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Abstract
In many applications the graph structure in a network arises from two sources: intrinsic connections
and connections due to external effects. We introduce a sparse estimation procedure for graphical
models that is capable of isolating the intrinsic connections by removing the external effects.
Technically, this is formulated as a conditional graphical model, in which the external effects are
modeled as predictors, and the graph is determined by the conditional precision matrix. We introduce
two sparse estimators of this matrix using the reproduced kernel Hilbert space combined with lasso
and adaptive lasso. We establish the sparsity, variable selection consistency, oracle property, and the
asymptotic distributions of the proposed estimators. We also develop their convergence rate when
the dimension of the conditional precision matrix goes to infinity. The methods are compared with
sparse estimators for unconditional graphical models, and with the constrained maximum likelihood
estimate that assumes a known graph structure. The methods are applied to a genetic data set to
construct a gene network conditioning on single-nucleotide polymorphisms.
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1. INTRODUCTION
Sparse estimation of the Gaussian graphical models has undergone intense development during
the recent years, partly due to their wide applications in such fields as information retrieval
and genomics, and partly due to the increasing maturity of statistical theories and techniques
surrounding sparse estimation. See, for example, Meinshausen and Buhlmann (2006), Yuan
and Lin (2007), Bickel and Levina (2008), Peng et al. (2009), Guo et al. (2009), and Lam and
Fan (2009). The precursor of this line of work is the Gaussian graphical model in which the
graph structure is assumed to be known; see Dempster (1972) and Lauritzen (1996).

Let Y = (Y1, …, Yp)⊤ be a random vector, Γ = {1, …, p}, and E ⊆ Γ × Γ. Let  = (Γ, E) be
the graph with its vertices in Γ and edges in E. We say that Y follows a Gaussian graphical
model (GGM) with respect to  (Lauritzen 1996) if Y has a multivariate normal distribution
and
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(1)

where A ⫫ B|C means A and B are independent given C, and Y−(i,j) denotes the set {Y1, …,
Yp}\{Yi, Yj}. Let ωij be the (i, j)th entry of [var(Y)]−1. Then, Yi ⫫ Yj|Y−(i,j) if and only if ωij =
0. Thus, estimating E is equivalent to estimating the set {(i, j) ∈ Γ × Γ: ωij = 0}. Conventional
Gaussian graphical models focus on maximum likelihood estimation of ωij given the
knowledge of E. In sparse estimation of graphical models, however, E is itself estimated by
sparse regularization, such as lasso and adaptive lasso (Tibshirani 1996; Zou 2006).

The conditional graphical model, with which we are concerned, is motivated by the analysis
of gene networks and the regulating effects of DNA markers. Let X1, …, Xq represent the
genetic markers at q locations in a genome, and let Y1, …, Yp represent the expression levels
of p genes. The objective is to infer how the q genetic markers affect the expression levels of
the p genes and how these p genes affect each other. Since some markers may have regulating
effects on more than one gene, the connections among the genes are of two kinds: the
connections due to shared regulation by the same marker, and the innate connections among
the genes aside from their shared regulators. In this setting, we are interested in identifying the
network of genes after removing the effects from shared regulations by the markers.

The situation is illustrated by Figure 1, in which X represents a single marker, and Y1, Y2, Y3

represent the expressions of three genes. If we consider the marginal distribution of the random
vector (Y1, Y2, Y3), then there are two (undirected) edges in the unconditional graphical model:
1 ↔ 2 and 2 ↔ 3, as represented by the solid and the dotted line segments. However, if we
condition on the marker and consider the conditional distribution of Y1, Y2, Y3|X, then there is
only one (undirected) edge, 2 ↔ 3, in the conditional graphical model, as represented by the
solid line segment.

In mathematical terms, a conditional graphical model can be represented by

(2)

where X = (X1, …, Xq)⊤. Compared with the unconditional graphical model, here we have an
additional random vector X, whose effects we would like to remove when constructing the
network for Y1, …, Yp. The conditional graphical model (2) was introduced by Lafferty,
McCallum, and Pereira (2001) under the name “conditional random field.” However, in that
article, the graph  = (Γ, E) was assumed known and maximum likelihood was used to estimate
the relevant parameters.

Our strategy for estimating the conditional graphical model (2) is as follows. In the first step,
we propose a class of flexible and easy-to-implement initial (nonsparse) estimators for the
conditional variance matrix Σ = var(Y | X), based on a conditional variance operator between
the reproducing kernel Hilbert spaces (RKHS) of X and Y. In the second step, we incorporate
the nonsparse estimators with two types of sparse penalties, the lasso and the adaptive lasso,
to obtain sparse estimators of the conditional precision matrix Σ−1.

We have chosen RKHS as our method to estimate Σ for several reasons. First, it does not require
a rigid regression model for Y versus X. Second, the dimension of X only appears through a
kernel function, so that the dimension of the largest matrix we need to invert is the sample size
n, regardless of the dimension of X. This feature is particularly attractive when we deal with
a large number of predictors. Finally, RKHS provides a natural mechanism to impose
regularization on regression. Here, it is important to realize that our problem involves two kinds
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of regularization: one for the components of var(Y | X) and the other for the regression of Y
on X. Considering the nature of our problem, the former must be sparse, but the latter need not
be. Indeed, since estimating the regression parameter is not our purpose, it seems more natural
to introduce the regularization for regression through RKHS than to try to parameterize the
regression and then regularize the parameters.

The rest of the article is organized as follows. In Section 2, we introduce a conditional variance
operator in RKHS and describe its relation with the conditional gaussian graphical model. In
Section 3, we derive two RKHS-based estimators of conditional variance Σ. In Section 4, we
subject the RKHS estimators to sparse penalties to estimate the conditional precision matrix
Θ = Σ−1. In Sections 5, 6, and 7, we establish the asymptotic properties of the sparse estimators
for a fixed dimension p. In Section 8, we derive the convergence rate of the sparse estimators
when p goes to infinity with the sample size. In Section 9, we discuss some issues involved in
implementation. In Sections 10 and 11, we investigate and explore the performance of the
proposed methods through simulation and data analysis.

2. CONDITIONAL VARIANCE OPERATOR IN RKHS

We begin with a formal definition of the conditional Gaussian graphical model. Throughout
this article, we use  to denote expectation to avoid confusion with the edge set E. We use ℙ
to denote probability measures.

Definition 1—We say that (X, Y) follows a conditional Gaussian graphical model (CGGM)
with respect to a graph  = (Γ, E) if

1. relation (2) holds;

2. Y | X ~ N( (Y | X), Σ) for some nonrandom, positive-definite matrix Σ.

Note that we do not assume a regression model for Y versus X. However, we do require that
Y | X is multivariate normal with a constant conditional variance, which is satisfied if Y = f
(X) + ε, ε ⫫ X, and ε ~ N(0, Σ) for an arbitrary f.

