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Abstract
In the fifty years since the organizational hypothesis was proposed, many sex differences have
been found in behavior as well as structure of the brain that depend on the organizational effects of
gonadal hormones early in development. Remarkably, in most cases we do not understand how the
two are related. This paper makes the case that overstating the magnitude or constancy of sex
differences in behavior and too narrowly interpreting the functional consequences of structural
differences are significant roadblocks in resolving this issue.
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W.C. Young and his colleagues outlined the principles of gonadal steroid actions on sexual
differentiation of the brain (reviewed by Young, 1961 and 1969; Young et al., 1964). They
used the term activational for the reversible effects by which gonadal hormones stimulate
sexual behaviors in adult animals, and organizational for the permanent effects that
testosterone (T) exerts in perinatal life in decreasing adult sensitivity to ovarian hormones
(Phoenix et al., 1959) and increasing adult sensitivity to T (Grady et al., 1965). Young and
colleagues recognized that the concepts of activation and organization were implicitly, if not
explicitly, stated in the work by Dantchakoff (1938) (Young et al., 1964). Their expectation
was that the morphological changes in genital anatomy induced by early androgen treatment
would not be equaled by “visible” structural changes in the brain (Phoenix et al., 1959).
Despite presenting compelling evidence that prenatal androgen treatment causes behavioral
“´differentiation´ in the direction of masculinization”, and assuming “…that T or some
metabolite acts on those central nervous tissues in which patterns of sexual behavior are
organized,” Phoenix et al. (1959) were not “… prepared to suggest whether the site of action
is general or localized”.

Beach (1971), in a charismatic and skeptical essay went even further and questioned the
concepts introduced by Young: “The sex hormones are best regarded not as organizing
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agents but as chemical sensitizers, which alter the stimulability of critical mechanisms
within the central nervous system”. Beach held the alternative view that sexual
differentiation of the periphery has the more important role for sex differences in adult
behavior (Forger, 2009). Currently, however, thousands of studies have documented sex
differences in the brain in practically any parameter imaginable (see for example, Morris et
al., 2004; McCarthy et al., 2009), and in at least some cases there is evidence that gonadal
hormones directly influence the development of these differences (McCarthy et al., 2009).
Remarkably, in most cases we do not understand how, or even whether, these sex
differences contribute to sex differences in behavior.

Three reasons may contribute to our ignorance. Firstly, it is difficult to unravel the function
of neural circuitry in general. Just finding a sex difference in the brain does not speak to
function. Secondly, behavioral sex differences are often exaggerated, sometimes even
portrayed as absolute. This makes it tricky to link relatively consistent sex differences in
brain structure to more fickle sex differences in brain function. Thirdly, we are drawn to the
idea that sex differences in brain structure generate sex differences in behavior. In fact,
Phoenix et al. (1959) pointed out: “An assumption seldom made explicit is that modification
of behavior follows an alteration in structure or function of the neural correlates of
behavior.” Note, however, that this does not imply that a change in structure always results
in a change in behavior, or conversely, that in the absence of modification of behavior the
underlying neural substrate is similar. This review will elaborate on each of these three
reasons.

1. The Structure – Function Relationship
The prediction in the Phoenix et al., 1959, paper that early androgen exposure causes “a
more subtle change reflected in function rather than in visible structure” proved to be too
cautious after the first reports on sex differences in the brain started to trickle in. For
example, in 1960 Kato detected higher serotonin levels in female than in male rat brains.
Not much later Pfaff (1966) showed that neonatal castration of rats permanently changed the
size of nucleoli in the hypothalamus. In 1970 McEwen and his colleagues showed that
neonatal steroid treatment changed T and estradiol (E) uptake in rat brains (McEwen and
Pfaff, 1970; McEwen et al., 1970). One year later Raisman and Field (1971) reported that
male rats have more synapses of non-strial origin on dendritic shafts and fewer on dendritic
spines on neurons in the preoptic area (POA) than do females, a difference that could be
eliminated by treating females neonatally with T (Raisman and Field, 1973). Although this
sex difference’s function remains unclear, it was consistent with the organizational
hypothesis.

