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A B S T R A C T

When ultrasonic transducers with large detecting areas and/or compact measurement geometries are

employed in photoacoustic computed tomography (PACT), the spatial resolution of reconstructed

images can be significantly degraded. Our goal in this work is to clarify the domain of validity of the

imaging model that mitigates such effects by use of a far-field approximation. Computer-simulation

studies are described that demonstrate the far-field-based imaging model is highly accurate for a

practical 3D PACT imaging geometry employed in an existing small animal imaging system. For use in

special cases where the far-field approximation is violated, an extension of the far-field-based imaging

model is proposed that divides the transducer face into a small number of rectangular patches that are

each described accurately by use of the far-field approximation.

� 2013 The Author. Published by Elsevier GmbH. All rights reserved.
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1. Introduction

Photoacoustic computed tomography (PACT), also known as
optoacoustic tomography, is a hybrid computed imaging modality
that combines the rich contrast of optical imaging methods with
the deep penetration and high spatial resolution of ultrasound
imaging methods [1–3]. In PACT, a short laser pulse is employed to
irradiate an object and pressure waves are produced via the
thermoacoustic effect and are subsequently measured outside the
object by use of ultrasonic transducers. From these data, a PACT
image reconstruction algorithm is employed to produce an image
that depicts the spatially variant absorbed optical energy density
within the object.

When ultrasonic transducers with large detecting areas and/or
compact measurement geometries are employed in PACT, the
spatial resolution of PACT images reconstructed by use of
algorithms that assume point-like ultrasonic transducers can be
significantly degraded [4,5]. To mitigate this effect, a description of
the transducers’ spatial impulse responses (SIRs) [6] can be
incorporated into a discrete imaging model that approximately
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describes the action of the imaging system. In recent studies,
algorithms based on such imaging models have been developed for
reconstructing PACT images [7–10]. For three-dimensional (3D)
PACT studies, these algorithms are generally optimization-based
and iterative in nature [9]. Even when implemented on high-
performance computing platforms [11], 3D PACT reconstruction
algorithms that compensate for the SIR can be computationally
burdensome.

For ultrasonic transducers that have flat circular or rectangular
detection surfaces, a far-field approximation can result in a closed-
form expression for the SIR [12]. It has been demonstrated that this
allows for the construction of discrete PACT imaging models that
have desirable computational characteristics [7]. In particular,
based on the far-field SIR approximation, a 3D PACT imaging model
was proposed and investigated for use in an optimization-based
iterative image reconstruction method [7]. While the far-field-
based imaging model possesses attractive computational char-
acteristics that facilitate 3D iterative image reconstruction, there
remains an important need to clarify its domain of validity within
the context of practical 3D PACT imaging system configurations.

In this article, computer-simulation studies are described that
confirm the far-field-based 3D PACT imaging model is highly
accurate for a 3D PACT imaging geometry employed in an existing
small animal imaging system [13]. We also demonstrate that when
an ultra-compact imaging geometry is employed, use of this
imaging model can result in image artifacts associated with the
violation of the far-field approximation. For use in such cases, an
extension of the far-field-based imaging model is proposed that
divides the transducer face into a small number (e.g. 2 � 2) of
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rectangular patches that are each described accurately by use of
the far-field approximation. The performance of the far-field-based
and patch-based algorithms are quantitatively investigated in
terms of the accuracy of the reconstructed images. A preliminary
investigation of the noise robustness of the far-field-based imaging
models is also reported.

2. Background

Below we review the salient features of the imaging physics,
discrete PACT imaging model, and reconstruction method that will
be employed in our studies. The reader is referred to Refs. [3,7] for
additional details.

2.1. Canonical imaging physics

In PACT, a pulsed laser source is used to irradiate an object, and the
photoacoustic effect results in the generation of a pressure field p(r, t)
[1,2], where r 2 R3 and t is the temporal coordinate. In this work, the
to-be-imaged object and surrounding medium are assumed to have
homogeneous and lossless acoustic properties. Additionally, the
optical illumination of the object is assumed to be instantaneous, i.e.
the laser pulse width is negligible. Under these conditions, the
photoacoustic field p(r, t) satisfies the wave equation [1]:

@2

@t2
� c2D

" #
pðr; tÞ ¼ 0; (1)

subject to the initial conditions

pðr; tÞjt¼0 ¼
bc2

C p
AðrÞ; @ pðr; tÞ

@t

����
t¼0

¼ 0; (2)

where A(r) is a compactly supported and bounded function that
represents the absorbed optical energy density, D is the 3D
Laplacian operator, and b, c, Cp are the thermal expansion
coefficient, the speed of sound, and the isobaric specific heat,
respectively.

The pressure field p(r, t) is assumed to be measured with flat
ultrasonic transducer elements arranged on an arbitrary surface
enclosing the object. The transducer elements are assumed to have
no disruptive influence on the pressure field and therefore the
background medium can effectively be assumed to have an infinite
extent. The solution of Eq. (1) subject to Eq. (2) is given by [1]

pðr; tÞ ¼ b
4pC p

Z
V

d3r0 Aðr0Þ @
@t

dðt � kr � r0k=cÞ
kr � r0k ; (3)

where V � R3 contains the support of A(r), d(t) is the one-
dimensional Dirac delta function, and k� k is the Euclidean norm. In
a mathematical sense, the goal of PACT is to determine A(r) from
knowledge of p(r, t) on some measurement aperture outside the
object.

