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SHORT REPORT

The HNF4A R76W mutation causes atypical
dominant Fanconi syndrome in addition

to a B cell phenotype
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ABSTRACT

Background Mutation specific effects in monogenic
disorders are rare. We describe atypical Fanconi
syndrome caused by a specific heterozygous mutation in
HNF4A. Heterozygous HNF4A mutations cause a beta
cell phenotype of neonatal hyperinsulinism with
macrosomia and young onset diabetes. Autosomal
dominant idiopathic Fanconi syndrome (a renal proximal
tubulopathy) is described but no genetic cause has been
defined.

Methods and Results We report six patients
heterozygous for the p.R76W HNF4A mutation who
have Fanconi syndrome and nephrocalcinosis in addition
to neonatal hyperinsulinism and macrosomia. All six
displayed a novel phenotype of proximal tubulopathy,
characterised by generalised aminoaciduria, low
molecular weight proteinuria, glycosuria,
hyperphosphaturia and hypouricaemia, and additional
features not seen in Fanconi syndrome: nephrocalcinosis,
renal impairment, hypercalciuria with relative
hypocalcaemia, and hypermagnesaemia. This was
mutation specific, with the renal phenotype not being
seen in patients with other HNF4A mutations. In silico
modelling shows the R76 residue is directly involved in
DNA binding and the R76W mutation reduces DNA
binding affinity. The target(s) selectively affected by
altered DNA binding of R76W that results in Fanconi
syndrome is not known.

Conclusions The HNF4A R76W mutation is an
unusual example of a mutation specific phenotype, with
autosomal dominant atypical Fanconi syndrome in
addition to the established beta cell phenotype.

Mutations within the same gene can cause different
phenotypes. Mutation-specific phenotypes, where a
single mutation is associated with a different
phenotype, are rare. Activating or inactivating
mutations in a single gene can cause opposite phe-
notypes, as seen in the genes encoding the pancre-
atic B cell potassium channel subunits where
activating mutations cause neonatal diabetes but
inactivating mutations cause congenital hyperinsu-
linism.* The location of a mutation within a gene
can cause different phenotypes, as seen in
NOTCH2 where mutations affecting the epidermal
growth factor (EGF) repeats and ankyrin repeats

(ANK) domain of NOTCH2 cause Alagille syn-
drome? [MIM 118450], but those in the terminal
exon 34 result in Hajdu—-Cheney syndrome® *
[MIM 102500]. The same mutation can cause a
different phenotype according to the patient’s age.
In HNF4A, there are not mutation-specific pheno-
types, but as a result of increased insulin secretion
seen in early life, birth weight is increased by 790 g
and there is neonatal hypoglycaemia.® Later in life,
diabetes develops (median age 24 years at diagno-
sis®) due to decreased insulin secretion. No renal
phenotype associated with HNF4A mutations has
been described, although the knockout mouse of
the related transcription factor HNF1A was
described as having Fanconi syndrome.”

Fanconi syndrome [MIM 134600] is a general-
ised dysfunction of the renal proximal tubule in
which the genetic aetiology has been described in a
variety of syndromes that include Cystinosis [MIM
219800], Lowe syndrome [MIM 309000] or
Fanconi-Bickel syndrome [MIM 227810]. As a con-
sequence of proximal tubulopathy, there is failure
of resorption of glucose, amino acids, phosphate,
low molecular weight proteins, bicarbonate and
urate. The usual presenting clinical features are
growth failure and rickets in childhood.® Treatment
is based on replacing the lost solutes. Families with
autosomal-dominant idiopathic Fanconi syndrome
have been reported.””"* Despite a study showing
linkage to chromosome 15 in a single family,'® no
genetic cause has been established.

We studied a family with three individuals
affected with a similar clinical phenotype of Fanconi
syndrome and nephrocalcinosis in addition to neo-
natal hypoglycaemia and macrosomia (figure 1).
Two sisters were diagnosed with Fanconi syndrome
due to short stature and rickets. Genetic testing for
mutations in the PHEX, FGF23, DMP1, ENPP1 and
SLC34A3 genes did not confirm a genetic diagnosis
of hypophosphataemic rickets. Urine and serum
analysis in these three affected family members
demonstrated a full Fanconi syndrome with heavy
low molecular weight proteinuria, aminoaciduria,
glycosuria and a low serum urate (see online supple-
mentary tables S1 and S2). Additionally, they had
nephrocalcinosis diagnosed by renal ultrasound
(figure 2B) with atypical biochemical features. One
sister gave birth to a macrosomic baby (birth weight
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Partial pedigrees. Pedigrees of the four families demonstrate co-segregation of the p.R76W HNF4A mutation with neonatal

hypoglycaemia and Fanconi syndrome. The genotype is given below each symbol where known. For each proband, age at follow-up, mutation, birth
weight Z score, hypoglycaemia treatment and duration, age of diabetes diagnosis/diabetes management, age of diagnosis of Fanconi syndrome,
glomerular filtration rate (GFR) (mLs/min/1.73 m?) and height Z score are provided. The mutation is reported according to the HNF4A cDNA

sequence published by Chartier et a/'’

but has also been described as p.R85W according to reference sequence NM_000457.3 or p.R63W using

NM_175914.3 (LRG_483).2 Birth weight and height Z scores are calculated from UK 1990 child growth including standard children and preterm
infants. Our proband’s grandfather developed diabetes at 51 years of age with a body mass index (BMI) of 30.5. He is managed with weight loss
alone with a recent HbA1c of 39 mmol/mol. The mutation was present in his leukocyte DNA at 26% but it is not known if the mutation load in his
pancreas is sufficient to cause his diabetes. He had no reported neonatal hypoglycaemia or Fanconi syndrome (data not shown). Neither the
proband, his mother, nor her sister are currently diabetic, but they undergo surveillance using an annual oral glucose tolerance test.