Let ΩX ⊆ ℝq and ΩY ⊆ ℝp be the support of X and Y. Let κX: ΩX × ΩX → ℝ, κY: ΩY × ΩY →
ℝ be positive-definite kernels and  and  be their corresponding RKHS’s. For further
information about RKHS and the choices of kernels, see Aronszajn (1950) and Vapnik
(1998). For two Hilbert spaces  and , and a bounded bilinear form b:  ×  → ℝ, there
uniquely exist bounded linear operators A:  →  and B:  →  such that 〈f, Bg〉  = 〈Af,
g〉  = b(f, g) for any f ∈  and g ∈ . Applying this fact to the bounded bilinear forms

we obtain three bounded linear operators

(3)

Furthermore, ΣXY can be factorized as , where RXY:  →  is a uniquely
defined bounded linear operator. The conditional variance operator of Y, given X, is then
defined as the bounded operator from  to :
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This construction is due to Fukumizu, Bach, and Jordan (2009).

Let L2(ℙX) denote the class of functions of X that are squared integrable with respect to ℙX,
 + ℝ denote the set of functions {h + c: h ∈ , c ∈ ℝ}, and cl(·) denote the closure of a set

in L2(ℙX). The next theorem describes how the conditional operator ΣYY | X uniquely determines
the CGGM, and suggests a way to estimate Σ.

Theorem 1—Suppose

1.  ⊆ L2(ℙX) and, for each i = 1, …, p, (Yi|X) ∈ cl(  + ℝ);

2. κY is the linear kernel: κY (a, b) = 1 + a⊤b, where a, b ∈ ℝp.

Then,

(4)

The assumption  ⊆ L2(ℙX) is satisfied if the function κX(x, x) belongs to L2(ℙX), which is a
mild requirement.

Proof: By assumption 2, any member of  can be written as α⊤y for some α ∈ ℝp. Hence,
by Proposition 2 of Fukumizu et al. (2009),

By assumption 1, for any ε > 0, there is an f ∈  + ℝ such that var{ [(α⊤Y | X) − f (X)]} <
ε. So, the second term on the right-hand side above is 0, and we have

(5)

In the meantime, we note that

Applying Equation (5) to the left-hand sides of the above equations, we obtain
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as desired.

Condition 1 in the theorem can be replaced by the stronger assumption that  + ℝ is a dense
subset of L2(PX), which is satisfied by some well known kernels, such as the Gaussian radial
kernel. See Fukumizu et al. (2009).

3. TWO RKHS ESTIMATORS OF CONDITIONAL COVARIANCE
To construct a sample estimate of Equation (4), we need to represent operators as matrices in
a finite-dimensional space. To this end, we first introduce a coordinate notation system, adopted
from Horn and Johnson (1985, p. 31) with slight modifications. Let  be a finite-dimensional
Hilbert space and  = {b1, …, bm}⊆  be a set of functions that span  but may not be linearly
independent. We refer to  as a spanning system (as opposed to a basis). Any f ∈  can be
written as α1b1 + ··· + αmbm for some α = (α1, …, αm)⊤ ∈ ℝm. This vector is denoted by
[f] , and is called a -coordinate of f. Note that [f]  is not unique unless b1, …, bm are linearly

independent. However, this does not matter because  unique regardless of the
form of [f] . The same reasoning also applies to the nonuniqueness of coordinates below.

Let  and  be finite-dimensional Hilbert spaces with spanning systems  = {b11, …, b1m1}
and  = {b21, …, b2m2}. Let T :  →  be a linear operator. The ( , )-representation of
T, denoted by [T] , is the m2 × m1 matrix

Then, (  [T] )[f]  is a -coordinate of Tf. We write this relation as

(6)

Let  be another finite-dimensional Hilbert space with a spanning system . Let T1:  →
 and T2 :  →  be linear operators. Then,

(7)

The equality means the right-hand side is a ( , )-representation of T2T1. Finally, if  is a
finite-dimensional Hilbert space with a spanning system  and T :  →  is a self-adjoint and
positive-semidefinite linear operator, then, for any c > 0,

(8)

Let (X1, Y1), …, (Xn, Yn) be independent copies of (X, Y), ℙn be the empirical measure based
on this sample, and  be the integral with respect to ℙn. Let
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(9)

where, for example, κX(·, X) stands for the function x ↦ κX(x, X). We center the functions
κX(·, Xi) because constants do not play a role in our development. Let Σ̂XX, Σ̂YY, and Σ̂XY be
as defined in the last section but with ,  replaced by , , and cov replaced by the sample
covariance. Let  and  denote the spanning systems in Equation (9). Let KX and KY represent
the n × n kernel matrices {κX(Xi, Xj)} and {κY (Yi, Yj)}. For a symmetric matrix, A, let A†

represent its Moore-Penrose inverse. Let Qn = In − n −1Jn, In is the n × n identity matrix, and
Jn be the n × n matrix whose entries are 1. To simplify notation, we abbreviate Qn by Q
throughout the rest of the article. The following lemma crystallizes some known results, which
can be proved by coordinate manipulation via formulas (6), (7), and (8).

Lemma 1—The following relations hold:

1. [Σ̂ XX]  = n−1QKXQ, [Σ̂YY] = n−1QKYQ;

2. [Σ̂YX] = n−1QKXQ, [Σ̂XY] = n−1QKY Q;

3. [Σ̂YY | X]  = n−1[QKY Q − (QKXQ)(QKXQ)† (QKY Q)].

When the dimension q of X is large relative to n, it is beneficial to use regularized version of
(QKXQ)†. Here, we employ two types of regularization: the principal-component (PC)
regularization and the ridge-regression (RR) regularization. Let A be a positive-semidefinite
matrix with eigenvalues λ1, …, λ n and eigen-vectors v1, …, vn. Let ε ≥0. We call the matrix

 the PC-inverse of A. Note that . We call the matrix

 the RR-inverse of A. The following result can be verified by simple
calculation.

Lemma 2—For any f1, f2 ∈ , we have 〈 f1, f2〉  = ([f1] )⊤QKY Q[f2] .

We now derive the sample estimate of the conditional covariance matrix Σ= var(Y | X). Let
DY denote the matrix (Y1, …, Yn)⊤.

Theorem 2—Let Σ̂YY | X:  →  be defined by the coordinate representation

(10)

where * can be either † or ‡, KY is the linear kernel matrix, and {εn} is a sequence of nonnegative
numbers. Then

(11)

Despite its appearance, the matrix  is actually a symmetric matrix. One
can also show that Equation (11) is a positive-semidefinite matrix. We denote the matrix (11)
as Σ̂PC(εn) if * = †, and as Σ̂RR(εn) if * = ‡. In the following, ei represents a p-dimensional
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vector whose ith entry is 1 and other entries are 0. For an expression that represents a vector,
such as [f] , let ([f] )i denote its ith entry.

Proof of Theorem 1: Note that, for an f ∈ , [f]  is any vector a ∈ ℝp such that f (y) =

a⊤QDY y. Because , we have

Then, by Lemma 2,

When κY is the linear kernel, . Hence, the right-hand side reduces to

Now substitute Equation (10) into the above expression to complete the proof.