2.2. Discrete imaging model

In practice, the photoacoustic pressure field p(r, t) is degraded
by the response of the ultrasonic transducer and sampled during
the measurement process. Consider that the ultrasonic transducers
collect data at Q locations fr0;qgQ�1

q¼0 that are specified by the index
q = 0, . . ., Q � 1 and K temporal samples, specified by the index
k = 0, . . ., K � 1, are acquired at each location with a sampling
interval DT. Let the vector u 2 RQK denote a lexicographically
ordered version of the sampled data. The notation [u]qK+k will be
employed to denote the (qK + k)th element of u, which is related to
the pre-sampled voltage signal at location q, uq(t), as
[u]qK+k : = uq(t)jt=kDt. In this way, [u]qK+k represents the kth
temporal sample recorded by the transducer at location r0,q.
A continuous-to-discrete (C-D) imaging model [3,7] for PACT
can be generally expressed as

½u�qKþk ¼ heðtÞ�t
1

Vq

Z
Vq

d2r pðr; tÞjt¼kDT ; (4)

where p(r, t) is determined by A(r) via Eq. (3), the surface integral is
over the detecting area of the qth transducer that is denoted by Vq,
he(t) denotes the acousto-electric impulse response (EIR) of the
transducers, which is assumed to be the same for all transducers,
and *t denotes a temporal convolution operation defined as

f ðtÞ�tgðtÞ :¼
Z 1
�1

dt f ðtÞgðt � tÞ;

where f and g are arbitrary functions of t. Note that Eq. (4) is a C-D
imaging model in the sense that it maps the function A(r) to the
finite-dimensional vector u.

To obtain a discrete-to-discrete (D-D) imaging model for use
with iterative image reconstruction algorithms, a finite-dimen-
sional approximate representation of the object function A(r) can
be introduced as [7,9,14,15]

AaðrÞ ¼
XN�1

n¼0

½u�nfnðrÞ; (5)

where the superscript ‘a’ denotes that Aa(r) is an approximation of
A(r), ffnðrÞg

N�1
n¼0 represents a collection of expansion functions, and

u 2 RN is a vector of expansion coefficients. In this work, the
expansion functions ffnðrÞg

N�1
n¼0 will be chosen as uniform

spherical voxels:

fnðrÞ ¼ 1; kr � rnk � e;
0; otherwise;

�
(6)

where rn denotes the nth voxel location and e is the voxel radius.
We assume that the voxels are non-overlapping. The imaging
model described below, however, remains valid for any collection
of radially symmetric expansion functions ffnðrÞg

N�1
n¼0 .

Let

ũqð f Þ :¼
Z 1
�1

dt uqðtÞe�i2pft

denote the temporal Fourier transform of the pre-sampled voltage
signal uq(t) at location r0,q. In practice, the temporal frequency
samples ũa

qð f Þj f ¼lD f , l = 0, . . ., L � 1, can be estimated by computing
the discrete Fourier transform of the measured samples of uq(t)
with a frequency interval Df. The vector ũ will denote a
lexicographically ordered representation of the sampled temporal
frequency data corresponding to all transducer locations, i.e.
½ũ�qLþl :¼ ũa

qð f Þj f ¼lD f .
Consider the case where the detection surfaces of the ultrasonic

transducers are rectangular and flat with area a � b (Fig. 1). A D-D
imaging model can be expressed as [9]

ũ 	 Hu; (7)

where H is the system matrix of dimension QL � N, whose
elements are defined as

H½ �qLþl;n ¼ p̃0ð f Þh̃
e
ð f Þ

h̃
s

qðrn; f Þ
ab

�����
f ¼lD f

: (8)

Here,

p̃0ð f Þ ¼ �i
bc3

C p f

e
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� �
(9)



Fig. 1. The transducer face (a � b) is divided into small patches (a0 � b0) that are each

described by the far-field approximation. The number of patches is arbitrary.
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denotes the temporal Fourier transform of the pressure signal
produced by one of the spherical voxels, h̃

e
ð f Þ is the temporal

Fourier transform of the EIR he(t), and h̃
s

qðrn; f Þ is the temporal
Fourier transform of the spatial impulse response (SIR). Under a
far-field approximation [9,12], which is discussed later,

h̃
s

qðrn; f Þ 	 ab
e�i2pfrn;q=c

2prn;q
sinc p f

aXn;q

crn;q

� �
sinc p f

bYn;q

crn;q

� �
; (10)

where sincðxÞ :¼ sinx
x , rn,q is the distance between the centers of the

nth voxel and the qth transducer element, i.e. rn,q : =k rn � r0,q k,
and Xn,q and Yn,q are the coordinates of the nth voxel in the local
coordinate system located at the center of the qth transducer
element, with the X- and Y-axes parallel to the edges of length a

and b, respectively. The goal of PACT can now be restated in the
context of the discrete imaging model: to determine u from
knowledge of ũ.

2.3. Image reconstruction

The idealized image reconstruction task is to determine u, and
hence an approximation of A(r), from the known ũ by inverting
Eq. (7). However, in practice, the system matrix can be poorly
conditioned [16]. A common strategy to mitigate noise amplifica-
tion is to seek a penalized least-squares (PLS) estimate û of u as

û ¼ arg min
u

kũ � Huk2 þ aRðuÞ; (11)

where R(u) is a regularizing penalty term whose effect is controlled
by the scalar regularization parameter a. The following quadratic
penalty [17] was utilized in the studies described below:

RðuÞ ¼
XN�1

n¼0

X
v 2 N n

ð½u�n � ½u�vÞ
2
; (12)

where N n denotes the set of eight neighbors of the nth voxel.

