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ABSTRACT
Objective Adverse drug reaction (ADR) can have dire
consequences. However, our current understanding of
the causes of drug-induced toxicity is still limited. Hence
it is of paramount importance to determine molecular
factors of adverse drug responses so that safer therapies
can be designed.
Methods We propose a causality analysis model based
on structure learning (CASTLE) for identifying factors that
contribute significantly to ADRs from an integration of
chemical and biological properties of drugs. This study
aims to address two major limitations of the existing
ADR prediction studies. First, ADR prediction is mostly
performed by assessing the correlations between the
input features and ADRs, and the identified associations
may not indicate causal relations. Second, most
predictive models lack biological interpretability.
Results CASTLE was evaluated in terms of prediction
accuracy on 12 organ-specific ADRs using 830 approved
drugs. The prediction was carried out by first extracting
causal features with structure learning and then applying
them to a support vector machine (SVM) for
classification. Through rigorous experimental analyses,
we observed significant increases in both macro and
micro F1 scores compared with the traditional SVM
classifier, from 0.88 to 0.89 and 0.74 to 0.81,
respectively. Most importantly, identified links between
the biological factors and organ-specific drug toxicities
were partially supported by evidence in Online
Mendelian Inheritance in Man.
Conclusions The proposed CASTLE model not only
performed better in prediction than the baseline SVM
but also produced more interpretable results (ie,
biological factors responsible for ADRs), which is critical
to discovering molecular activators of ADRs.

INTRODUCTION
The percentage of Americans consuming prescrip-
tion medications is continuously rising because of
the aging population and improved medication
coverage. However, each medication intake is
necessarily associated with side effects. Some side
effects are minor, but many have dangerous conse-
quences leading to patient morbidity, hospitaliza-
tion, and other permanent or life-threatening
conditions. Adverse drug reactions (ADRs) have
become a major health problem, estimated to
account for more than two million hospitalization
incidents per year and more than 100 000 deaths
in the USA annually.1 2

Although every new drug undergoes extensive
safety screening before market approval, it is often

difficult to characterize ADRs because of a number
of limitations related to restrictive patient sampling
in premarketing trials, with only a few expected
adverse events included in the trials, usually for a
short period of surveillance. The etiology of
drug-induced adverse reactions is multifactorial.
Our current understanding is that individual genet-
ics are a major factor; therefore, much pharmaco-
genomic effort has been devoted to relating ADRs
to genetic biomarkers.3–6 In a recent study, Pauwels
et al7 suggested that ADRs may be modulated both
by their chemical structures and their gene targets.
Despite significant progress in identifying the
causes of ADRs, the process remains challenging
and our knowledge of causal factors contributing
to ADRs is still limited.1 2 8–10

In this study, we propose a novel causality ana-
lysis model based on structure learning, called
CASTLE, to discover molecular factors of ADRs
from an integrated set of chemical and biological
properties of drugs. CASTLE reassigns the causal
feature selection problem to the equivalent
parent-and-child (PC) discovery problem in
Bayesian Network (BN) structure learning. The PC
algorithm is a well-known methodology for learn-
ing the neighborhood of a node in a BN.11 12 This
study is the first application of PC to discovering
causal factors of ADRs. In addition, conflicts
between neighborhoods are addressed to improve
the significance of results in the high-dimensional
ADR prediction problem. The main advantage of
CASTLE is its ability to eliminate features that cor-
relate with ADRs but do not directly affect them.

BACKGROUND
Pharmacogenomic efforts to determine molecular
predictors of ADRs have primarily focused on gene
variants. Genes encoding drug-metabolizing enzymes
have been studied the most in relation to ADRs.13 14

For instance, the highly polymorphic cytochrome
P450 (CYP) enzymes have been closely studied
because of their involvement in metabolizing ∼67%
of all drugs.15 Both the candidate gene sequencing
approach and recent genome-wide association studies
have successfully uncovered many associations
between genetic variants and ADRs.16–19 For
example, specific alleles in CYP2C9 have been linked
to hemorrhage in patients taking warfarin,20 and var-
iants in CYP2D6 have been linked to tardive dyskin-
esia and bradycardia in patients taking antipsychotics
and β-blockers.21

