number of randomly generated interac-
tions as negative examples. Testing AOR025 using all unknown

Figure 5 Event-wise performance in
the Stanford Translational Research
Integrated Database Environment
(STRIDE): receiver operator
characteristic (ROC) curves showing
sensitivity and specificity values for
various thresholds on the gold
standard test cases using STRIDE.
Using such curves, event specific
thresholds can be chosen.
Hyperkalemia, acute renal failure,
nephrotoxicity, and hyperglycemia did
not perform well. This could be due to
our inability to accurately tag notes
with these concepts, or due to the
gold standard itself (see Discussion).
The area under the ROC curve for
pancytopenia has a very large variance
due to an insufficient number of tested
interactions.
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interactions as negative examples poses computational pro-
blems; however, the AUC for UOR025 using all negatives is
almost identical to that using sampled negatives, indicating
minimal biases due to sampling. Most interaction studies52 54

use similar techniques to build a gold standard and the gener-
ation of an ROC aids in comparison of results. We see differen-
tial performance per event; for example, the performance of the
method for parkinsonian symptoms, hypoglycemia, and neutro-
penia is significantly better than the others (in terms of AUC).
This finding reflects similar findings in the EU-ADR project,55

and suggests the need for event specific thresholds.56

Our approach did not perform well for four events, perhaps
owing to limitations that we discuss here. The performance of
our workflow heavily depends on the accuracy of concept recog-
nition in EHRs using lexical approaches. In this study, we use
frequency based methods36 37 and manual curation to remove
ambiguous terms corresponding to concepts—at the expense of
reducing sensitivity. Nevertheless, some concepts are hard to

detect in EHRs using lexicon based methods; for example, the
occurrence of hypokalemia or hyperglycemia is sometimes
stated in quantitative terms as changes in potassium or sugar
levels, which would be missed by our annotator. On the other
hand, having too few terms reduces our sensitivity; for example,
the term set for nephrotoxicity comprised only three terms.
Our current method cannot signal DDIs that are dependent on
drug dosage and resolving these issues requires advanced natural
language processing methods.57 We focus solely on the note’s
timestamp to determine the time of occurrence of a concept; we
acknowledge that doing so is based on the assumption that an
event described as historical in the note will be mentioned in
some previous note as a current event, and this can reduce per-
formance. We do not use drug interaction eras and drug expo-
sures spaced far away in time may cause false associations. We
are currently examining the annotations for the utility of the
last mention of concepts, sentence-level co-occurrences, and
temporal density of mentions to address this question. We use

Figure 5 Continued
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standard disproportionality analysis adapted to longitudinal data
to signal an interaction, however several other measures of inter-
action have been proposed in the literature58–60 and may prove
to perform better. To adjust for possible confounding factors,
we use PSM to choose a comparison group that is similar to the
exposure group and then use matched conditional logistic
regression to generate an AOR. We acknowledge that this
approach is one of several known methods to use PSM61 and
that other methods could be equally effective. The databases
from which the known interactions are derived are not exhaust-
ive and some interactions are based on unsubstantial evidence;
for example, several monographs for ARF claim that ‘ARF was
reported on rare occasions’. We use several sources of data in
this work, each having its own method for coding drugs and
events, and the mapping from concepts in one data source to
the other is another source of errors; for example, the mapping
from our event concepts to MedDRA PTs for use with FAERS.
Finally, we note that our association scores do not indicate caus-
ality—which means that in some cases, the adverse event might
not be caused by a drug interaction in the mechanistic sense but
might be associated with the exposure to the drugs. The goal is
to provide early warnings of drug combinations that require
investigation.

Using standard methods to analyze FAERS, we show its per-
formance on our gold standard as a reference to enable an
evaluation of the comparative utility of EHRs. Many known
interactions from our gold standard that appear in EHR data do
not contain a sufficient number of reports in FAERS, possibly

owing to under-reporting. EHRs may therefore have utility in
the early signaling of DDIs. Furthermore, we demonstrate a
potential use of EHR derived DDI association strengths to
choose between drugs used in combination therapy; for
example, the results on the combination of calcineurin inhibi-
tors with statins. Such analysis is not possible with FAERS alone
owing to the differential reporting rates for drugs.