3. Computer-simulation studies

Computer-simulation studies were conducted to quantitatively
investigate the use of the far-field approximation for modeling the
SIR in PACT.

3.1. Numerical details

3.1.1. Phantom and simulation data

Numerical phantoms were employed to represent the different
forms of the absorbed optical energy density A(r) as described
below. In all cases, the phantoms were comprised of uniform
spheres. Accordingly, the photoacoustic field p(r, t) produced by
the phantoms could be computed by use of a closed-form
expression [18]. The simulated measurement data [u]qK+k were
obtained as follows. First, the photoacoustic field produced by each
sphere was computed by use of the closed-form expression and
densely sampled at each transducer location r0,q with a sampling
frequency of 200 MHz. A semi-analytical SIR [6], which was
calculated as the length of the intersection of the transducer face
and the spherical wavefront generated by an imaginary point
source located at the center of the sphere, was similarly sampled
and numerically convolved with the sampled photoacoustic field.
Additional details regarding the semi-analytical SIR can be found in
Appendix A and in Ref. [6]. This quantity will be referred to as the
contribution from the sphere. The raw pressure samples were
obtained as the sum of the contributions from all spheres. To
reduce the high-frequency components of the raw pressure
samples that could cause noise amplification later during
reconstruction, the pressure samples were smoothed by convolv-
ing with a Gaussian kernel function with a full-width-at-half-
maximum (FWHM) of 0.5 mm/c. This temporal low-pass filtering
has been proved to be equivalent to the spatial low-pass filtering
with an FWHM of 0.5 mm in the phantom space [5]. The sampled
voltage signal [u]qK+k was obtained as the filtered pressure samples
undersampled with a sampling frequency of 10 MHz. Here, the EIR
(he(t) in Eq. (4)) was assumed to be a delta function and thus was
intentionally ignored because our focus in this work is on the
spatial response of the transducer, not on the electrical one. Notice
that, despite its analytical accuracy, the SIR used above cannot
readily be employed in reconstruction algorithms because of its
computational complexity.

3.1.2. Algorithm implementation

Solutions of Eq. (11) were computed by use of the conjugate
gradient (CG) method for least-squares problems [9,19,20]. Since
the most computationally intensive component of the reconstruc-
tion algorithm is the calculation of the action of the imaging matrix
(H) and its adjoint (Hy), these operations were implemented as
GPU-based massively parallel algorithms whose basic designs
were inspired by [11,21] and are briefly described as follows. The
reader is referred to reference [11] for additional details.

Let G denote the number of GPU units. For calculating the
action of H, the object vector u is divided into G subvectors fuggG�1

g¼0

that are specified by the index g = 0, . . ., G � 1. The subvectors
fuggG�1

g¼0 are distributed to G CPU threads that each manage one
GPU unit. In each thread, ug is further divided into H chunks
fug;hgH�1

h¼0 that are specified with the index h = 0, . . ., H � 1. The
chunk size is chosen so that the chunk fits the constant memory of
the GPU unit. Each chunk ug,h is loaded into the constant memory,
and the partial voltage signal in the temporal frequency domain,
ṽg;h, is computed according to the following equation that is
derived from Eq. (8):

½ṽg;h�qLþl ¼
Xh�1

n¼0

½ug;h�n p̃0ð f Þh̃
e
ð f Þ

h̃
s

qðr
g;h
n ; f Þ
ab

j f ¼lD f ; (13)

where rg;h
n is the location of the voxel that corresponds to the nth

element of ug,h. The calculation is conducted with Q blocks of L GPU
threads that each compute one element of ṽg;h. The full voltage
signal ũ is obtained by accumulating fṽg; jg over the indices g and h

in the CPU threads: ũ ¼
P

g; jṽ
g; j.

The action of Hy can be computed similarly. The voltage signal
vector ũ is divided into G subvectors fũggG�1

g¼0 so that each contain
the voltage signals from Q/G transducer elements. The subvectors
fũggG�1

g¼0 are distributed to G CPU threads that each manage one
GPU unit. Each CPU thread further divides ũg into J chunks fũg; jgJ�1

j¼0

that are specified by the index j = 0, . . ., J � 1. Each chunk ũg; j is
loaded into the constant memory, and the partial object vector, tg,j,
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is computed according to the following equation:

½tg; j�n ¼ Re
X

q 2 Qg

XL�1

l¼0

½ũg; j�qLþl p̃�0ð f Þh̃
e�
ð f Þ

h̃
s�
q ðr

g; j
n ; f Þ

ab
j f ¼lD f ; (14)

where ‘Re’ denotes the real-valued component of a complex-
valued quantity, Qg is the collection of the transducer indices
assigned to the gth GPU, rg; j

n is the location of the voxel that
corresponds to the nth element of tg,j, and ‘*’ denotes the complex
conjugate. The calculation is conducted with nynz blocks of nx GPU
threads, where nx, ny, and nz are x, y, and z sizes of the object space,
respectively, i.e. n = nxnynz. The full object vector u is obtained by
accumulating {tg, j} over the indices g and j in the CPU threads:
u =
P

g, jt
g, j.

All routines described above were implemented in CUDA
(NVIDIA, USA) and executed on a GPU cluster with 8 GPU units
(Tesla C1060; NVIDIA, USA).

