Skip to main content
. Author manuscript; available in PMC: 2014 Feb 24.
Published in final edited form as: J Am Stat Assoc. 2012 Jun 11;107(497):152–167. doi: 10.1080/01621459.2011.644498

Table 1.

Comparison of graph estimation accuracy among the lasso and the adaptive lasso estimators of GGM and CGGM for Example 1, Example 2 (including three scenarios), and Example 3. “ALASSO” means adaptive lasso

Example/scenario Criteria n = 50
n = 100
LASSO
ALASSO
LASSO
ALASSO
GGM CGGM GGM CGGM GGM CGGM GGM CGGM
EX1 FP 1 0.51 1 0.15 1 0.40 1 0.05
FN 0 0 0 0 0 0 0 0
PATH 0 1 0 1 1 1 0 1
EX2-SC1 FP 0.84 0.02 0.54 0.06 0.93 0.01 0.67 0.02
FN 0 0 0 0 0 0 0 0
PATH 0 1 0.01 0.63 0 1 0.98 1
EX2-SC2 FP 0.98 0.55 0.96 0.31 1 0.51 1 0.22
FN 0.06 0.01 0.15 0.02 0.02 0 0.08 0
PATH 0 0.57 0 0.71 0 0.79 0 0.98
EX2-SC3 FP 0.71 0.68 0.18 0.19 0.75 0.77 0.10 0.11
FN 0 0 0.01 0.02 0 0 0 0
PATH 0 0.43 0.80 0.52 0 0.56 1 0.87
EX3 FP 0.79 0.23 0.41 0.09 0.83 0.16 0.59 0.03
FN 0 0 0 0 0 0 0 0
PATH 0 0.94 0.95 0.99 0 1 1 1