The preoptic area and male sexual behavior: an impasse?
The first clearly visible differences concerned song control nuclei in zebra finches and
canaries, which are much larger in males than in females (Nottebohm and Arnold, 1976).
This difference elegantly mirrored sex differences in bird song: males sing, females typically
don’t. Just two years later, Gorski’s group discovered a nucleus in the POA / anterior
hypothalamic area (AH) that is five times larger in male rats than in females, the sexually
dimorphic nucleus of the POA (SDN) (Gorski et al., 1978). Similar sex differences have
since been found in the POA/AH in non-mammalian and mammalian vertebrates, including
humans (Swaab and Fliers, 1885; Allen et al., 1989). Besides being a hotbed for sex
differences in the brain, the POA also illustrates how difficult it is to relate structure to
function.

Because the medial POA (MPOA) has long been known to be essential for male sexual
behavior (e.g., Hillarp et al., 1954; Larsson and Heimer, 1964; Davidson, 1966; Hansen et
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al., 1982), it has been attractive to link sex differences in MPOA morphology to differences
in male sexual behavior. However, lesions centered in the SDN or in similarly dimorphic
areas in the MPOA of ferrets produced little to no decrements in male sexual behavior
(Arendash and Gorski, 1983; Turkenburg et al., 1988; de Jonge et al., 1989; Cherry and
Baum, 1990). Discrepancies in the effects of perinatal endocrine manipulations on SDN
morphology and male sexual behavior further weakened the link. For example, prenatal T
treatment increased SDN volume in female rats but not their propensity to show masculine
behavior as adults (Ito et al., 1986). Likewise, treating males prenatally with an aromatase
inhibitor reduced SDN volume (Houtsmuller et al., 1994) but had little or no effect on male
sexual behavior (Brand et al., 1991). Inhibiting steroid receptor coactivator SRC-1
expression reduced SDN volume as well but not male sexual behavior even though it
blocked the defeminizing action of T on female sexual behavior (Auger et al., 2000). Vice
versa, inhibiting prostaglandin-E2 action, a mediator of the organizing effects of gonadal
steroids on male sexual behavior (McCarthy, 2008), blocked masculinization of male sexual
behavior but did not reduce the size of the SDN nor did it block defeminization of female
sexual behavior (Todd et al., 2005). These last two experiments point at a possible link
between the SDN and female sexual behavior. Lesions of the MPOA that include the SDN-
POA can, in fact, disinhibit female sexual behavior, in females (Powers and Valenstein,
1972) as well as in males (Hennesey et al. 1986). Perhaps a larger SDN translates in stronger
inhibition of female sexual behavior. It is unknown, however, whether lesions of merely the
SDN-POA still affect female sexual behavior.

Inconsistencies between sex differences in male sexual behavior and sexual dimorphism are
also reported for the ‘male nucleus’ of the POA in ferrets (MN). This sex difference is
absolute (females lack an MN) and depends on the presence of T before birth (Cherry et al.,
1990). Neonatal T treatment of female ferrets, however, masculinizes sexual behavior
without inducing an MN (Cherry et al., 1991). Interestingly, however, the MN may be
important for partner preference as lesions of the MPOA centered around the MN cause
male ferrets to prefer male over female conspecifics (Paredes and Baum, 1995; Kindon et
al., 1996), or male over female body odors (Alekseyenko et al., 2007). The same lesions also
changed the pattern of Fos activation in response to male odors from a male to a female-
typical pattern (Alekseyenko et al., 2007).