4. INTRODUCING SPARSE PENALTY
Let Σ̂ denote either of the RKHS estimators given by Equation (11). We are interested in the
sparse estimation of Θ= Σ−1. Let

(12)

This objective function has the same form as that used in unconditional Gaussian graphical
models, such as those considered by Lauritzen (1996), Yuan and Lin (2007), and Friedman,
Hastie, and Tibshirani (2008), except that the sample covariance matrix therein is replaced by
the RKHS estimate of conditional covariance matrix.

To achieve sparsity in Θ, we introduce two types of penalized versions of the objective function
(12):

(13)

(14)

where, in Equation (14), γ is a positive number and {θ̃ij} is a -consistent, nonsparse estimate
of Θ. For more details about the development of these two types of penalty functions; see
Tibshirani (1996), Zou (2006), Zhao and Yu (2006), and Zou and Li (2008). Yuan and Lin
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(2007) used lasso and nonnegative garrote (Breiman 1995) penalty functions for the
unconditional graphical model, the latter of which is similar to adaptive lasso with γ = 1. In
the following, we will write

5. VON MISES EXPANSIONS OF THE RKHS ESTIMATORS
The sparse and oracle properties of the estimators introduced in Section 4 depend heavily on
the asymptotic properties of the RKHS estimators Σ̂PC(εn) and Σ̂RR(εn). In this section, we
derive their von Mises expansions (von Mises 1947). For simplicity, we base our asymptotic
development on the polynomial kernel. That is, we let

(15)

For a matrix A and an integer k ≥ 2, let A⊗k be the k-fold Kronecker product A ⊗ ··· ⊗ A. For
k = 1, we adopt the convention A⊗1 = A. For a k-dimensional array B = {bi1…ik : i1, …, ik = 1,
…, q}, we define the “vec half” operator as

This is a generalization of the vech operator for matrices introduced by Henderson and Searle
(1979). It can be shown that there exists a matrix Gk,q, of full column rank, such that vec(B)
= Gk,q vech(B). The specific form of Gk,q is not important to us. For k = 1, we adopt the
convention vech(B) = B, G1,q = Iq. Let

The estimators Σ̂PC(εn) and Σ̂RR(εn) involve n × n matrices QKXQ and , which are
difficult to handle asymptotically because their dimensions grow with n. We now give an
asymptotically equivalent expression which only involves matrices of fixed dimensions. Let

(16)

Lemma 3—Suppose κX is the polynomial kernel (15) and var(U) is positive definite.

1. If εn = o(n), then, with probability tending to 1, Σ̂PC(εn) = Σ̃;
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2.
If , then .

It is interesting to note that different choices of inversion requires different convergence rates
for εn.

Proof: By simple computation, we find

Hence,  where . So,

(17)

Let s be the dimension of U. Then, rank(QKXQ) = s. Let λ1 ≥ ··· ≥ λs > 0 be the nonzero
eigenvalues and v1, …, vs be the corresponding vectors of this matrix. Since λ1,…, λs are also

eigenvalues of , which converges in probability to the positive-definite

matrix , we have λs = nc + oP(n) for some c > 0. This, together with εn = o(n),

implies  with probability tending to 1. Consequently, with
probability tending to 1,

(18)

Now it is easy to verify that if B ∈ ℝs×t is a matrix of full column rank and A ∈ ℝt×t is a
positive-definite matrix, then

(19)

Thus, the right-hand side of Equation (18) is Σ̃, which proves part 1. To prove part 2, we first
note that

(20)

Since the function −εn/(εn + λ) is increasing for λ> 0, we have

Hence,
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(21)

By Equation (19),

Hence, the right-hand side of Equation (21) is of the order . In other words,

Here, we evoke Equation (19) again to complete the proof.

Note that when r = 1 and p < n, and εn = 0, Σ̂PC(εn) reduces to

where varn(·) and covn(·, ·) denote the sample variance and covariance matrices. This is exactly
the sample estimate of the residual variance for linear regression.

Lemma 3 allows us to derive the asymptotic expansions of Σ̂PC(εn) and Σ̂RR(εn) from that of
Σ̃, which is a (matrix-valued) function of sample moments. Let  be a convex family of
probability measures defined on ΩXY that contains all the empirical distributions ℙn and the
true distribution ℙ0 of (X, Y). Let T :  → ℝp×p be the following statistical functional:

(22)

In this notation, Σ̃ = T (ℙn). In the following, we use var and cov to denote the variance and
covariance under ℙ0. For the polynomial kernel (15), the evaluation T (ℙ0) has a special
meaning, as described in the next lemma. Its proof is standard, and is omitted.

Lemma 4—Suppose:

1. Entries of  (Y | X) are polynomials in X1, …, Xq of degrees no more than r;

2. Y | X ~ N(  (Y | X), Σ), where Σ is a nonrandom matrix.

Then, T (ℙP0) = Σ.

Let ℙα = (1 − α)ℙ0 + αℙn, where α ∈ [0, 1]. Let Dα denote the differential operator ∂/∂α, and
let Dα=0 denote the operation of taking derivative with respect to α and then evaluating the
derivative at α = 0. It is well known that if T is Hadamard differentiable with respect to the
norm || · ||∞ in , then
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(23)

Since the functional T in our case is a smooth function of sample moments, it is Hadamard
differentiable under very general conditions. See, for example, Reeds (1976), Fernholz
(1983), Bickel et al. (1993), and Ren and Sen (1991). The next lemma can be verified by
straightforward computation.

Lemma 5—Let V1 and V2 be square-integrable random vectors. Then,

where q(V1, V2) = (V1 − V1)(V2 − V2)⊤.

We will adopt the following notational system:

The next theorem gives the first-order von-Mises expansion of Σ̃.

Theorem 3—Suppose the functional in Equation (22) is Hadamard differentiable, and the
conditions in Lemma 4 hold. Then,

(24)

where M = M0 − M0 and

Proof: We have

We now apply Lemma 5 to obtain

By the chain rule for differentiation and Lemma 5,
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Hence,

This can be rewritten as M0 − M0, where M0 is the matrix in the theorem.

Using this expansion, we can write down the asymptotic distribution of Σ̃.

Corollary 1—Suppose the functional in Equation (22) is Hadamard differentiable. Then,

(25)

where

By Lemma 3, Theorem 3, and Slutsky’s theorem, we arrive at the following von Mises
expansions for the two RKHS estimators Σ̂PC(εn) and Σ̂RR(εn) of the conditional variance Σ.

Corollary 2—Suppose the functional in Equation (22) is Hadamard differentiable, and the
conditions in Lemma 4 hold.

1. If , then Σ̂RR(εn) has expansion (24).

2. If εn = o(n), then Σ̂PC(εn) has expansion (24).

Although in this article we have only studied the asymptotic distribution for the polynomial
kernel, the basic formulation and analysis could potentially be extended to other kernels under
some regularity conditions. We leave this to future research.