From the system biology perspective, the
response of the human body to a drug is a complex

Liu M, et al. J Am Med Inform Assoc 2014;21:245–251. doi:10.1136/amiajnl-2013-002051 245

Research and applications

http://dx.doi.org/10.1136/amiajnl-2013-002051
http://dx.doi.org/10.1136/amiajnl-2013-002051
http://dx.doi.org/10.1136/amiajnl-2013-002051


phenomenological observation of the perturbations induced by
drug molecules, reflecting not only favorable effects from inter-
action with their intended protein targets, but also side effects
from off-target interactions. This concept has been illustrated in
a number of computational methods aimed at predicting poten-
tial ADRs from preclinical characteristics of the compounds,
and they can be categorized into protein target-based and chem-
ical structure-based approaches.

The protein target-based approach is to relate ADRs to the
drugs’ protein-binding profiles. It has been shown that drugs
with similar in vitro protein-binding profiles tend to exhibit
similar side effects.22 23 Scheiber et al24 illustrated the concept
by comparing pathways involving proteins targeted by toxic
compounds with those targeted by non-toxic compounds.
Fuzuzaki et al25 proposed a method for linking ADRs to sub-
pathways that share correlated modifications of gene-expression
profiles in the presence of a drug. Xie et al26 identified off-
targets of a drug by docking the drug into binding pockets of
proteins that are structurally similar to its primary targets.
Brouwers et al27 quantified the contribution of the protein
interaction network neighborhood to the observed side effect
similarity of drugs. Pouliot et al9 used screening data from the
PubChem BioAssay28 database to determine the correlation of
ADRs with drug bioactivities. Lounkine et al29 systematically
evaluated the potential clinical relevance of protein targets with
ADRs.

Alternatively, the chemical structure-based approach aims to
link ADRs with the chemical structures of drugs. For instance,
Bender et al30 explored the chemical spaces of drugs and estab-
lished their correlation with ADRs. Scheiber et al31 presented a
global analysis that identified chemical substructures associated
with ADRs. Hammann et al32 used decision tree modeling to
determine the chemical, physical, and structural properties of
compounds that predispose them to causing organ-level toxici-
ties. Pauwels et al7 proposed a sparse canonical correlation ana-
lysis (SCCA) method for predicting high-dimensional drug side
effect profiles based on chemical structures.

In addition, an emerging approach is to combine information
sources for more effective and accurate prediction. Yamanishi
et al33 integrated chemical, genomic, and pharmacological data
to infer drug–target interactions. Cami et al34 combined
network structures formed by known ADRs with chemical and
ontological information to identify ADRs. In our previous study,
we investigated the use of phenotypic information, together
with chemical and biological properties of drugs, to predict
their ADR profiles.35 Vilar et al36 proposed approaches for pri-
oritizing ADRs generated from spontaneous reports and elec-
tronic medical records37 by chemical structure similarity.

Although machine learning algorithms such as the support
vector machine (SVM) have shown high predictive power in

ADR studies, biological interpretability of the outputs is poor,
and the relationships between input features and output class
(eg, side effects) are unknown.7 35 Hammann et al32 and
Pauwels et al7 addressed the issue by using methods with higher
interpretability such as decision tree learner and SCCA.
However, a limitation of these methods is that they primarily
measure correlations between variables, and the identified rela-
tions do not necessarily imply causation, which not only
requires correlation but also a counterfactual dependence.
Inferring a cause-and-effect relationship is intrinsically difficult,
and researchers have developed algorithmic solutions to dis-
cover causal features,12 identify causal genes related to dis-
eases,38–41 and identify causal factors of clinical outcomes to
assist in better healthcare management.42 This study proposes a
novel causality analysis model (CASTLE) based on BN structure
learning to identify molecular factors responsible for ADRs.
The core PC causality module has previously been shown to be
superior to other methods in different domains.12 41 43