It may be that homologous sexually dimorphic structures play a similar role in other
mammals. Lesions of the SDN disrupt partner preference in rats as it does in ferrets (Paredes
et al., 1998). Natural variation in male versus female preference also correlates with the size
of sexually dimorphic nuclei in the MPOA. For example, about 8% of rams prefer mounting
male rather than female sheep. These male-oriented rams have an ‘ovine SDN’ (oSDN) only
half the size of that of female-oriented rams (Roselli et al., 2004). This difference cannot be
ascribed to adult T levels (Roselli et al., 2008), but may be related to differences in prenatal
levels as prenatal exposure to T masculinizes the oSDN in females (Roselli et al., 2007). It is
not known, however, whether such masculinized females show similar variability in oSDN
size and sexual orientation as do rams. Interestingly, humans have an area in the same
region, the third interstitial nucleus of the AH (INAH3), which is larger in heterosexual
males than in females (Allen et al., 1989). The INAH3 of homosexual males, however, is
intermediate to that of heterosexual male and females (LeVay, 1991). A more recent report
failed to replicate this finding but showed a trend in the same direction (Byne et al., 2001). If
these sex differences in the size of subnuclei in the MPOA/AH are indeed important for
sexual preference, it is still puzzling how, for example, mice can show partner preference
while lacking similar sex differences in MPOA/AH structure.

Even if a structural sex difference in the brain correlates well with a sex difference in
behavior, such as appears to be the case with sexual preference, there is still the question of
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what, for example, a difference in cell number buys one sex over the other in terms of
function. For this, one has to understand the connections and functions of the components
that make up a sexually dimorphic structure. In the spinal cord, this is relatively easy
(Forger, 2009); in the brain it is much harder because connections are far more numerous.
More consistent sex differences may be found in the wiring of the MPOA. For example, the
density of dendritic spine synapses on MPOA neurons correlates well with measures of male
sexual behavior (Wright et al., 2008), but to understand the functional significance of this
correlation, one has to identify the source and nature of the neurons that synapse onto these
MPOA neurons. It will also be useful to study neurochemical markers in sexually dimorphic
systems. Focusing on neurotransmitter systems, for example, helps trace the anatomical
connections of subsets of cells within sexually dimorphic areas (De Vries, 1990). It also
allows more specific manipulations than lesioning entire cell groups or transsecting
projections; for example, injecting receptor agonists and antagonists or making conditional
knock-outs or knock-ins have proven useful in delineating systems engaged in food intake
and energy balance (e.g., Elmquist et al., 2005).

Kisspeptin: a sunshine story?
Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) of mice and rats
provide an example of a sex difference in neurochemistry. The AVPV is larger and contains
more neurons in females than in males (Bleier et al., 1982; Arai et al., 1994; Forger et al.,
2004), sex differences that obey the organizational hypothesis (Arai et al., 1993; Simerly et
al., 1985). A subset of the AVPV neurons express Kiss1-mRNA and its gene product,
kisspeptin (Dungan et al., 2006). Female mice have ten times more AVPV kisspeptin
neurons than males (Clarkson and Herbison, 2006); in rats, males express almost no
kisspeptin, making the sex difference nearly absolute (Kauffman et al., 2007; Gonzalez-
Martinez et al., 2008). As kisspeptin-containing projections appear to contact GnRH neurons
(Clarkson and Herbison, 2006), and kisspeptin triggers a surge of luteinizing hormone (LH)
by stimulating these neurons (Gottsch et al., 2004; Irwig et al., 2004), the higher number of
kisspeptin neurons in the female AVPV may explain the sex difference in the induction of
an LH surge, as males do not show this neuroendocrine response. Kisspeptin is probably not
the only factor, however. For example, compared to male rats, female rats have twice as
many AVPV neurons that express markers of both glutamatergic and GABAergic signaling
(Ottem et al., 2004). These ‘dual phenotype’ neurons may synapse on GnRH neurons to
modulate the effect of E on LH secretion.

The key to the success of the kisspeptin story may be similar to that of the sexually
dimorphic nuclei in the spinal cord (Morris et al., 2004; Forger, 2009); kisspeptin neurons
form part of a final common pathway, in this case, of the sexually dimorphic control of the
LH surge. The search for the function of sexually dimorphic neural systems with no clear
links to peripheral structures has turned out to be much more difficult. And even with the
niftiest techniques available, there is little chance of answering the structure-function
question if one overestimates functional sex differences or interprets potential functions of
sex differences in the brain too narrowly as we will now illustrate.