6. SPARSITY AND ASYMPTOTIC DISTRIBUTION: THE LASSO
In this section, we study the asymptotic properties of the sparse estimator based on the objective
function ϒn(Θ) in Equation (13). Let  denote the class of all p × p symmetric matrices. For
a matrix A ∈ , let σi (A) be the ith eigenvalue of A. Note that, for any integer r, we have

(26)
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Let En be the sample estimate of E; that is, En = {(i, j): θ̂ij ≠ 0}, where Θ̂ = {θ̂ij}is the minimizer
of Equation (13). Following Lauritzen (1996), for a matrix A = {aij} and a graph  = (Γ, E),
let A( ) denote the matrix that sets aij to 0 whenever (i, j) ∉ E. Let

We define a bivariate sign function as follows. For any numbers a, b, let

The following lemma will prove useful. Its proof is omitted.

Lemma 6—The bivariate sign function sign(a, b) has the following properties:

1. For any c1 > 0, c2 > 0, sign(c1a, c2b) = sign(a, b);

2. For sufficiently small |b|, |a + b| − |a| = sign(a, b)b.

The next theorem generalizes Theorem 1 of Yuan and Lin (2007). It applies to any random
matrix Σ̂ with expansion (24), including Σ̂PC(εn) and Σ̂RR(εn).

Theorem 4—Suppose (X, Y) follows CGGM with respect to a graph (Γ, E). Let Θ̂ be the

minimizer of Equation (13), where  and Σ̂ having the expansion (24). Let W
∈ ℝp×p be a random matrix such that vec(W) is distributed as N[0, var(vec(M))]. Then, the
following assertions hold.

1. 0 < limn →∞ ℙ(En = E) < 1;

2. For any ε > 0, there is a λ0 > 0 such that limn →∞ ℙ(En = E) > 1 − ε;

3. , where

The inequality limn→∞ ℙ(En = E) > 0 implies that, as n → ∞, there is a positive probability
to estimate a parameter as 0 when it is 0. A stronger property is that this probability tends to
1. For clarity, we refer to the former property as sparsity, and the latter as sparsistency (see
Fan and Li 2001; Lam and Fan 2009). According to this definition, the two inequalities in part
1 mean that lasso is sparse but not sparsistent. Note that the unconstrained maximum likelihood
estimate—and indeed any regular estimate—is not sparse. Part 2 means that, even though lasso
is not sparsistent, we can make it as close to sparsistent as we wish by choosing a sufficiently

large λ0. Part 3 gives the asymptotic distribution of . It is not the same as that of
the maximum likelihood estimate under the constraint θij = 0 for (i, j) ∈ Ec. That is, it does not
have the oracle property. The proof of part 3 is similar to that of Theorem 1 in Yuan and Lin
(2007) in the context of GGM. However, to our knowledge there were no previous results
parallel to parts 1 and 2 for GGM. Knight and Fu (2000) contains some basic ideas for the
asymptotics for lassotype estimators.
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Proof of Theorem 2: We prove the three assertions in the order 3, 1, 2.

3. Let Θ0 be the true value of Θ, and let

By an argument similar to Yuan and Lin (2007, Theorem 1), it can be shown that

Since , we have

Both Φn(Δ) and Φ(Δ, W) are strictly convex with probability 1. Applying Theorem 4.4 of Geyer
(1994) we see that

However, by construction, if Δ̂ is the (almost surely unique) minimizer of Φn(Δ), then Δ̂ =
n1/2(Θ̂ − Θ0). This proves part 3.

1. For a generic function f(t) defined on t ∈ ℝs, let  and  be the left and right partial
derivatives with respect to the ith component of t. When f is differentiable with respect to ti,

we write . Note that En = E if and only if Φ(Δ, W) is minimized within ( ).
This happens if and only if

(27)

Here, we only consider the cases i ≥ j because Δ is a symmetric matrix. Let

Then, ∂L(Δ, W)/∂Δ = ΣΔΣ + W. For (i, j) ∈ E, P (Δ, W) is differentiable with respect to δij
and ∂δij P(Δ, W) = λ0sign(θ0,ij). For (i, j) ∈ Ec, P (Δ, W) is not differentiable with respect to

δij, but has left and right derivatives, given by  and .
Condition (27) now reduces to
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(28)

where Δ ∈ ( ), sij = λ0sign(θ0,ij) if (i, j) ∈ E and i ≠ j and sij = 0 if i = j.

Now consider the event

We need to show that ℙ(G) > 1. Since Δ belongs to ( ), it has as many free parameters as
there are equations in the first line of Equation (28). Since Σ is a nonsingular matrix, for any
{wij: i ≥ j, (i, j) ∈ E}, there exists a unique Δ that satisfies the first line of Equation (28) and it
is a linear function of {wij: (i, j) ∈ E, i ≥ j}. Writing this function as Δ({wij : (i, j) ∈ E, i ≥ j}),
we see that Equation (28) is satisfied if and only if

Since the mapping

from ℝp(p+1) to ℝcard(Ec)/2 is continuous, the set τ−1[(−λ0, λ0)card(Ec)/2] is open in ℝp(p+1)/2.
Furthermore, this open set is nonempty because if we let

then τ ({wij : i ≥ j}) = 0. Because {wij : i ≥ j} has a multivariate normal distribution with a
nonsingular covariance matrix, any nonempty open set in ℝp(p+1)/2 has positive probability.
This proves limn→∞ ℙ(En = E) > 0.

Similarly, the set τ−1[(λ0, 3λ0)card(Ec)/2] is open in ℝp(p+1)/2, and if we let

then τ({wij: i ≥ j}) = (2λ0, …, 2λ0)⊤ ∈ (λ0, 3λ0)card(Ec)/2. Hence, the W-probability of
τ−1[(λ0, 3λ0)card(Ec)/2] is positive, implying limn→∞ ℙ(En = E) < 1.

2. For each (i, j) ∈ Ec, i ≥ j, Let Uij = [ΣΔ ({wμν : (μ, ν) ∈ E, μ ≥ ν}) Σ]ij + wij. Then, for any

η > 0, there is a  such that . Let

, i ≥ j}. Then, ℙ(Uij ∈ [−λ0, λ0]) > 1 − η. Hence,
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This proves part 2 because η can be arbitrarily small.

7. SPARSISTENCY AND ORACLE PROPERTY: THE ADAPTIVE LASSO
We now turn to the adaptive lasso based on Equation (14). We still use Θ̂ = {θ̂ij} to denote the
minimizer of Equation (14). For a matrix Δ = {δij} ∈ , and a set C ∈ Γ × Γ, let δC = {δij :
(i, j) ∈ C, i ≥ j}, which is to be interpreted as a vector where index i moves first, followed by
index j.

Theorem 5—Suppose that (X, Y) follows CGGM with respect to a graph (Γ, E). Let Θ̂ be
the minimizer of Equation (14), where Σ̂ has expansion (24), and

Suppose Θ̃ in Equation (14) is a -consistent estimate of Θ0 with ℙ(θ̃ij ≠ 0) = 1 for (i, j) ∈
Ec. Then,

1. limn→∞ ℙ(En = E) = 1;

2. .