3.2. Configuration #1: a currently-employed 3D imaging system

We first considered a realistic 3D imaging configuration that
was based upon an existing small animal imaging system [13]
Fig. 2. The schematic illustration of the imaging system for (a) Configuration #1 (R = 65 m

gray dots represent the center of the transducer elements. RV denotes the reconstruction

(R, 0, 0), respectively. For Configuration #2, the voxels of the reconstruction volume that 

kept constant during iterative reconstruction.
(Fig. 2(a)). On a spherical surface with a radius of 65 mm, 48 � 96
(= 4608) transducer elements were evenly arranged. Each trans-
ducer element had a flat square face with a side length of 2 mm
(a = b = 2 mm in Fig. 1) and center coordinates of
ðu; fÞ ¼ i � 1

2

� 	
p
48 ; ð j � 1Þ p

48

� 	
; i ¼ 1; . . . ; 48; j ¼ 1; . . . ; 96, where u

and f are the polar and azimuthal angles, respectively. The normal
of the detector face pointed to the origin of the spherical
measurement surface. Let the z-axis be the axis that points to
the origin of the polar angle (i.e. the north pole), the x-axis be the
axis that points to the origin of the azimuthal angle, and the y-axis
be the axis that forms a right-handed coordinate system with the x-
and z-axes. The object consisted of 6 solid spheres, each of which
had a radius of 1.4 mm and centered on the x-axis at x = 5, 15, 25,
35, 45, 55 mm, respectively. The value of A(r) was assigned a unity
value inside each sphere, and zero outside. The acoustic properties
were assumed as follows: c = 1530 m/s and bc2/Cp = 2000. The
reconstruction volume was a rectangular solid with a size of 60.48
mm (x) � 8.96 mm (y) � 8.96 mm (z) that contained the object. It
consisted of 432 (x) � 64 (y) � 64 (z) spherical voxels with a radius
of 0.07 mm. A more detailed description of the use of spherical
voxels is found in Refs. [7,9]. The object was reconstructed from the
simulated measurement data by use of the far-field-based
m) and (b) Configuration #2 (R = 25 mm). The solid spheres represent the object. The

 volume. The polar angle u and the azimuthal angle f are measured from (0, 0, R) and

were located on and outside the measurement surface were given the value of 0 and
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reconstruction algorithm as described in the previous section. For
comparison, a reconstruction algorithm that employed the point-
like transducer approximation, in which the pressure field was not
averaged over each transducer element surface, but evaluated only
at the center of each element, was also implemented and applied to
the same pressure data. The point-like-transducer-based algo-
rithm was obtained from the far-field-based algorithm by
replacing the far-field-based SIR with the point-like-transducer-
based SIR:

h̃
s

qðrn; tÞ 	 ab
e�i2pfrn;q=c

2prn;q
: (15)

This replacement is equivalent to assuming that the SIR is a delta
function in the time domain.

3.3. Configuration #2: an ultra-compact imaging system

When a region of the reconstruction volume is located in the
near-field, the far-field-based SIR significantly differs from the true
SIR in that region. This model mismatch, however, does not always
significantly degrade the reconstructed image. This is particularly
true when only a limited number of transducer elements are
within the near-field distance to the region of interest.

To illustrate the limitations of the far-field-based reconstruc-
tion algorithm, we considered an imaging system with a very
compact measurement geometry in which the entire reconstruc-
tion volume is located in the near-field of all transducers (Fig. 2(b)).
Since the far-field approximation employed in this work is
mathematically equivalent to the Fraunhofer approximation in
optics [22], the far-field distance is given by

rn;q

r2

max

l
; (16)

where rmax is the maximum radius of the transducer element.
Based on this condition, the following extreme configuration was
considered. On a spherical surface with a radius of 25 mm, 48 � 96
(= 4608) transducer elements were evenly arranged. Each trans-
ducer element had a flat square face with a side length of 4 mm
(a = b = 4 mm in Fig. 1) and center coordinates of
ðu; fÞ ¼ i � 1

2

� 	
p
48 ; j � 1ð Þ p

48

� 	
; i ¼ 1; . . . ; 48; j ¼ 1; . . . ; 96, where

u and f are the polar and azimuthal angles, respectively. The
normal of the detector face pointed to the origin of the spherical
measurement surface. The object consisted of 5 solid spheres, each
of which had a radius of 1.4 mm and centered on the x-axis at x = 0,
5, 10, 15, 20 mm, respectively. The reconstruction volume was a
rectangular solid with a size of 28 mm (x) � 8.96 mm (y) � 8.96 mm
(z) that contained the object. It consisted of 200 (x) � 64 (y) � 64 (z)
spherical voxels with a radius of 0.07 mm. All other simulation
parameters were chosen as described in Section 3.2. The far-field
distance estimated by Eq. (16) was at most 26 mm because rmax ¼
2
ffiffiffi
2
p

mm and l � 0.31 mm (= c/fmax; fmax = 5 MHz) for this case.
Thus, the entire reconstruction volume was located in the near-
field.

By contrast, Configuration #1 had all spherical objects in the
far-field because the far-field distance for that case was at most 6.5
mm (a = b = 2 mm; rmax ¼

ffiffiffi
2
p

mm). Note that the outermost
spherical object in Configuration #1 was located at x = 55 mm,
while the measurement surface had a radius of 65 mm.