METHODS
Data description
In this study, we used ADR data in SIDER (V.1), which contains
information on 888 approved drugs and the corresponding
1385 unique side effect keywords extracted from public docu-
ments and package inserts.44 Since SIDER represents ADRs as
Unified Medical Language System (UMLS) Concept Unique
Identifiers (CUIs),45 one type of ADR may be represented by a
group of CUIs. For example, myocardial infarction (C0027051),
chest pain (C0008031), atrial fibrillation (C0004238), and con-
gestive heart failure (C0018802) are related concepts but are
represented as distinct concepts in SIDER. By adopting Pouliot
et al’s9 approach, we grouped the ADR concepts according to
where they may be manifested in the body, also known as
system organ class (SOC), defined by the Medical dictionary for
regulatory activities (MedDRA).46 Hence the above-mentioned
concepts would all be listed under the ‘heart diseases’ SOC. All
1385 side effect keywords in SIDER were mapped to 12 SOCs
(table 1) either directly or indirectly through parent–child rela-
tions in UMLS.

Chemical structures of drugs were collected from
PubChem,47 48 and biological properties were obtained from
DrugBank49–51 and the Kyoto encyclopedia of genes and
genomes (KEGG).52–54 To link these databases, we mapped
drugs in SIDER to DrugBank.49–51 Of the 888 drugs in SIDER,
58 drug names could not be mapped to their respective
DrugBank IDs, resulting in a final dataset of 830 drugs, each of
which has a ‘yes’ or ‘no’ label for each of the 12 SOC-specific
ADRs, indicating whether a drug has ADRs manifested in the
SOC or not.

Data representation
Each drug is represented by its chemical and biological proper-
ties and is associated with a binary side effect profile, y, whose
elements correspond to the presence or absence of each of the
SOC-specific ADRs with 1 or 0, respectively. To encode drug
chemical structures, we used fingerprints corresponding to 881
chemical substructures defined in PubChem.47 48 The biological
properties of a given drug consisted of its intended targets,
transporters (for drug transportation), enzymes (for drug
metabolism), and derived pathway from the targets, which can
be directly obtained from DrugBank.49–51 Pathway information
is obtained by mapping each drug target to its corresponding
KEGG pathway52–54 through its protein-coding gene symbol.
For a particular SOC-specific ADR yi, each drug is represented

Table 1 KS significance analysis of model performance using
integrated feature set

Method 1 Method 2 p Value

CASTLE with robust PC SVM with random FS 7.91E-7
CASTLE with robust PC SVM 0.02
CASTLE with robust PC LASSO 0.34
CASTLE with robust PC CASTLE with PC 0.06

CASTLE, causality analysis model based on structure learning; FS, feature selection;
KS, Kolmogorov–Smirnov; LASSO, Least Absolute Shrinkage and Selection Operator;
PC, parents-and-children; SVM, support vector machine.
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by its chemical and biological properties as a 2023 (881 chem-
ical+786 targets+72 transporters+111 enzymes+173 pathway)
dimensional vector in which each element is either 1 or 0 for
the presence or absence of the corresponding feature.

CASTLE
ADRs may arise from complex interactions between drugs’
chemical structures and patients’ biological systems; as such,
most learning methods will identify covariates as good features
in predicting ADRs. Taking the causal structure given in figure 1
as an example, features f1, f2, f3 and f4 may be good features
identified as highly predictive of the state of the ADR, but, in
reality, only the intervention of features f1 and f2 can change the
state of the ADR and are thus factors responsible for the ADR.

Here, we propose a method for distinguishing causal influ-
ences from spurious covariations based on the inductive causal
model of Pearl and Verma.55 As defined by Pearl and Verma,
causal nodes must be directly connected to the target node.
Based on this idea, our method is designed to search for
parent-and-child relations between features and ADRs.
Additionally, with the asserted knowledge that only the chemical
and biological features can mediate ADRs but not vice versa, the
non-deterministic polynomial-time hard causality discovery
problem can be reduced to the PC discovery problem in BN
structure learning. In this study, we used the G2 conditional
independence test to detect the separation of two nodes for the
identification of parent-and-child relations.56

In the case of a high-dimensional feature space, the PC algo-
rithm may produce many false-positive relations. For instance,
consider a set of 20 000 features and a conditional independ-
ence threshold of 95%, 5%*20 000 features will be falsely dis-
covered. To address this issue, a robust PC discovery algorithm
is proposed to reduce the false discovery rate by first identifying
a PC candidate set of ADRs, and then filtering the set with add-
itional conditions. The number of robust PCs will always be a
subset of the discovered PCs. A formal definition and formula-
tion of our proposed method is provided in the online
appendix.