2. Sex Similarities
A recent study suggested that a single gene deletion can wipe out sex differences in male
sexual behavior. Female mice that are deficient in Trpc2, an ion channel that is expressed in
the epithelium of the vomeronasal organ (VNO) and probably functions in pheromone
detection (Liman et al., 1999), showed high levels of male sexual behavior (Kimchi et al.,
2007). The data suggest that VNO-mediated input represses male and activates female
behavior and that functional neuronal circuits underlying male-specific behavior co-exist in
normal female mouse brains. The report caused quite a stir but perhaps for the wrong reason,
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as the idea that males and females have similar behavioral capacities is not at all new. In
fact, an important reason why brain dimorphism cannot readily be related to sex differences
in behavior is probably that such differences have been overestimated.

Female sexual behavior
Beach (1971) suggested that, in rodents, perinatal T-stimulation defeminizes and, at the
same time masculinizes the animal. In the rat, defeminization is traditionally measured as a
reduced display of female sexual behavior (lordosis to mount ratio = lordosis quotient, LQ)
after gonadectomy and exogenous treatment with E benzoate (EB) and progesterone (P);
male rats are thought to be less sensitive to EB and insensitive to P (McEwen, 1981;
Rainbow et al., 1982). Indeed at a given dose, males showed lower LQs than females
(Södersten, 1976). However, merely increasing the dose of EB (100 µg) and P (2 mg)
induced not only high LQs in castrated males but also ear wiggling and hopping behavior,
i.e., higher levels of what Beach (1976) has termed proceptive behavior. Clearly, males
possess the neural circuitry of all aspects of female sexual behavior.

The same study showed that females given T neonatally did not differ from control females
(Södersten, 1976), suggesting that the reduced LQs of males cannot be due only to neonatal
androgen secretions. A subsequent experiment showed that the retained E-sensitivity of the
androgenized females was due to the presence of the ovaries until adulthood (Södersten,
1976). As these rats were ovariectomized no sooner than four weeks after puberty, post-
pubertal ovarian secretions may have boosted female sexual behavior in the androgenized
females. Moreover, Gerall and colleagues (Gerall et al., 1973) had already demonstrated that
the presence of normal cyclic ovaries boosts behavioral sensitivity to E in rats. This raised
the possibility that the sex difference in female sexual behavior could be eliminated if
normal males were treated with E in adulthood in a manner that replicates the episodic
release of E during the estrous cycle in rats. Indeed, adult gonadectomized males and
females showed equally high LQs in response to a wide range of low doses of E,
administered in two pulses and followed by P. In contrast, if the rats were given constant-
release E-filled implants, clear cut sex differences emerged (Södersten et al., 1983a). Similar
finding have been reported for guinea pigs (Olster and Blaustein, 1992). Obviously, male
rats exposed to testicular secretions in early life are capable of showing the same behavioral
responses to physiological doses of E and P as females. This challenges the notion that
perinatal T stimulation irreversibly changes adult behavioral sensitivity to ovarian hormones
and suggests that many of the reported sex differences in female sexual behavior may be at
best context-specific and, at worst, artifacts of pharmacological methods of hormone
treatment (Södersten et al., 1983a). Most hormones are secreted episodically (Maywood et
al., 2007); physiology demands that to test their effect, hormones should be administered in
a manner that replicates their inherent pulsatile pattern of release.

In some strains of rats up to 50% of intact males show the behavior of the opposite sex
without hormone treatment (Fig. 1; Södersten and Larsson 1974; Södersten et al., 1974).
While this occurs at reduced levels--males and females certainly behave differently--this is
not a reflection of a difference in capacity between the sexes.

Sex differences in LQ may depend on the time of day. Females rats show a rhythm with an
LQ of 100% during the dark phase of the light:darkness (LD) cycle but only around 30%
during the light phase. Males treated with E, however, show about a 75% response rate at
any time of the day (Hansen et al., 1979). Thus, whereas behavioral E-sensitivity is retained
in male rats, the temporal organization of behavioral responses has changed. Interestingly, in
females intracerebral injection of vasopressin (VP), one of the output peptides of the brain´s
rhythm generator, the suprachiasmatic nucleus (SCN), inhibits the lordosis response during
the dark phase but not during the light phase. Conversely, a VP antagonist facilitates the
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behavior during the light phase but not during the dark phase; moreover, VP levels in the
cerebrospinal fluid vary inversely with the display of lordosis in female rats (Södersten et
al., 1983b).