Part 1 asserts that the adaptive lasso is sparsistent; part 2 asserts that it is asymptotically
equivalent to the minimizer of L(Δ, G) when E is known. In this sense Θ̂ is oracle. The condition
P (θ̃ij ≠ 0) = 1 means that θ̃ij is not sparse, which guarantees that |θ̃ij |

−γ is well defined. For
example, we can use the inverse of one of the RKHS estimates as Θ̃.

Proof: Let Δ ∈  and Ψn(Δ) = n[Λn(Θ0 + n−1/2Δ) − Λn(Θ0)]. Consider the difference

By Lemma 6, for large enough n, the right-hand side can be rewritten as

(29)

If (i, j) ∈ E, then |θ̃ij |
−γ = OP(1). Because n1/2 λn → 0, the summand for such (i, j) converges

to 0 in probability. Hence, Equation (29) reduces to
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(30)

If (i, j) ∉ E, then θ̃ij = OP(n−1/2), and hence

From this, we see that Equation (30) converges in probability to ∞ unless δEc = 0, in which
case it converges in probability to 0. In other words,

This implies that

Since both Ψn(Δ) and Ψ(Δ, G) are convex and Ψ(Δ, G) has a unique minimum, by the epi-
convergence results of Geyer (1994), we have

This proves part 2 because the right-hand side is, in fact, argmin{L(Δ, G) : Δ ∈ ( )}, and

the left-hand side is .

The function Ψ(Δ, W) is always minimized in a region of Δ in which it is not ∞. As a
consequence, if Δ minimizes Ψ(Δ, W) over , then δEc = 0. Hence, ℙ(En ⊇ E) → 1. In the

meantime, since , we have . If (i, j) ∈ E, then θ0,ij ≠ 0.
Thus, we see that ℙ(En ⊆ E) → 1. This proves part 1.

We now derive the explicit expression of the asymptotic distribution of Θ̂. Let G be the unique
matrix in ℝp2×[card(E)+p]/2 such that for any Δ ∈ ( ), vec(Δ) = GδE. For example, if p = 3
and E = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1)}, then δE = (δ11, δ21, δ31, δ22, δ33)⊤,
and G is defined by
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Corollary 3—Under the assumptions of Theorem 5,

where

(31)

Proof: Note that

Hence,

This is a quadratic function minimized by δE = −[G⊤(Σ2 ⊗ Ip)G]−1G⊤vec(W). In terms of
Δ, the minimizer is vec(Δ) = −G[G⊤(Σ2 ⊗ Ip)G]−1G⊤vec(W). The corollary now follows
from Theorem 5.

The asymptotic variance of  can be estimated by replacing the moments in
Equation (25) and (31) by their sample estimates.

8. CONVERGENCE RATE FOR HIGH-DIMENSIONAL GRAPH
In the last two sections, we have studied the asymptotic properties of our sparse CGGM
estimators with the number of nodes p in the graph  held fixed. We now investigate the case
where p = pn tends to infinity. Due to the limited space, we shall focus on the lasso-penalized
RKHS estimator with PC regularization. That is, the minimizer of ϒn(Θ) with Σ̂ in Equation
(12) is taken to be the RKHS estimator Σ̂PC(εn) based on κX(a, b) = (1 + a⊤b)r. Throughout
this section, Θ̂ denotes this estimator. The large-pn convergence rate for the lasso estimator of
the (unconditional) GGM has been studied by Rothman et al. (2008).

In this case, Σ, Θ, and Y should in principle be written as Σ(n), Θ(n), and Y(n) because they now
depend on n. However, to avoid complicated notation, we still use Σ, Θ, and Y, keeping in
mind their dependence on n. Following Rothman et al. (2008), we develop the convergence

Li et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2014 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



rate in Frobenius norm. Let ||·||1, ||·||F, and ||·||∞ be the L1-norm, Frobenius norm, and the L∞-
norm of a matrix A ∈ ℝd1×d2:

where aij denotes the (i, j)th entry of A. Let ρ(A) denote the number of nonzero entries of A.
For easy reference, we list some properties of these matrix functions in the following
proposition.

Proposition 1—Let A ∈ ℝd1×d2, B ∈ ℝd2×d3. Then,

The first inequality follows from the definition of ||·||∞; the second from Hölder’s inequality;
the third from the Cauchy-Schwarz inequality. The last two inequalities were used in Rothman

et al. (2008). Let ℕ = {1, 2, …}. Consider the array of random matrices: { ,
n ∈ ℕ}, where A(n) ∈ ℝpn×q, pn may depend on n but q is fixed. Let (A(n))rs denote the (r, s)
th entry of A(n).

Lemma 7—Let { , n ∈ ℕ} be an array of random matrices in ℝpn×q, each of
whose rows is an iid sample of a random matrix A(n). Suppose that the moment generating
functions of (A(n))st, say φnst, are finite on an interval (−δ, δ), and their second derivatives are
uniformly bounded over this interval for all s = 1,…, pn, t = 1,…, q, n ∈ ℕ. If pn → ∞, then

.

Proof: Let μnst = (A(n))st. Since , there is C > 0 such that |μnst| ≤ C for all
s, t, n. Let (B(n))st = (A(n))st − μnst, and ψnst be the moment generating function of (B(n))st. Then,
ψnst (τ) = e−μnstτφnst (τ). For any a > 0,

By Taylor’s theorem and noticing that , we have

for some 0 ≤ ξnst ≤ n−1/2. By assumption, there is C1 > 0 such that lim supn→∞ φ″ (ξnst) ≤
C1 for all s = 1,…, pn and t = 1,…, q. Hence,
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Thus, we have . By the same argument, we can

show that . Therefore,

It follows that

In particular,

which implies the desired result.

In the following, we call any array of random matrices satisfying the conditions in Lemma 7
a standard array. We now establish the convergence rate of ||Θ̂ −Θ0||F. Let sn denote the number
of nonzero off-diagonal entries of Θ0. Let Z = Y − μY − E(Y | X). Let Xt and Ys denote the
components of X and Y. Their powers are denoted by (Xt)r and (Ys)r. For a symmetric matrix
A, let σmax(A) and σmin(A) denote the maximum and minimum eigenvalues of A.

Theorem 6—Let Θ̂ be the sparse estimator defined in the first paragraph of this section with
λn ~ (log pn/n)1/2, εn = o(n), and κ(a, b) = (1 + a⊤b)r. Suppose that (X, Y) follows a CGGM,
and satisfies the following additional assumptions:

1. Y, YU⊤, and ZU⊤ are standard arrays of random matrices;

2. for all n ∈ ℕ, σmax(Σ) < ∞ and σmin(Σ) > 0;

3. pn → ∞ and pn (pn + sn)1/2(log pn)5/2 = o(n3/2);

4. the fixed-dimensional matrix VU = var(U) is nonsingular;

5. each component of (Y | X = x) is a polynomial in x1,…, xq of at most rth order.

Then, ||Θ̂ − Θ0||F = OP ([(pn + sn) log pn/n]1/2).