Experimental design
CASTLE models were built for each of the 12 SOC-specific
ADRs (table 1) using chemical and biological properties, which
can predict whether a drug leads to a particular SOC-specific
ADR or not, but most importantly, derive molecular factors
mediating the ADR. First, we evaluated the effectiveness of
CASTLE models on the prediction of 12 SOC-specific ADRs
through simultaneous extractions of PCs and robust PCs formed
by a set of chemical and biological features shared across drugs
likely to have a particular ADR, and then using an SVM for the
classification task using the extracted PCs and robust PCs.
Second, we compared the performance of CASTLE against a

traditional SVM trained on the full and randomly selected
feature set and against Least Absolute Shrinkage and Selection
Operator (LASSO) logistic regression.57 Third, we analyzed the
biological factors identified by CASTLE.

Prediction evaluation
Performance of CASTLE was measured by precision, recall and
F1 score. To summarize the global performance across 12
SOC-specific ADRs, we reported macro- and micro-averages of
each metric. The following are formulas for the macro-average
(Equation 1) and micro-average (Equation 2) of each metric.

Pmacro ¼
PM

i¼1
pi

M
; Rmacro ¼

PM

i¼1
Ri

M
; Fmacro ¼

PM

i¼1
Fi

M
ð1Þ

Pmicro ¼
XM

i¼1

pi
TPi þ FNi

TPþ FP
; Rmicro ¼

XM

i¼1

Ri
TPi þ FNi

TPþ FP
;

Fmicro ¼
XM

i¼1

Fi
TPi þ FNi

TPþ FP

ð2Þ

M is the number of SOC-specific ADRs and Pi, Ri, Fi, TPi, and
FNi are precision, recall, F1 score, true positives, and false nega-
tives for each ADR, respectively.

Biological evaluation
As the extracted factors in each robust PC are deemed to have
cause-and-effect relationships with the SOC-specific ADRs, we
assessed the predicted relationships using Online Mendelian
Inheritance in Man (OMIM).58 We explored data from the
morbid map, which provides gene symbol(s) associated with
each disorder, the cytogenetic location of each disorder gene,
and links to OMIM records. There was a total of 6284 records
in the morbidmap file (March 3, 2013). After mapping the gene
symbols to these records, we identified the related disorders. As
the name of each disorder in OMIM is different from that of
the SOC-specific ADR, a physician manually checked whether
the disorder documented in OMIM was a clinical match to the
ADR description used in this study.

Statistical significance test
To assess whether the prediction improvement between
methods and feature spaces (ie, chemical vs chemical+bio-
logical) is statistically significant, we computed the two-sample
Kolmogorov–Smirnov test (KS test),59 60 which is a general non-
parametric method for comparing two samples in order to test
whether the two underlying probability distributions differ. In
this study, we calculated the KS test over the F1 scores generated
by different methods and feature spaces for individual ADRs.
For example, when the chemical space is compared with the
combined set (chemical+biological), F1 scores are obtained for
predicting each of the 12 ADRs using each feature set; then the
KS test determines if the F1 scores generated by ‘chemical+bio-
logical’ features are stochastically larger than the F1 scores gen-
erated by chemical features alone. Because this study only
focuses on 12 ADRs, the sample size may be too small for KS
test comparison. To increase the number of samples, we per-
formed five threefold cross-validations. Each cross-validation
would result in 12 F1 scores for each of the 12 ADR classes,
and repeating it five times would generate 60 samples.Figure 1 An example causal structure of an adverse drug reaction.
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RESULTS
Model performance
We compared abilities of various methods in predicting known
side effects of drugs through a threefold cross-validation using
either chemical properties or a combination of chemical and
biological properties, which include SVM, SVM with random
feature selection, LASSO logistic regression, CASTLE with PC
(ie, PC+SVM), and CASTLE with robust PC (ie, robust PC
+SVM). In the experiment, SVM parameters were tuned on the
training set using tools provided by Lib-SVM 3.14.61 Parameters
for LASSO are also optimized using threefold cross-validation
on the training set. For random feature selection, we randomly
selected the same number of features as the robust PCs. As
shown in table 2, CASTLE with robust PC achieved the highest
macro and micro F1 scores on both feature sets, which demon-
strated its ability to identify a high-quality feature set for ADR
prediction. Integration of causality analyses by PC and robust

PC into the traditional SVM increased its performance in both
macro and micro F1 scores. The success of PC and robust PC
indicated that a representative set of features can be effectively
learned from a high-dimensional dataset through CASTLE.
Moreover, comparing the results of PC and robust PC, we can
see that macro and micro precision of robust PC is always
higher than that of PC, which implies that robust PC improved
prediction precision by removing spurious factors.