EHRs have good longitudinal coverage of patient history, a
larger number of measured covariates, and thus are likely to
provide an accurate measure of the real world rate of adverse
events among patients on a particular drug combination. The
pre-computed population event rate information and association
scores could find application in clinical decision support. For
example, augmenting existing DDI databases with this event
rate information could potentially be useful to prioritize inter-
action alerts in computerized physician order entry (CPOE)
systems,62 where at present 49–96% of all alerts are overrid-
den.63 Finally, calculating population event rate information
could directly serve as a means to enable stage 3 of the meaning-
ful use measures that are to be implemented by 2016.64 To this
end, we publish the event rates (see online supplementary mate-
rials) for 569 398 drug–drug–event combinations in our study.
We emphasize that the limitations of our method, as highlighted
above, must be accounted for when using the estimated rates of
events. With the intent of finding novel DDIs, we also publish
the adjusted association scores for 9306 interactions that are sig-
naled by both EHR sources and FAERS. However, the number
of predictions are still far too many to be experimentally tested;
it may be possible to identify the most promising interactions
using a weighted score based on features such as the number of
affected people and the cost of the drugs, or by searching for a
mechanistic explanation as proposed by Bauer-Mehren et al.65

CONCLUSION
We use data from two independent sites to demonstrate the
feasibility of using the textual notes from EHRs for signaling
DDIs and to estimate the rate of events among patients on
various drug combinations. We develop a gold standard of DDIs
that may be useful for detailed characterization of future
methods and our evaluations show that we can signal interac-
tions from EHRs with as good performance as established
methods on SRSs (FAERS). We find that in some cases we can
signal interactions many years before the first report in FAERS,
which could expedite the discovery of new interactions and
demonstrates the complementarity of our approach.
Additionally, we publish a first-of-its-kind resource: a database
of the rate of each event for all drug–drug pairs from our EHR
corpus, which may be useful to triage alerts in CPOE systems or
to identify drug combinations with a lower chance of adverse
events. We conclude that the text portion of EHRs can comple-
ment existing sources for postmarketing surveillance for DDIs.

Table 2 Interactions in the gold standard with the highest event
rates (a/(a+b)) in the Stanford Translational Research Integrated
Database Environment dataset for each event

Adverse event Drug1 Drug2 a b
Rate
(%)

Parkinsonian symptoms Levodopa Lorazepam 176 235 42.82
Cardiac arrhythmias Potassium chloride Lisinopril 1091 1615 40.32
Neutropenia Paclitaxel Trastuzumab 140 567 19.8
Bradycardia Amiodarone Metoprolol 796 3671 17.82
Hypoglycemia Glipizide Lisinopril 367 2160 14.52
Acute renal failure Hydrochlorothiazide Ibuprofen 884 8375 9.55
Hyperkalemia Potassium chloride Spironolactone 349 3471 9.14
Hyperglycemia Prednisone Salmeterol 379 4612 7.59
Nephrotoxicity Fluconazole Tacrolimus 85 1208 6.57
Pancytopenia Mercaptopurine Azathioprine 15 278 5.12
Hypokalemia Prednisone Salmeterol 222 4982 4.27
Serotonin syndrome Tramadol Duloxetine 57 1301 4.2
QT prolongation Amiodarone Ciprofloxacin 46 2487 1.82
Rhabdomyolysis Ciprofloxacin Simvastatin 50 5184 0.96

Table 3 Potential for clinical decision support

Event Statin Calcineurin inhibitor a b c d AOR025

Rhabdomyolysis Nystatin Tacrolimus 21 2324 1357 562 296 0.67
Atorvastatin 20 1267 1358 563 353 0.96
Nystatin Cyclosporine 32 1407 1346 563 213 1.78
Atorvastatin 37 1331 1341 563 289 2.26

This table shows AOR025 scores for the association of rhabdomyolysis with the combination of calcineurin inhibitors like tacrolimus or cyclosporine A, and statins. It appears that
tacrolimus is relatively safe and this agrees with in vivo experiments.
AOR, adjusted OR.
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