3.4. Patch model of SIR employing far-field approximations

When the entire reconstruction volume is within the near-field
distance to each of the transducer elements, the far-field-based
algorithm can result in patterned image artifacts. To mitigate
these artifacts, a simple divide-and-integrate algorithm was
developed. The algorithm divides each transducer element face
into m � m identical patches that are each described by the far-
field approximation (Fig. 1). Let a0 and b0 be the lengths of the
patch, i.e. a0 = a/m and b0 = b/m. The far-field SIR formula for
the original transducer face (Eq. (10)) is straightforwardly
extended to the patch by replacing a and b with a0 and b0,
respectively. Let fh̃

s

q;iðrn; f Þgm2

i¼0 be the resulting SIRs that are
specified by the patch index i = 0, . . ., m2. The SIR for the original
transducer face h̃

s

qðrn; f Þ is then approximated by averaging the
patch SIRs over all patches:

h̃
s

qðrn; f Þ 	 1

m2

Xm2

i¼0

h̃
s

q;iðrn; f Þ: (17)

Let this approximation be called ‘‘patch approximation.’’ The
patch-based reconstruction algorithm is obtained from the far-
field-based reconstruction algorithm by replacing the far-field-
based SIR (Eq. (10)) with the patch-based SIR (Eq. (17)).

The patch approximation is different from the approximation
proposed in Ref. [8], which decomposes the transducer element
face into a number of parallel straight lines whose SIRs are each
described by a closed-form analytical formula. Let this algorithm
be called ‘‘line detector approximation.’’ Although the line detector
approximation has an analytical accuracy in the direction that the
lines run, no integration is made in the perpendicular direction
because the lines have no extent (zero thickness) in the direction.
Thus, the line detector approximation is equivalent to the point-
like transducer approximation in that direction. By contrast, our
patch approximation employs the far-field approximation for both
directions.

To systematically analyze the performance of the patch-based
algorithm, the images reconstructed by use of the patch-based
algorithms with different numbers of patches were compared. The
accuracy of reconstructed images was assessed in terms of the
root-mean-squared-error (RMSE) between the reconstructed
image and the true phantom as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

ð½u�n � ½u�0;nÞ
2

vuut ; (18)

where N is the number of voxels, [u]n is the value of the nth voxel of
the reconstructed image, and [u]0,n is the value of the nth voxel of
the true phantom, respectively.

3.5. Accuracy of the far-field-based algorithms for a wide range of 3D

PACT configurations

To further demonstrate the widespread applicability of the
far-field-based reconstruction algorithm, we considered a variety
of additional measurement geometries. The phantom employed
in these studies was similar to that employed in the study of
Configuration #2 above and was comprised of 5 uniform spheres.
The spheres each had a radius of 1.4 mm and were located at
positions x = 0, 5, 10, 15, 20 mm, respectively. The reconstruction
volume was rectangular with dimensions 28 mm (x) � 8.96 mm
(y) � 8.96 mm (z). The measurement surface was a sphere on
which 48 � 96 (= 4608) flat transducer elements were evenly
arranged as in the previous sections. A radius of the measurement
surface will be referred to as a ‘‘scanning radius.’’ Five different
scanning radii, i.e. R = 25, 45, 65, 85, 105 mm, and five different
detector sizes, i.e. a = b = 1, 2, 3, 4, 5 mm, were investigated. In
the study with the varying radii, the detector size was fixed at
a = b = 4 mm. In the study with the varying detector sizes, the
scanning radius was fixed at R = 25 mm. The accuracy of
reconstructed images was assessed by use of the RMSE metric
defined in Eq. (18).



Fig. 4. In a realistic 3D imaging configuration that is based upon an existing small

animal imaging system, the far-field-based algorithm exhibited a better resolution

than the point-like-transducer-based algorithm did. (a) y-profiles at x = 55 (through

the center of the outermost spheres in Fig. 3(a)–(c)). (b) The result of the spatial

resolution analysis.
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3.6. Robustness to measurement noise

Finally, the robustness of the far-field-based algorithm to
measurement noise was studied. All parameters were set as in the
previous case with a detector radius of 25 mm, except for a band-
limited (�5 MHz) Gaussian noise added to the simulated pressure
recordings. Let ss and sn be the standard deviation of the pressure
recordings and the noise, respectively. The noise standard
deviation sn was chosen so that the signal-to-noise ratio (SNR)
was 15 dB, i.e. 20 log 10ss/sn = 15.

4. Results

4.1. Configuration #1: a currently-employed 3D imaging system

The image reconstructed by use of the far-field-based algorithm
exhibited a better resolution than that reconstructed by use of the
point-like-transducer-based algorithm (Fig. 3(b) and (c)). This
observation was confirmed by comparing y-profiles at x = 55
(through the center of the outermost sphere) with each other
(Fig. 4(a)). The algorithm with the far-field approximation retained
sharp edges at y = �1.4 mm, while the algorithm with the point-like
transducer approximation showed blunt edges. To be more quantita-
tive, the y-profiles of each sphere were fitted with a Gaussian-blurred
rectangular function

Ab
sðrÞ ¼ 1

2
erf

e þ rffiffiffi
2
p

s

� �
þ erf

e � rffiffiffi
2
p

s

� �� �
; (19)

where r is the distance from the center of the sphere, s is the
standard deviation of the Gaussian kernel, and e is a radius of the
sphere. The obtained s’s were converted to FWHMs using the
following formula

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2ln2
p

s; (20)

and plotted in Fig. 4(b). The reader is referred to Appendix B for
additional details regarding the fitting method.