Table 3 shows the performance of CASTLE with robust PC
and PC and LASSO on the integrated feature set for individual
SOC-specific ADR prediction. As illustrated, with only a small
number of features (ie, 10–21 from the original 2023), CASTLE
with robust PC was able to achieve F1 scores over 0.90 for six
organ-specific ADRs with the highest being 0.97 for nervous
system disorder and for skin and subcutaneous tissue disorders.
F1 scores between 0.81 and 0.90 were achieved for five
SOC-specific ADRs, and the lowest F1 score achieved was 0.74
for neoplasms. Also, as shown in table 3, robust PC performed
better than PC with only half the number of features, which
further supported our assertion that some spurious features
were filtered out by the constraints proposed in the robust PC
algorithm. For almost every ADR class, LASSO extracted many
more features than CASTLE, but achieved lower F1 scores.

Extracted biological factors responsible for ADRs
For each SOC-specific ADR, CASTLE extracts robust PCs that
consist of a small number of factors identified as responsible for
the ADR. We analyzed these robust PCs to investigate whether
the predicted links to a specific ADR are supported by any evi-
dence. Since OMIM was used in this analysis, we only examined
the identified targets, transporters, and enzymes. Table 4 pre-
sents the set of genes that were identified as having causal rela-
tionships with specific ADRs which are clinical matches to the
disorders in OMIM. All potential molecular determinants iden-
tified by robust PC (including both biological and chemical fea-
tures) are listed in online supplementary table S1.

DISCUSSION
This study proposed a novel causality analysis model based on
BN structure learning called CASTLE for determining molecular
factors of ADRs from an integrated set of chemical and

Table 2 Model performance on the feature spaces: (1) chemical;
(2) chemical+biological

Method
Macro
precision

Macro
recall

Macro
F1

Micro
precision

Micro
recall

Micro
F1

Chemical
SVM with random FS 0.78 0.93 0.79 0.62 0.82 0.68
SVM 0.80 0.95 0.85 0.63 0.81 0.70
CASTLE with PC 0.80 1.0 0.88 0.65 0.80 0.71
CASTLE with
robust PC

0.81 0.98 0.88 0.67 0.81 0.73

Chemical+biological
SVM with random FS 0.76 0.94 0.80 0.69 0.78 0.70

SVM 0.81 0.96 0.88 0.69 0.81 0.74
LASSO 0.80 0.98 0.88 0.67 0.81 0.73
CASTLE with PC 0.83 0.94 0.88 0.73 0.83 0.78
CASTLE with
robust PC

0.85 0.94 0.89 0.77 0.85 0.81

The KS test-based statistical analysis of the F1 score improvement observed in CASTLE
with robust PC over other methods (using chemical+biological features) is
summarized.
CASTLE, Causality analysis model based on structure learning; FS, feature selection;
KS, Kolmogorov–Smirnov; LASSO, Least Absolute Shrinkage and Selection Operator;
PC, parents-and-children; SVM, support vector machine.

Table 3 Performance of CASTLE with robust PC, CASTLE with PC and LASSO for each SOC-specific ADR using both chemical and biological
features