Sunshine, rhythms, and ovulation
It has long been known that, in rats, there is a 24-hour periodicity in the "LH-release
apparatus" (Everett and Sawyer, 1950) that is controlled by the circadian oscillator and
entrained by the LD cycle (Alleva et al. (1971) and can be generated by E in females (Legan
et al. (1975), but not in males (Henderson et al., 1977). Thus, surge secretion of LH displays
a sexually dimorphic rhythm that is controlled by light via partially known neural pathways
(Maywood et al., 2007).

Rusak and Zucker (1975) extended this hypothesis by suggesting that neonatal androgen
stimulation uncouples the SCN rhythm generator from the substrates of sexual behavior. We
verified this hypothesis by demonstrating that this is true for the sexually dimorphic rhythm
in lordosis in rats (Hansen et al., 1979); the rhythm generator can be coupled to the external
photoperiod in males by blocking T action during development (Södersten and Eneroth,
1980) and subsequently uncoupled by lesioning the SCN (Södersten et al., 1981). These
maneuvers produced male rats with normal endogenous levels of T that showed all aspects
of male and female sexual behavior at all times of day without hormone treatment
(Södersten et al., 1981). Thus, while the neural tissues controlling male and female mating
behavior can develop side by side, photoperiod influences sexual behavior in female but not
male rats (Södersten, 1984). These results were elegantly extended to choice of sexual
partner; male rats treated neonatally with an aromatize inhibitor to block the conversion of T
into E, showed a LD-dependent rhythm in partner preference similar to female rats (Bakker
et al., 1993; Brand et al., 1991). Kisspeptin may spread more light on this story. Thus, it has
been suggested that the SCN induces activity both in the kisspeptin and GnRH neurons
(Tsukahara, 2006) and that AVPV kisspeptin neurons mediate the well-known influence of
photoperiod on timing of ovulation (Morgan and Hazlerigg, 2008; Simonneaux et al., 2009).

Male sexual behavior
If Young’s group had worked with mice rather than with guinea pigs a different picture
might have emerged, as mice do not show consistent sex differences in male sexual
behavior. For example, several papers report that female mice treated with T or E show
mounting and thrusting at levels that are similar to or even higher than those of males
(Wersinger et al., 1997; Jiyotika et al., 2006). Others report a clear sex difference in, or an
organizational effect on, male sexual behavior (Vale et al., 1973; Bakker et al., 2006). In
rats, a sex difference is generally found, but not an absolute one. Most intact untreated
female rats show male sexual behavior (Södersten, 1972); even the pattern displayed by an
ejaculating male can be activated pharmacologically in normal female rats (Emery and
Sachs, 1975; Södersten et al., 1976). As with female behavior in males, male behavior in
females occurs at reduced levels, but again, this does not reflect a difference in capacity. For
these reasons, a researcher of sex similarities pointed out long ago that: “The search for
morphological sex differences in adult rat brains that are caused by the 'organizing effect of
perinatal androgen' and that can be related to sex differences in behavior has not been
fruitful and may continue unrewarded” (Södersten, 1987).

Full-blown male mating behaviors in Martians
The recent report of male behavior in Trpc2-/- female mice made the same point (Kimchi et
al., 2007). This study, however, tested mice for only 15 minutes, about a third of the time
needed for male mice to ejaculate and much shorter than other studies of male sexual
behavior in mice (e.g., Vale et al., 1973; Mosig and Dewsbury, 1976; Wersinger et al., 1997;
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Bakker et al., 2006; Jiyotika et al., 2006). Based on similarities in mount latency and an
increase in time spent mounting male mice or “intruder females”, neither of which showed
sexual receptivity in supplementary videos, the authors concluded that “a functional
neuronal network mediating male sexual behavior develops and persists in females”. This
conclusion over-interprets the data and merely iterates the conclusions from earlier research.
Nevertheless, few people in our field would have predicted that Trpc2-/- mice would show
increased mounting and a reversal of a sex difference in vocalizations. Careful testing of
these mice may reveal whether these animals show indeed “full blown male mating
behaviors” or are truly “mice from Mars” (Shah and Breedlove, 2007).