The results confirm that the point-like-transducer-based
algorithm produced images that exhibited a larger FWHM, and
thus a poorer resolution, especially in the region with a large x

(peripheral region). By contrast, the images produced by use of
the far-field-based algorithm contained sharp edges even in the
peripheral region. Note that the true object had an FWHM of 0.5
Fig. 3. In a realistic 3D imaging configuration that is based upon an existing small

animal imaging system, the far-field-based algorithm exhibited a better resolution

than the point-like-transducer-based algorithm did. (a) The original phantom in the

z = 0 plane. The reconstruction results for (b) the point-like transducer

approximation, and (c) the far-field approximation, respectively.
mm because it had been low-pass filtered with a Gaussian
kernel with an FWHM of 0.5 mm. These results indicate that
the far-field-based algorithm successfully removes the detector
size effect, producing quantitative results in a realistic 3D
configuration.

4.2. Configuration #2: an ultra-compact imaging system

The image reconstructed by use of the far-field-based
algorithm exhibited severe patterned artifacts as had been
expected (Fig. 5(c)). However, the observed artifacts were
different in nature from the blurring introduced by use of the
point-like-transducer-based algorithm (Fig. 5(b)). The far-field-
based algorithm still retained sharp edges of each sphere, while
the point-like-transducer-based algorithm had lost them in the
peripheral region. This was confirmed by comparing y-profiles at
x = 20 mm with each other (Fig. 6(a)). To be more quantitative,
each y-profile was fitted with a Gaussian-blurred rectangular
function (Fig. 6(b)). The image reconstructed using the point-like-
transducer-based algorithm exhibited poorer spatial resolution,
especially in the peripheral region, than did the image recon-
structed using the far-field-based algorithm. This is despite the
fact that the latter image contained artifacts that we will refer to as
‘‘near-field artifacts.’’

4.3. Mitigation of near-field artifacts by use of the patch-based

algorithm

The image reconstructed by use of the patch-based algorithm
with m = 2 is shown in Fig. 5(d). This image contains fewer and
weaker artifacts than are present in the image produced by use of
the far-field-based algorithm (Fig. 5(c)). Profiles through the
reconstructed images shown in Fig. 5 are displayed in Fig. 6(a), and



Fig. 5. In an extremely compact imaging system, the far-field-based algorithm still

exhibited a better resolution than the point-like-transducer-based algorithm did.

However, it suffers from severe patterned artifacts (near-field artifacts). The patch-

based algorithm (m = 2) mitigated the artifacts. (a) The original phantom in the z = 0

plane. The reconstruction results for (b) the point-like transducer approximation,

(c) the far-field approximation, and (d) the patch approximation (m = 2),

respectively.

Fig. 6. In an extremely compact imaging system, the far-field-based algorithm still

exhibited a better resolution than the point-like-transducer-based algorithm did.

The reconstructed image by use of the patch-based algorithm (m = 2) possessed

resolution comparable to that by use of the far-field-based algorithm. (a) y-profiles

at x = 20 (through the center of the outermost spheres in Fig. 5(a)–(d)). (b) The result

of the spatial resolution analysis.
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quantitative measures of spatial resolution are plotted as a
function of radial position within the object in Fig. 6(b). These
results reveal that the patch-based algorithm can mitigate the
near-field artifacts while preserving sharp edges. Notice that a
small number of patches (2 � 2) successfully removed the near-
field artifacts. This is directly explained from Eq. (16), which
depends on r2

max. When the transducer element surface is divided
into 2 � 2 patches the far-field distance is reduced by a factor of 4.
In this particular case, the far-field distance was reduced to 6.5
mm, resulting in almost the entire object volume being located in
the far-field of all transducers. This feature is not shared with the
point-like-transducer-based algorithm because the far-field ap-
proximation is a first order approximation in terms of detector size,
while the point-like transducer approximation is equivalent to a
zeroth order approximation [22]. This means that, in the point-like
transducer approximation, the far-field distance is proportional to
rmax, not to r2

max. Therefore, a similar divide-and-integrate
algorithm with the point-like transducer approximation would
require more patches to achieve the same accuracy. The
aforementioned line detector approximation [8] also suffers from
the same computational inefficiency because it is equivalent to the
point-like transducer approximation in one direction, i.e. many
lines would be required to achieve a comparable accuracy in 3D
PACT imaging. Our patch-based algorithm is computationally
efficient and will facilitate 3D PACT imaging.

The discussion above suggests that a relatively small number of
patches can effectively mitigate near-field artifacts. Fig. 7 displays
images reconstructed by use of the patch-based algorithm with
3 � 3 patches (Fig. 7(b)) and 2 � 2 patches (Fig. 7(c)). The true
phantom is re-displayed in Fig. 7(a). The images corresponding to
use of 2 � 2 and 3 � 3 patches were visually similar. This
observation was confirmed in a more quantitative manner by
comparing the RMSEs of the reconstructed images, which are
displayed in Fig. 8. The improvement in RMSE yielded by use of
3 � 3 patches instead of 2 � 2 patches was only 9.8 � 10�4. This
was much smaller than the RMSE improvement of 1.5 � 10�2

obtained by employing 2 � 2 patches instead of 1 � 1 patch, i.e. the
far-field-based algorithm.