Note that we can allow pn(pn + sn)1/2 to get arbitrarily close to n3/2. This condition is slightly
stronger than the corresponding condition in Rothman et al. (2008) for the unconditional case,
which requires (pn + sn) log pn = o(n1/2). Also note that ||Θ̂ − Θ0||F is the sum, instead of

average, of  elements (roughly pn + sn nonzero elements). With this in mind, the convergence
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rate [(pn + sn) log pn/n]1/2 is quite fast. This is the same rate as that given in Rothman et al.
(2008) for the unconditional GGM.

Proof of Theorem 3: Let rn = [(pn + sn) log pn/n]1/2, and  = {Δ ∈ : ||Δ||2 = Mrn} for
some M > 0. Let,

where

(32)

Then, Θ̂ minimizes L(Θ) if and only if Δ̂ = Θ̂ − Θ0 minimizes Gn(Δ). As argued by Rothman
et al. (2008), since Gn(Δ) is convex in Δ and Gn(Δ̂) ≤ 0, the minimizer Δ̂ resides within the
sphere  if Gn(Δ) is positive and bounded away from 0 on this sphere. That is, it suffices to
show

The proof of Lemma 3 shows, in the context of fixed p, that 
with probability tending to 1 if εn = o(n). This result still holds here because the dimension q
of X remains fixed. Consequently ℙ(Σ̂PC(εn) = Σ̃) → 1, where Σ̃ is as defined in Equation (16)
but now its dimension increases with n. Thus, we can replace the Σ̂PC(εn) in Equation (32) by
Σ̃. Let

Let , and . Then,

The term μY|U − μ̂Y|U can be further decomposed as ZI + ZII + ZIII, where

The function Gn(Δ) can now be rewritten as
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where . Since Z ~ N(0, Σ), we can use the
same argument in the proof of Theorem 1 in Rothman et al. (2008) to show that

Thus, our theorem will be proved if we can show that

for A being any one of the following eight random matrices

(33)

By Proposition 1, inequalities (2) and (3), we have, for Δ ∈ ,

Thus, it suffices to show that,

(34)

Since || (A)||∞ = || (A⊤)||∞, we only need to consider the following A:

From the definitions of Z and ZI, we have

(35)

where μ̂Z = (Z). By the first inequality of Proposition 1,
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(36)

Since Z ⫫ X, we have E[Z(U − μU)⊤] = 0. Hence, by Lemma 7,

(37)

Similarly,

(38)

Since μ̂U − μU has a fixed-dimension finite-variance matrix, by the central limit theorem,

(39)

By definition,

By Proposition 1, first inequality,

Substituting Equations (38) and (39) into the above inequality, we find

(40)

Since Z is multivariate normal whose components have means 0 and bounded variance, it is a
standard array. Hence,

(41)

Since the dimension of V ̂U is fixed, its entries have finite variances, and VU is nonsingular, we
have, by the central limit theorem,

(42)
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Substituting Equations (37), (39), (40), (41), and (42) into Equation (36), we find that

which, by condition (3), satisfies Equation (34).

The order of magnitudes of the rest of the three terms can be derived similarly. We present the
results below, omitting the details:

By condition (3), all of these terms satisfy the relation in Equation (34).

9. IMPLEMENTATION
In this section, we address two issues in implementation: the choice of the tuning parameter
and the minimization of the objective functions (13) and (14). For the choice of the tuning
parameter, we use a BIC-type criterion (Schwarz 1978) similar to that used in Yuan and Lin
(2007). Let Θ̂(λ) = {θ̂ij(λ) : i, j ∈ Γ} be the lasso or the adaptive lasso estimate of Θ0 in the
conditional graphical model for a specific choice of λ of the tuning parameter. Let En(λ) =
{(i, j) : θ̂ij(λ) ≠ 0}, and

The tuning parameter is then chosen to be

Practically, we evaluate this criterion on a grid of points in (0, ∞) and choose the minimizer
among these points.

For the minimization of Equations (13) and (14), we follow the graphical lasso procedure
proposed by Friedman et al. (2008), but with the sample covariance matrix therein replaced by
the RKHS estimates, Σ̂PC(εn) or Σ̂RR(εn), of the conditional covariance matrix Σ. The graphical
lasso (glasso) procedure is available as a package in the R language.

Li et al. Page 24

J Am Stat Assoc. Author manuscript; available in PMC 2014 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



10. SIMULATION STUDIES
In this section, we compare the sparse estimators for the CGGM with the sparse estimators of
the GGM, with the maximum likelihood estimators of the CGGM, and with two naive
estimators. We also explore several reproducing kernels and investigate their performances for
estimating the CGGM.

10.1 Comparison With Estimators for GGM
We use three criteria for this comparison:

1. False positive rate at λ̂BIC. This is defined as the percentage of edges identified as
belonging to E when they are not; that is,

2. False negative rate at λ̂BIC. This is defined as the percentage of edges identified as
belonging to Ec when they are not; that is,

3. Rate of correct paths. The above two criteria are both specific to the tuning method
(in our case, BIC). To assess the potential capability of an estimator of E,
independently of the tuning methods used, we use the percentage of cases where E
belongs to the path {En(λ) : λ ∈ (0, ∞)}, where En(λ) is an estimator of E for a fixed
λ. We write this criterion as PATH.

Example 1: This is the example, illustrated in Figure 1, in which p = 3, q = 1, and (X, Y)
satisfies CGGM with E = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}. The conditional distribution of
Y | X is specified by

(43)

where β = (β1, β2, 0)⊤, X ~ N(0, 1), and ε ~ N(0, Σ), X ⫫ ε, and

For each simulated sample, β1 and β2 are generated, independently, from the uniform
distribution defined on the set (−6, −3) ∪ (3, 6). We use two sample sizes n = 50, 100. The
linear kernel κX(a, b) = 1 + a⊤b is used for the initial RKHS estimate. The results are presented
in the first three rows of Table 1. Entries in the table are the means calculated across 200
simulated samples.

The table indicates that the unconditional sparse estimators have much higher false positive
rate than false negative rate. This is because they tend to pick up connections among the
components of Y that are due to X. In comparison, the conditional sparse estimators (both lasso
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and adaptive lasso) can successfully remove the edges effected by X, resulting in more accurate
identification of the graph.

Example 2: In this example, we consider three scenarios in which the effect of an external
source on the network varies in degree, resulting in different amounts of gain achievable by a
conditional graphical model.