Testing conditions
Testing conditions likely play a role in the variability in behavioral sex differences. For
example, sex differences in response to sleep deprivation depends on stress level, with
stressed animals showing bigger sex differences in sleep recovery than unstressed animals
(Koehl et al., 2006). Developmental history may also contribute to variability. While male
prairie voles are spontaneously parental, most virgin females avoid or attack pups (Lonstein
and De Vries, 1999a). This sex difference, however, depends on rearing conditions; females
raised in the presence of their parents are parental as adults (Lonstein and De Vries, 2001).
Even apparently very subtle changes in developmental history can make a big difference:
prairie voles show sex differences in pair bond formation depending on whether they were
transported by a gloved hand or in a plastic cup during routine cage changing in the first
three weeks of life (Bales et al., 2007). If transported by hand, females form partner
preference within six hours but males don’t, if transported by cup, neither sex forms partner
preference (Bales et al., 2007).

Testing conditions also affect sex differences in human behavior. For example, the Mental
Rotations Test, in which subjects have to mentally rotate a block figure to match it with a
congruent object in a line-up of similarly shaped but not identical objects, shows one of the
most consistent cognitive sex differences with males outperforming females in a wide range
of studies. This difference shrinks considerably if instead of interconnected cubes, the
figures take on a human shape (Alexander and Evardone, 2008). Similarly, the male
advantage in certain math tests are eliminated or reduced if female subjects are told in
advance that females do as well as males or better, but sex differences are exacerbated if
females are told the opposite (Spelke, 2005). In all of these cases, context, whether defined
as the conditions before or during the test, clearly influences the outcome. To what extent
these different behavioral outcomes are reflected in context-dependent differences in brain
structure is unknown.

The structural basis of sex differences in behavior
Clearly males as well as females have the capacity to generate behaviors considered to be
male-or female-typical even though the levels to activate these behaviors may differ. Two
different, not mutually exclusive scenarios may explain this. The first is that males and
females share most of the circuitry needed to generate these behaviors, but a limited set of
factors determine whether the circuitry is repressed or activated. This may be true for
courtship song in fruit flies, which is produced only by males by rapidly oscillating the wing
closest to the courted female (Rideout et al., 2007). In an elegant set of studies, Dylan et al.,
(2008), show that females have the neural circuitry needed to generate this behavior, but it
lies dormant and when activated sings ‘out of tune.’ A combination of different inputs and
sex-specific expression of a sex-determination gene, fruitless, within the circuitry may
account for the sex difference in song (Dylan et al., 2008). Given the availability of a
powerful arsenal of genetic and physiological methods available to study the fly nervous
system, there is good hope that, in this case, the question as to how differences in neural
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structure contribute to sex differences in this behavior may be answered satisfactorily
(Dornan and Goodwin, 2008).

An alternative scenario is that males and females can both generate male- and female-typical
behaviors, but their brains use different strategies to do so. Functional imaging studies have
shown this to be true for a variety of tasks on which men and women perform similarly (e.g.,
Shaywitz et al., 1995; Grabowski et al., 2003; Piefke et al., 2005). In the following section
we will give an example of such a scenario for parental behavior in bi-parental species.

3. Sex Differences in Brain Structure May Cause as well as Prevent Sex
Differences in Behavior

We now know that organizational effects impinge on neural structures and behaviors beyond
those related to reproduction. Intuitively, we associate structural differences with differences
in physiological and behavioral endpoints. If the latter do not differ, we typically do not
search for differences in mechanisms. However, sex differences at one or another level in
the mechanisms underlying any physiological or behavioral endpoint, sexually dimorphic or
not, may be the norm, not the exception.