4.4. Accuracy of the far-field-based algorithms for a wide range of 3D

PACT configurations

The reconstructed images corresponding to system configura-
tions having different scanning radii and transducer sizes are
displayed in Fig. 9(a) and (b), respectively. In both cases, the images
reconstructed by use of the far-field-based algorithms exhibited
sharp edges for a wide range of measurement geometries, i.e.
R = 25–105 mm or a = b = 1–5 mm, while the images reconstructed
by use of the point-like-transducer-based algorithm exhibited a
severe blurring. Near-field artifacts were observed in some of the



Fig. 7. The image reconstructed by use of the patch-based algorithm (2 � 2) has a

comparable image quality to the image reconstructed by use of the patch-based

algorithm (3 � 3). (a) The original phantom in the z = 0 plane. The reconstruction

results for (b) the patch approximation (m = 2) and (c) the patch approximation

(m = 3), respectively.

Fig. 8. The image reconstructed by use of the patch-based algorithm (2 � 2) has a

comparable accuracy to the image reconstructed by use of the patch-based

algorithm (3 � 3).

Fig. 9. The far-field-based algorithms are highly accurate for a wide range of 3D

PACT configurations with (a) different scanning radii and (b) different transducer

sizes. In the study with the varying radii, the detector size was fixed at a = b = 4 mm.

In the study with the varying detector sizes, the scanning radius was fixed at

R = 25 mm. The images are arranged so that the top figures are the most accurate.

Fig. 10. The far-field-based algorithms are highly accurate for a wide range of 3D PACT

configurations with (a) different scanning radii and (b) different transducer sizes. In

the study with the varying radii, the detector size was fixed at a = b = 4 mm. In the

study with the varying detector sizes, the scanning radius was fixed at R = 25 mm.
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images that were reconstructed by use of the far-field-based
algorithm without patches. However, these artifacts were mitigat-
ed by use of the patch-based algorithm with 2 � 2 patches.

To be more quantitative, the RMSE of the images were
computed and are displayed in Fig. 10. The images reconstructed
by use of the far-field-based algorithm possessed a consistently
smaller RMSE than the images reconstructed by use of the point-
like-transducer-based algorithm. By use of the patch-based
algorithm, the RMSE decreased to approximately less than 1% of
the peak value (= 1) of the object as near-field artifacts were
mitigated. These results show the far-field-based algorithms
effectively mitigate the detector size effect in a wide range of
measurement geometries.



Fig. 11. Both far-field-based and patch-based (m = 2) algorithms are robust to

measurement noise. The effect of noise in reconstructed images can be alleviated by

use of a conventional regularization technique. The reconstruction results for (a) the

far-field approximation, (b) the patch approximation, and (c) the penalized far-field

approximation (a = 100), respectively.

Fig. 12. Both far-field-based and patch-based (m = 2) algorithms are robust to

measurement noise. The effect of noise in reconstructed images can be alleviated by

use of a conventional regularization technique. (a) y-profiles at x = 20 (through the

center of the outermost spheres in Fig. 11(a)–(c)), (b) The result of the spatial

resolution analysis.

Fig. 13. Typical execution times for the point-like-transducer-based, the far-field-

based, and the patch-based (m = 2, 3) algorithms.
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4.5. Robustness of the far-field-based algorithms to measurement

noise

The image reconstructed by use of the far-field-based algorithm
from the simulated measurement data that was degraded by a
band-limited Gaussian noise still retained sharp edges (Figs. 11(a)
and 12(a)). The patch-based algorithm also exhibited its robust-
ness to measurement noise (Figs. 11(b) and 12(a)). No significant
blurring was observed in y-profiles (Fig. 12(b)). These results
indicate that both far-field-based and patch-based algorithms can
effectively mitigate the detector size effect in the presence of noise.

Conventional regularization techniques can be used together
with the far-field approximation to mitigate noise. To demonstrate
this, a quadratic smoothness penalty [17] was used. The
regularization parameter a was set at 100. Noise was successfully
reduced by the penalty, while minimal additional blurring was
introduced in the y-profile (Fig. 12(a) and (b)).

4.6. Computational efficiency

Typical execution times for the point-like-transducer-based,
far-field-based, patch-based (2 � 2), and patch-based (3 � 3)
algorithms were 3.8, 5.8, 23.0, and 52.5 min/iteration, respective-
ly (Fig. 13). 50–150 iterations were needed for convergence. The
use of the regularization technique with the far-field-based
algorithm did not affect much in terms of execution time as it
required 5.9 min/iteration. Since the patch-based algorithm
requires computational time proportional to the number of
patches, there is a trade-off between accuracy and computational
time. However, a small number of patches will generally be
sufficient to remove the near-field artifacts, and thus the trade-off
does not significantly limit the applicability of the algorithm.

5. Conclusions

It is often preferred to employ ultrasonic detectors with large
detecting areas and/or compact measurement geometries to
achieve a better SNR [23,24]. However, the spatial resolution of
images reconstructed from such data can be significantly degrad-
ed. The goal of this study was to demonstrate that the use of the
far-field approximation with iterative reconstruction algorithms
provides a computationally affordable way to compensate for this
degraded spatial resolution.



Fig. A.1. The schematic illustration of the method of calculating the semi-analytical

SIR. The square at the center of the figure represents the transducer element face. X

and Y denote the local coordinate system for the transducer element of interest. S

denotes the point photoacoustic source. P denotes the projection of S on the

transducer face. The gray spherical shell represents the wavefront at time t. fCig6
i¼1

represent the intersections of the wavefront and the edges of the transducer face.