We still assume the linear regression model (43), but with p = 5. The first scenario is shown
in the top two panels in Figure 2, where all the components of β are nonzero and Σ diagonal.
In this case, the conditional graph is totally disconnected (left panel); whereas the unconditional
graph is a complete graph (right panel). Specifically, the parameters are

The panels in the third row of Figure 2 represent the other extreme, where only Y1 is related
to X, and each Yi for i ≠ 1 shares an edge with Y1 but has no other edges. In this case, the
conditional and unconditional graphs are identical. The parameters are specified as follows.
The first row (and first column) of Θ is (6.020, −0.827, −1.443, −1.186, −0.922); the remaining
4 × 4 block is I4. The first entry of β is 0.656, and rest entries are 0. Between these two extremes
is scenario 2 (second row in Figure 2), where the conditional and unconditional graphs differ
only by one edge: 1 ↔ 4. The parameters are

For each scenario, we generate 200 samples of sizes n = 50, 100 and compute the three criteria
across the 200 samples. The results are presented row 4 through row 12 of Table 1. We see
significant improvements of the rates of correct identification of the graphical structure by the
sparse estimator of CGGM whenever the conditional graph differs from the unconditional
graph. Also note that, for scenario 3, where the two graphs are the same, the adaptive lasso
estimator for GGM performs better than the adaptive lasso estimator for CGGM. This is
because the latter needs to estimate more parameters.

Example 3: In this example, we investigate a situation where the edges in the unconditional
graphical model have two external sources. We use model (43) with p = 5, q = 2, X ~ N(0,
I2),
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The results are summarized in the last three rows of Table 1, from which we can see similar
improvements by the sparse CGGM estimators.

10.2 Comparison With Maximum Likelihood Estimates of CGGM
In Section 7, we showed that the adaptive lasso estimate for the CGGM possesses oracle
property; that is, its asymptotic variance reaches the lower bound among regular estimators
when the graph  is assumed known. Hence, it makes sense to compare adaptive lasso estimate
with the maximum likelihood estimate of Θ under the constraints θij = 0, (i, j) ∉ E, which is
known to be optimal among regular estimates. In this section, we make such a comparison,
using all three examples in Section 10.1. As a benchmark, we also compare these two estimates
with the maximum likelihood estimate under the full model, which for the linear kernel is

[Σ̂PC(0)]†. For this comparison we use the squared Frobenius norm , which
characterizes the closeness of two precision matrices rather than that of graphs.

Table 2 shows that the adaptive lasso estimator is rather close to the constrained MLE, with
the unconstrained MLE trailing noticeably behind. In three out of five cases, the constrained
MLE performs better than the adaptive lasso, which is not surprising because, although the
two estimators are equivalent asymptotically, the former employs the true graphical structure
unavailable for adaptive lasso, making it more accurate for the finite sample. When the errors
of adaptive lasso are lower than the constrained MLE, the differences are within the margins
of error.

10.3 Exploring Different Reproducing Kernels
In this section, we explore three types of kernels for RKHS

(44)

and investigate their performances as initial estimates for lasso and adaptive lasso. These
kernels are widely used for RKHS (Genton 2001). For the CGGM, we use a nonlinear
regression model with four combinations of dimensions: q = 10, 20, p = 50, 100. The nonlinear
regression model is specified by
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(45)

where β1 and β2 are q-dimensional vectors

The distribution of (ε1, …, εp)⊤ is multivariate normal with mean 0 and precision matrix

where each Γ is the precision matrix in Example 3.

The following specifications apply throughout the rest of Section 10: γ = 1/(9q) for RB, c =
200 for RQ, and r = 2 for PN (because the predictors in Equation (45) are quadratic
polynomials); the RKHS estimator Σ̂PC(εn) is used as the initial estimator for lasso and adaptive
lasso, where εn are chosen so that the first 70 eigenvectors of QKXQ are retained. Ideally, the
kernel parameters γ, c, and εn should be chosen by data-driven methods such as cross-
validation. However, this is beyond the scope of the present article and will be further developed
in a future study. Our choices are based on trial and error in pilot runs. Our experience indicates
that the sparse estimators perform well and are reasonably stable when εn is chosen so that
10% ~ 30% of the eigenvectors of QKXQ are included. The sample size is n = 100 and the
simulation is based on 200 samples. To save computing time we use the BIC to optimize λn
for the first sample and use it for the rest 199 samples.

In Table 3, we compare the sparse estimators lasso and adaptive lasso, whose initial estimates
are derived from kernels in Equation (44), with the full and constrained MLEs. The full MLE
is computed using the knowledge that the predictor is a quadratic polynomial of x1, …, xp. The
constrained MLE uses, in addition, the knowledge of the conditional graph ; that is, the
positions of the zero entries of the true conditional precision matrix.

Table 3 shows that in all cases the sparse estimators perform substantially better than the full
MLEs. For q = 10, the adaptive lasso estimates based on all three kernels also perform better
than both the full and constrained MLEs; whereas the accuracy of most of the lasso estimates
are between the full and the constrained MLEs. For q = 20, all sparse estimators perform
substantially better than both the full and the constrained MLEs. From these results, we can
see the effects of two types of regularization: the sparse regularization of the conditional
precision matrix and the kernel-PCA regularization for the predictor. The first regularization
counteracts the increase in the number of parameters in the conditional precision matrix as p
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increases, and the second counteracts the increase in the number of terms in a quadratic
polynomial as q increases, both resulting in substantially reduced estimation error.

10.4 Comparisons With Two Naive Estimators
We now compare our sparse RKHS estimators for the CGGM with two simple methods: the
linear regression and the simple thresholding.

10.4.1 Naive Linear Regression—A simple estimate of CGGM is to first apply
multivariate linear regression of Y versus X, regardless of the true regression relation, and then
apply a sparse penalty to the residual variance matrix. To make a fair comparison with linear
regression, we consider the following class of regression models:

(46)

This is a convex combination of a linear model and a quadratic model: it is linear when a = 1,
quadratic when a = 0, and a mixture of both when 0 < a < 1. The distribution of ε is as specified
in Section 10.3. The fraction 1/4 in the quadratic term in Equation (46) is introduced so that
the linear and quadratic terms have the similar signal-to-noise ratios. In Table 4, we compare
the estimation error of the CGGM based on Equation (46) by sparse linear regression and by
sparse RKHS estimator using the adaptive lasso as penalty. We take q = 10, p = 50, and n =
500. The Gauss radial basis is used for the kernel method, with tuning parameters γ and εn
being the same as specified in Section 10.3.

We see that the sparse RKHS estimate performs substantially better in all cases except a = 1,
where Equation (46) is exactly a linear model. This suggests that linear-regression sparse
estimate of CGGM is rather sensitive to nonlinearity: a slight proportion of nonlinearity in the
mixture would make the kernel method favorable. In comparison, the sparse RKHS estimate
is stable and accurate for different types of regression relations.

10.4.2 Simple Thresholding—A naive approach to sparsity is by dropping small entries

of a matrix. For example, we can estimate Θ by setting to zero the entries of  whose
absolute values are smaller than some τ > 0. Let Θ̃(τ) denote this estimator. Using the example
in Section 10.3 with p = 50, q = 10, n = 500, we now compare the sparse RKHS estimators

with Θ̃(τ). The curve in Figure 3 is the error  versus τ ∈ [0, 1]. Each point in the
curve is the error over 200 simulated samples. The estimate Σ̂PC is based on the gauss radial
basis, whose tuning parameters γ and εn are as given in Section 10.3. The two horizontal lines
in Figure 3 represent the errors for the lasso and the adaptive lasso estimators based on Σ̂PC,
which are read off from Table 3.