For mammals, this is certainly true at the molecular level. In females, practically all cells,
including those of the brain, show X inactivation, the silencing of genes on one of the two X
chromosomes; in males, which typically have only one X chromosome, this does not happen
(Lyon, 1999). X inactivation is most likely a compensatory mechanism to ensure that X
chromosomal genes, many of which serve basic cell maintenance functions, are expressed at
roughly the same rate in males as in females (Lyon, 1999). The energy spent on X
inactivation is, presumably, the price we pay for the evolution of two sexes. Clearly,
differential expression of genes on the XX and XY chromosomes is necessary to generate
the male and female phenotype. But for all we know, much of this differential expression is
restricted to only a few tissues during short, critical periods of life. In mice, for example, the
Sry gene has to be expressed for only half a day in only one cell-type, Sertoli cells, to trigger
the development of the male phenotype (Burgoyne et al., 1988; Lovell-Badge and Hacker,
1995). In contrast, in females, X inactivation must take place throughout life, in all cells of
any tissue, sexually dimorphic or not (Lyon, 1999). Compensatory processes to avoid
undesired side effects of sexual differentiation, may take place again and again, in
developing as well as adult animals, from the molecular to the macroscopic level. Brains
may be the perfect place to detect such compensation, especially since neural circuits often
serve more than one function, some dimorphic, others not.

Vasopressin dimorphism: the cause of sex differences
A good example is the VP-innervation of the brain, which shows perhaps the most
consistent neural sex difference among vertebrates (De Vries and Panzica, 2006) with males
having more VP neurons in the bed nucleus of the stria terminalis (BNST) and medial
amygdaloid nucleus (MeA) and denser projections from these areas than do females across
many mammalian species (De Vries and Panzica, 2006). Non-mammalian vertebrates show
similar sex differences in homologous vasotocin (VT) projections. This sex difference,
which depends on organizational effects of gonadal steroids, has been particularly well
studied in rodents (De Vries and Panzica, 2006).

When we found this difference, we suggested that it was implicated in sexually dimorphic
behaviors, such as female sexual behavior (e.g., De Vries, 1990). Lesion and stimulation
studies suggested that areas innervated by the sexually dimorphic VP projections from the
BNST and MeA, such as the lateral septum, influence female sexual behavior, in this case
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inhibiting it (Nance et al., 1974; Zasorin et al., 1975). Moreover, as mentioned before,
intraventricular injections of VP inhibited female sexual behavior whereas similar injections
of an antagonist facilitated it (Södersten et al., 1983b). These injections, however, may have
interacted with any VP system in the brain. In fact, the circadian nature both of the effects of
VP and its antagonist on lordosis behavior and of VP levels in the brain suggest that VP
projections from the SCN formed the substrate for VP’s effects on female sexual behavior
(Södersten et al., 1985). A direct link between the VP innervation of the lateral septum and
female sexual behavior has never been tested. Nevertheless, if septal VP inhibits female
sexual behavior, then the higher levels of VP in males versus females correlate well with
males being less likely to show lordosis behavior.

Sex differences in VP also appear to match sex differences in social behaviors that are
modulated by VP, for example, aggressive behavior. Just as the VP content of the BNST and
MeA projections declines gradually after castration, so does intermale aggression (DeBold
and Miczek, 1984), and injections of VP into the lateral septum or the MeA reverse the
decline (Koolhaas et al., 1990, 1991). In fact, in all vertebrate classes, VP and its non-
mammalian homologue VT have been linked to territorial aggression (Goodson and Bass,
2001; Ferris, 2005). As with female sexual behavior, the higher levels of VP / VT correlate
well with the higher levels of resident-intruder aggression displayed by males. Interestingly,
in hyenas, in which females are more aggressive and dominant than males (Matthews, 1939;
Hamilton, 1986), males have either the same or lower VP fiber densities in the septum and
in other sites that receive projections from the BST and MeA (Rosen et al., 2007).
Interestingly, in Syrian hamsters, which lack the VP projections of the BNST and MeA
altogether (Albers et al., 1991), females are as aggressive as males (Payne and Swanson,
1970; Huhman et al., 2003). All these examples are compatible with the idea that sex
differences in VP innervation beget sex differences in function. They also invoke the idea
that size and direction of sex differences in VP innervation correlate directly with size and
direction of sex differences in behavior. Research in prairie voles, however, paints a
different picture.