Q1 and Q2 denote the angle of the radius PC1 and PC2, respectively, measured from

the positive X direction. Let Q be an arbitrary point on the intersection arcs. ffQSP is

denoted by F.
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The computer-simulation studies described above quantita-
tively show that the far-field-based imaging model is highly
accurate for a wide-range of 3D PACT imaging configurations that
employ flat rectangular transducers. In cases in which a realistic 3D
imaging configuration based on an existing small animal imaging
system [13] was employed, the detector size effect was success-
fully removed without degrading spatial resolution. In special
cases where the far-field approximation is violated, an extension of
the far-field-based imaging model that divides the transducer face
into a small number (e.g. 2 � 2) of patches effectively mitigated the
detector size effect and the near-field artifacts. This extension is
more preferable to existing divide-and-conquer strategies, such as
one that uses the line detector approximation [8], because the far-
field approximation reduces the number of required patches to
achieve the same accuracy. The proposed algorithm was robust to
noise and readily parallelized using GPU hardware. Therefore, the
use of far-field-based imaging models may benefit a wide-range of
3D PACT applications.
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Appendix A. Semi-analytical SIR for simulating the pressure
data

In Section 3.1.1, we employed the semi-analytical SIR [6] to
produce simulated pressure data. Here, we briefly review the
method of calculating the semi-analytical SIR.

Since the point photoacoustic source located at rn produces a
spherical wavefront at time t > 0, the intersection of the wavefront
and the qth transducer face is represented as a collection of arcs
(Fig. A.1). Let Lq,n(t) denote the total length of the intersection arcs
at time t. The SIR can be expressed as [12]

hs
qðrn; tÞ ¼ Lq;nðtÞ

2ptsinFq;nðtÞ
; (A.1)

where Fq,n(t) is the angle defined by an arbitrary point on the arcs
(Q in Fig. A.1), the point source (S), and the projection of the point
source on the transducer face (P). This formula can further be
simplified as [6]

hs
qðrn; tÞ ¼ c

2p

XR

r¼1

DQq;n;rðtÞ; (A.2)

where fDQq;n;rðtÞgR
r¼1 are the angles subtended by the intersection

arcs that are specified by the index r = 1, . . ., R. Each angle DQq,n,r(t)
can be obtained from the angles of the end points of the rth arc
fQq;n;r;eðtÞg2

e¼1 that are specified by the index e = 1, 2 as
DQq,n,r(t) = Qq,n,r,2(t) � Qq,n,r,1(t), where we assume that
Qq,n,r,2(t) � Qq,n,r,1(t). Thus, the SIR can be calculated from the
angles of the intersections of the wavefront and the edges of the
transducer face. Since the intersections of the wavefront (spherical
shell) and the edges (line segments) can be calculated analytically
by solving a quadratic equation, the SIR obtained from Eq. (A.2) has
an analytical accuracy.

Notice that the analytical SIR described above is computation-
ally burdensome and thus cannot readily be employed as a
component of the system matrix. The analytical SIR was employed
only for simulating the pressure data where the number of sources
was limited, e.g. 6 for Configuration #1.

Appendix B. Quantification of spatial resolution

To quantitatively assess the spatial resolution of the recon-
structed images, the y-profiles of the reconstructed spherical
objects were fitted with a Gaussian-blurred rectangular function
(Sections 4.1–4.5). Here, we explain the details of the fitting
method.

The blur associated with transducers with a large detecting area
is known to be described by the point response function (PRF) that
extends in the angular direction of the measurement surface, but
not in the radial direction, when a back-projection-based
reconstruction formula is employed [4]. Thus, we assumed that
the PRF extends in the y-direction at the location of each spherical
object (Fig. 2). This assumption was confirmed by the observation
of the reconstructed images (Figs. 3 and 5). We further assumed
that the PRF had a Gaussian profile with a standard deviation of s.
Under these assumptions, the profile of the object that is blurred by
the Gaussian PRF can be written as a spatial convolution

Ab
sðrÞ ¼

Z 1
�1

dr0 Aðr0ÞKsðr � r0Þ; (B.1)

where r and r0 are the coordinate variables along the y-axis, A(r) is
the y-profile of the true spherical object with a radius of e defined
as

AðrÞ ¼ 1; jrj � e;
0; otherwise;

�
(B.2)
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Ab
sðrÞ is the blurred version of A(r), and Ks(r) is the Gaussian PRF

with a standard deviation of s defined as

KsðrÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

s
expð � r2

2s2
Þ: (B.3)

By use of the error function defined as

erfðrÞ ¼ 2ffiffiffiffi
p
p

Z r

0
dt e�t2

;

Eq. (B.1) immediately leads to Eq. (19). We solved the following
least-squares problem to fit Eq. (19) to the y-profile via the fitting
parameter ŝ:

ŝ ¼ arg min
s

kAb
sðrÞ � AðrÞk2: (B.4)

The built-in function of MATLAB (R2010b; The MathWorks, Inc.,
USA) for non-linear least-squares fitting was employed to solve the
fitting problem. Notice that the fitting method estimates the
standard deviation of the PRF, i.e. the width of the PRF, but not the
width of the fitted profile.

Examples of the fitting results are shown in Fig. B.1. The results
show that the Gaussian-blurred rectangular function with a
standard deviation ŝ accurately reproduced the y-profile.
Fig. B.1. Examples of the fitting results. The y-profile of the reconstructed outermost

spherical object in Configuration #1 (R = 65 mm; x = 55 mm) was fitted with a

Gaussian-blurred rectangular function. The fitting result for the image

reconstructed by use of (a) the far-field-based algorithm and (b) the point-like-

transducer-based algorithm. The corresponding results of the resolution study are

illustrated in Fig. 4.
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