MedDRA SOC-specific ADR

CASTLE with robust PC CASTLE with PC LASSO

No of features F1 score No of features F1 score No of features F1 score

C0014130; Endocrine system diseases 21 0.83 35 0.83 147 0.79
C0015397; Disorder of eye 14 0.81 31 0.79 104 0.77
C0009450; Communicable diseases 11 0.93 22 0.92 0 0.92
C0027651; Neoplasms 14 0.74 34 0.71 110 0.73
C0004936; Mental disorders 18 0.90 38 0.85 106 0.88
C0027765; Nervous system disorder 11 0.97 21 0.98 0 0.97
C0018799; Heart diseases 19 0.88 30 0.85 173 0.87
C0263660; Musculoskeletal and connective tissue disorders 10 0.91 41 0.90 88 0.88
C0017178; Gastrointestinal diseases 17 0.96 28 0.96 25 0.95
C0178298; Skin and subcutaneous tissue disorders 12 0.97 23 0.97 0 0.98
C0042075; Urologic diseases 17 0.85 34 0.85 50 0.83
C0042373; Vascular diseases 11 0.94 35 0.94 0 0.94

ADR, adverse drug reaction; CASTLE, causality analysis model based on structure learning; LASSO, Least Absolute Shrinkage and Selection Operator; MedDRA, Medical dictionary for
regulatory activities; PC, parents-and-children; SOC, system organ class.
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biological properties of drugs. Evaluation of CASTLE on the
prediction of 12 organ-specific ADRs showed that the highest
macro and micro F1 scores were 0.89 and 0.81, respectively.

Compared with SVM and LASSO, use of the integrated
feature set, CASTLE with robust PC, achieved a higher micro
F1 score: 0.81 vs 0.74 for SVM and 0.73 for LASSO. In terms
of macro F1 score, CASTLE with robust PC (0.89) had a slight
gain over SVM (0.87) and LASSO (0.88). The slight gain over
SVM was determined to be statistically significant (p=0.02), but
the gain over LASSO was not statistically significant (p=0.34).
In a further analysis, we observed that, for the four ADRs where
the positive to negative sample ratio was larger than 3.8, LASSO
assigned labels of the majority class to all samples, thus yielding
recalls of 1.0. This phenomenon is illustrated in table 3, where
zero features were extracted by LASSO for those four ADR
classes. Under the same conditions, CASTLE was able to extract
a small set of meaningful features. Moreover, LASSO is funda-
mentally different from CASTLE. LASSO aims to find a good
way to predict ADR within the carefully designed regularization
factors. CASTLE, on the other hand, attempts to identify causal
factors of an ADR. The following example illustrates the basic
difference between LASSO and CASTLE. Considering the
mechanism, F1 →(F2, F3)→ADR; LASSO would use F1 to
predict the state of ADR because it can achieve similar predic-
tion results to F2 and F3, but with fewer variables, while
CASTLE would use F2 and F3 because F2 and F3 are more
direct causes of ADR. Essentially, through BN structure learning,
CASTLE considers both degree and separation of the associa-
tions between features and outcome.

Generally, the integration of chemical and biological features
achieved higher performance than chemical structures alone.
Compared with SVM using chemical structures only, CASTLE

with PC resulted in a 4% increase in macro and micro F1 scores
and yielded an increase of 1% in macro F1 score and 3% in
micro F1 score with robust PC. Using the integrated features,
CASTLE with PC did not improve the macro F1 score, but
improved the micro F1 score by 3%, while CASTLE with robust
PC improved macro and micro F1 scores by 2% and 6%,
respectively. The performance improvement from PC discovery
was not as significant as from robust PC and this may be due to
high dimensionality. For instance, the chemical feature is a
smaller set, with only 881 variables in which PC performed
relatively well. However, feature space grew to 2023 after the
addition of drug biological properties, and the PC performance
was close to that of SVM. Furthermore, macro and micro preci-
sions of robust PC are always higher than that of PC, which
indicate the success of robust PC in eliminating spurious factors.
Lastly, statistical analysis by KS test showed that, when CASTLE
with robust PC was used, the improvement in F1 score was sig-
nificant for the addition of biological features to the chemical
features (p=0.04).

Besides prediction accuracy, size of the extracted set is also an
important criterion for evaluating model effectiveness because it
typically reflects the redundancy of feature extractions. As illu-
strated in table 3, CASTLE was effective in minimizing the
redundancy where the average number of extracted PCs from
2023 features is 31 and robust PCs is only 14. Although,
CASTLE with robust PC did not result in a significant improve-
ment in the F1 score over PC (p=0.06), it minimized the
number of extracted PCs in the half with similar F1 score,
which implied a smaller number of false discoveries. Compared
with LASSO logistic regression, the number of features extracted
by the CASTLE model is much smaller: average 77 features for
LASSO versus 14 for robust PC. The highest F1 score of 0.97
was achieved for predicting toxicities in nervous system and skin
and subcutaneous tissues. In contrast, the lowest F1 score of
0.74 was achieved for neoplasms, reflecting the complexity of
the disorder.