Vasopressin dimorphism: the cause of sex similarities
Unlike most other mammals, prairie voles show almost no sex differences in aggressive
behavior (Villalba et al., 1997). Yet, sex differences in VP expression are larger in this
species than in any other mammal (Bamshad et al., 1993; 1994). In males, mating increases
VP mRNA expression in the BNST while reducing VP immunostaining in BNST terminals,
suggesting increased VP release (Bamshad et al., 1994; Wang et al., 1994b). These changes,
which do not occur in females, may precipitate mating-induced changes in aggression and
social behavior, which indeed can be blocked with a VP antagonist (Winslow et al., 1993).
They may also underlie the change in parental behavior in males after mating (Bamshad et
al., 1994), it is blocked by VP antagonists as well (Wang et al., 1994a). The sex difference in
VP- innervation may therefore be key to the similarities in parental behavior observed in
parental voles (Lonstein and De Vries, 1999a). In female prairie voles, pregnancy-associated
hormonal changes and parturition appear necessary to trigger parental behavior (Lonstein
and De Vries, 1999b, Hayes and De Vries, 2007), very similar to what is found in other
rodents (Bridges, 1990). As male prairie voles do not get pregnant, let alone give birth, they
must use a different strategy to boost parental responsiveness. Part of this strategy may
involve engaging the higher density of VP-innervation.

The dual function hypothesis
In prairie voles, the presence of a sex difference in the brain clearly does not correlate with
the size of a sex difference in behavior. The species with the largest sex difference in VP
innervation reported to date shows some of the least conspicuous sex differences in social
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behavior. Apparently, the sex difference in VP can cause as well as prevent sex difference in
social behavior. Because there is no reason that this dual function is VP’s prerogative, we
suggested that in general sex differences in brain structure may cause as well as prevent sex
differences in specific behaviors or centrally regulated functions (De Vries and Boyle, 1998;
De Vries, 2004). This dual function hypothesis is perfectly testable. To take the VP system
as an example, one would predict in the former case, that blocking VP neurotransmission
would blunt or eliminate sex differences and in the latter case that the same treatment would
cause a sex difference that wasn´t there. In fact, such tests have already been done; treatment
with a VP antagonist blocked social recognition memory in male but not in female rats,
thereby creating a new sex difference (Bluthe and Dantzer, 1990). Related to this, the V1a
receptor knock-out mouse has a behavioral phenotype in males but not in females (Bielsky
et al., 2005), exactly what one would predict for a system that is more important for a
function in one sex than in the other.

Epilogue
While the search for the “Organizing action of prenatally administered testosterone
propionate on the tissues mediating mating behavior…” (Phoenix et al., 1959) remains
elusive, selective genetic elimination or re-introduction of elements of sexually dimorphic
neural systems may change the scene. To ensure success, however, we have to realize that
sex differences in function and behavior are context-dependent; context can alter gene
expression in the brain, and genes, of course, “… do not specify behavior directly but rather
encode molecular products that build and govern the functioning of the brain through which
behavior is expressed” (Robinson et al., 2008). Overlooking these issues makes forging links
between structure and function akin to building a house of cards. The possibility that sex
differences in brain structure can cause as well as prevent sex differences in function should
also be considered; the VP innervation may merely be one of many dual-function neural
networks. Hundreds of sex differences have been found in the central nervous system, but
only a handful can be clearly linked to sex differences in behavior, the best one is in the
spinal cord (Morris et al., 2004; Forger, 2009); we do not know the functional consequences
of most of the others, for example, the ones in the SDN-POA. As biologists, we should
consider any biological phenomenon as a possible adaptation to the circumstances. The
evolutionary biologist, Dobzhanski (1973) stated that ‘nothing in biology makes sense
except in the light of evolution.’ For us, this means that male neural systems have evolved to
control behavior most optimally in a male body and likewise for females. The dual-function
hypothesis, therefore, may assist us in taking a step ahead in answering the questions
regarding the site and specificity as well as the nature of the effect of neonatal androgen on
adult behavior.
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Fig. 1.
Lordosis response displayed by an intact untreated male rat in response to a mount by
another male. Photo Courtesy: Dr. M.J. Baum. Reprinted from Södersten et al., 1974, with
permission.
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