The figure shows that the simple thresholding estimate, even for the best threshold, does not
perform as well as either of our sparse estimates. Note that in practice Θ0 is unknown, and the
optimal τ cannot be obtained by minimizing the curve in Figure 3. With this in mind, we expect
the actual gap between the thresholding estimate and the sparse estimates to be even greater
than that shown in the figure.

11. NETWORK INFERENCE FROM eQTL DATA
In this section, we apply our CGGM sparse estimators to two datasets to infer gene networks
from expression quantitative trait loci (eQTL) data. The dataset is collected from an F2
intercross between inbred lines C3H/HeJ and C57BL/6J (Ghazalpour et al. 2006). It contains
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3,421 transcripts and 1,065 markers from the liver tissues of 135 female mice (n = 135). The
purpose of our analysis is to identify direct gene interactions by fitting the CGGM to the eQTL
dataset. Although a gene network can be inferred from expression data alone, such a network
would contain edges due to confounders such as shared genetic causal variants. The available
marker data in the eQTL dataset allow us to isolate the confounded edges by conditioning on
the genomic information.

We restrict our attention to subsets of genes, partly to accommodate the small sample size. In
the eQTL analysis tradition, subsets of genes can be identified by two methods: co mapping
and co expression. For co-mapping, each gene expression trait is mapped to markers, and the
transcripts that are mapped to the same locus are grouped together. For co-expression, the
highly correlated gene expressions are grouped together.

We first consider the subset of genes identified by co-mapping. It has been reported (Neto,
Keller, Attie, and Yandell 2010) that 14 transcripts are mapped to a marker on chromosome 2
(at 55.95 cM). As this locus is linked to many transcripts, it is called a hot-spot locus. It is
evident that this marker should be included as a covariate for CGGM. In addition, we include
a marker on chromosome 15 (at 76.65 cM) as a covariate, because it is significantly linked to
gene Apbb1ip (permutation p-value < 0.005), conditioning on the effect of the marker on
chromosome 2. The transcript mapping is performed using the qtl package in R (Broman, Wu,
Sen, and Churchill 2003).

The GGM detects 52 edges; the CGGM detects 34 edges, all in the set detected by the GGM.
The two graphs are presented in the upper panel of Figure 4, where edges detected by both
GGM and CGGM are represented by black solid lines, and edges detected by GGM alone are
represented by blue dotted lines. In the left panel of Table 5, we compare the connectivity of
genes of each graph. Among the 14 transcripts, Pscdbp contains the hot spot locus within the
±100 kb boundaries of its location. Interestingly, in CGGM, this cis transcript has the lowest
connectivity among the 14 genes, but one of the genes with which it is associated (Apbb1ip)
is a hub gene, connected with seven other genes. In sharp contrast, GGM shows high
connectivity of Pscdbp itself.

We next study the subset identified by co-expression. We use a hierarchical clustering approach
in conjunction with the average agglomeration procedure to partition the transcripts into 10
groups. The relevant dissimilarity measure is 1 − |ρij|, where ρij is the Pearson correlation
between transcripts i and j. Among the 10 groups, we choose a group that contains 15 transcripts
with the mean absolute correlation equal to 0.78. Thirteen of the 15 transcripts have
annotations, and they are used in our analysis. Using the qtl package in R, each transcript is
mapped to markers, and seven markers on chromosome 2 are significantly linked to transcripts
(permutation p-value 0.005). Among those, we drop two markers that are identical to the
adjacent markers. We thus use five markers (Chr2@100.18, Chr2@112.75, Chr2@115.95,
Chr2@120.72, Chr2@124.12) as covariates.

The GGM identifies 52 edges and the CGGM identifies 30 edges. Among these edges, 28 are
shared by both methods. The two graphs are presented in the lower panel of Figure 4, where
edges detected by both GGM and CGGM are represented by black solid lines, edges detected
by GGM alone are represented by blue dotted lines, and edges detected by CGGM alone are
represented by red broken lines. Among the 13 transcripts, Dtwd1 is the closest to all markers
(distances < 300 kbp). The connectivity of each method is shown in the right panel of Table
5. The number of genes that are connected to Dtwd1 is reduced by 5 by CGGM. Unlike in the
co-mapping network, in the co-expression network, CGGM detects two edges (Aqr–Zfp661,
Zfp661–Tmem87a) that are not detected by GGM. These additional edges could be caused by
the error in regression estimation. For example, if the regression coefficients for some of
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markers are 0, but are estimated to be nonzero, then spurious correlations arise among residuals.
This indicates that the accurate identification of the correct covariates is more important in the
co-expression network.

As a summary, in the network inference from the transcripts identified by co-mapping, we see
that after conditioning on the markers, the cis-regulated transcripts (Pscdbp) are connected to
relatively few genes of high connectivity. However, without conditioning on the markers, they
appear to have high connectivity themselves. In other words, without conditioning on markers,
these cis-regulated transcripts might be misinterpreted as hub-genes themselves. In the network
inference from the transcripts identified by co expression, we see that after conditioning on the
markers, a few edges are additionally detected, which may result from inaccurate identification
of covariates for an individual transcript. Thus, including the correct set of markers for an
individual transcript can be important.
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Figure 1.
Unconditional and conditional graphical models.
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Figure 2.
Conditional and unconditional graphical models in Examples 2 and 3. Left panels: the
conditional graphical models. Right panels: the corresponding unconditional graphical models.
Black nodes indicate response variables; gray nodes are the predictors. Edges in the conditional
and unconditional graphs are indicated by black lines; regression of Y on X is indicated by
directed gray lines with arrows. (The online version of this figure is in color.)
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Figure 3.
Comparison of lasso, adaptive lasso, and simple thresholding.

Li et al. Page 35

J Am Stat Assoc. Author manuscript; available in PMC 2014 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Gene networks based on GGM and CGGM. Upper panel: data based on co mapping selection.
Lower panel: data based on coexpression selection. An edge from both GGM and CGGM is
represented by a solid line; an edge from the GGM alone is represented by a dotted line; an
edge from CGGM alone is represented by a broken line. (The online version of this figure is
in color.)
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Table 2

Comparison of parameter estimation accuracy among adaptive lasso, and unconstrained and constrained MLE
for CGGM. Entries are of the form a ± b, where a is the mean, and b the standard deviation, of criterion

 computed from 200 simulated samples

Example/scenario ALASSO

MLE

Unconstrained Constrained

EX1 1.458 ± 0.125 2.256 ± 0.171 1.575 ± 0.155

EX2-SC1 0.142 ± 0.008 0.400 ± 0.018 0.122 ± 0.007

EX2-SC2 1.858 ± 0.120 2.294 ± 0.148 1.663 ± 0.116

EX2-SC3 1.147 ± 0.071 2.139 ± 0.186 0.969 ± 0.081

EX3 0.303 ± 0.016 0.773 ± 0.555 0.327 ± 0.275
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