Most importantly, the main advantage of CASTLE is its
ability to produce interpretable outputs, leading to identification
of factors that are responsible for ADRs. Interestingly, we were
able to find evidence in OMIM supporting some of the identi-
fied links (table 4). For instance, the ARMD1 gene was identi-
fied to be linked to neoplasms and was indicated in OMIM to
contribute to the susceptibility of colorectal cancer. In addition
to the OMIM evidence, one of the authors, JH who is a geneti-
cist, performed a literature search and found evidence for links
not documented in OMIM. For example, the BAAT gene was
identified to be related to both vascular and gastrointestinal dis-
eases. No evidence in OMIM indicated such connections. In a
recent study, Hadzic et al62 suggested that defects in BAAT can
cause intrahepatic cholestasis. Furthermore, aromatase,
CYP19A1, was found by our method to contribute to endocrine
system and heart diseases. The aromatase is involved in
androgen-to-estrogen conversion by regulating conversion of
testosterone to estradiol. It has also been shown to be expressed
in immature hearts/cardiomyocytes, suggesting intracardiac
androgen–estrogen conversion.63 64 Moreover, Bell et al65 indi-
cated that estrogen suppression may offer inotropic benefit in
acute ischemia.

However, there are limitations and challenges to address in
the future. For instance, the conditional independence test used
in this method may be designed specifically for this problem to
achieve more significant results. Moreover, ADR is a complex
problem involving various contributing factors. Future develop-
ment would involve incorporation of more detailed biological

Table 4 Set of biological factors identified as having a causal
relationship with SOC-specific ADRs and supported by evidence in
OMIM

Gene SOC-specific ADR OMIM

ARMD1 Neoplasms Colorectal cancer, susceptibility to
BAAT Vascular diseases Hypercholanemia, familial
BCR Disorder of eye Retinal dystrophy, early-onset severe

retinitis pigmentosa
BRCA1 Endocrine system diseases Pancreatic cancer

Gastrointestinal diseases Pancreatic cancer
COX1 Gastrointestinal diseases Peroxisomal acyl-CoA oxidase

deficiency
DIH1 Musculoskeletal and

connective tissue disorders
Hernia, congenital diaphragmatic

MAL Mental disorders Mental retardation, autosomal
dominant

Nervous system disorder Hereditary motor and sensory
neuropathy

Skin and subcutaneous
tissue disorders

Digital arthropathy-brachydactyly,
familial

NEP Mental disorders Mental retardation, autosomal
dominant

RIT1 Nervous system disorder Cavernous malformations of central
nervous system and retina

RLF Mental disorders Cold-induced sweating syndrome
SERPINC1 Endocrine system diseases Thrombophilia due to antithrombin III

deficiency
SERPINH2 Heart diseases Osteogenesis imperfecta, type X

ADR, adverse drug reaction; OMIM, Online Mendelian Inheritance in Man;
SOC, system organ class.
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features such as the protein–protein interaction network, drug
bioactivities, and use of other fingerprints for representing drug
chemical structures. Furthermore, we will explore additional
external validation sources such as OMOP66 and EU-ADR67 to
increase the confidence of findings.

CONCLUSION
In this paper, we proposed CASTLE, a structure-learning-based
causality analysis model, to determine factors that play essential
roles in organ-specific ADRs from the chemical and biological
profiles of drugs. Evaluation of CASTLE showed an increased
prediction performance over traditional SVMs in terms of both
macro and micro F1 scores, from 0.88 to 0.89 and 0.74 to
0.81, respectively. Moreover, integration of chemical and bio-
logical properties achieved a higher predictive value than using
chemical structures alone. Most importantly, CASTLE can
produce interpretable results by extracting a set of factors that
are considered responsible for the ADRs of interest. Finally, the
identified relationships were partially supported by evidence in
OMIM, which further demonstrated the effectiveness of
CASTLE.
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