>99th centile for gestation) with neonatal hyperinsulinism
requiring diazoxide treatment, which was also seen in the sisters
(figure 1). These latter features were consistent with an HNF4A
mutation, but no HNF4A renal phenotype has previously been
described. After informed consent was provided, sequence ana-
lysis of the HNF4A gene identified a heterozygous p.R76W
mutation (c.226C>T according to the Chartier et al'” ¢cDNA ref-
erence sequence, using methods previously described by
Flanagan et al®) in the proband, mother and maternal aunt. The
mutation had arisen in the proband’s maternal grandfather who
is a germline and somatic mosaic (26% mutation in leukocyte
DNA). This suggested that a novel renal and B cell phenotype
cosegregated with the R76W mutation within one family.

We sought to examine if other patients with the R76W muta-
tion also had a renal phenotype. We identified three additional
patients with the R76W mutation from a cohort of 147 pro-
bands with HNF4A mutations (figure 1). All patients had hyper-
insulinism and/or macrosomia, and two subsequently developed
diabetes. One has been previously published.'® We investigated
these patients for the renal phenotype seen in our first family
using the methods described above (see online supplementary
tables S1 and S2). The additional three patients with the hetero-
zygous p.R76W HNF4A mutation also had a phenotype of
Fanconi syndrome and nephrocalcinosis in addition to the pan-
creatic B cell phenotype. This suggested that the Fanconi syn-
drome was a consistent feature of the HNF4A R76W mutation.
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Figure 2 (A) Boxplots comparing (1) urinary retinol-binding protein, (2) mean urinary amino acid Z scores, (3) urinary glucose, (4) serum urate,
(5 and 6) urinary and serum calcium, (7) urinary phosphate and (8) urinary oxalate between R76W mutations and other HNF4A mutations. Boxplots
demonstrate the phenotype is mutation specific by comparing patients with the mutation to patients with other HNF4A mutations. We compared
analysis of fasted first-void urine and renal ultrasound scans between patients with the R76W mutation and 20 patients with other mutations in
HNF4A. Medians were compared using the Mann-Whitney U Test or Fisher's exact test, and a mean urinary amino acid Z score calculated (with
control data being derived from laboratory reference ranges). Other HNF4A mutations comprise: S34X, R80Q, A120D, R125W (2), R125Q, V190A,
D206Y, R244W, L260P, L263P, E276Q, R303H, R303C, 1314F, L332P, delEx1-7, c.466-2A>G, c.1delA, t(3;20)(p21.2;q12). (Laboratory reference
ranges are shown with dashed lines (where a single line is present the reference range is below this value).). (B) Renal ultrasonographic images
comparing nephrocalcinosis changes to normal kidney. Nephrocalcinosis is demonstrated by increased reflectivity of the renal pyramids, as seen in
the top panel (patient heterozygous for R76W), compared to normal ultrasound images in the bottom panel (patient with balanced translocation
1(3;20)(p21.2;q12) described by Gloyn et a/*3).
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Figure 2 Continued

We went on to establish if patients with other HNF4A muta-
tions also had Fanconi syndrome. We took urine and serum
samples from 20 diabetic patients with HNF4A mutations other
than R76W and investigated biochemical and radiological fea-
tures (figure 2A, see online supplementary tables S1 and S2).
Our results demonstrate there was a specific phenotype seen in
the six patients with the R76W mutation. This includes the clas-
sical features of Fanconi syndrome with a urinary leak of low
molecular weight proteins, amino acids (mean Z score of
urinary amino acids for R76W heterozygotes was 22.9, com-
pared to 0.2 for other mutations (individual amino acid data is
shown in online supplementary table S2)), urate, glucose and
phosphate. Additionally, there were features not typically seen,
of hypercalciuria, hyperoxaluria and hypermagnesaemia.
Nephrocalcinosis was present in all patients with the R76W
mutation, but no patients with other mutations in the HNF4A
gene. The R76W mutation carriers have renal impairment with
a median creatinine of 114 pmol/L. These results demonstrate a
previously undescribed renal phenotype for the R76 W mutation
and show that patients with other mutations in HNF4A do not
exhibit these specific renal features.

There is a single reported patient outside of our series that
has the R76W mutation.’® This patient had features of Fanconi
syndrome in addition to neonatal hyperinsulinism. Additional
features included hepatomegaly with elevated transaminases at
3 months of age and abundant glycogen on liver biopsy. Renal
ultrasound findings were not reported, so nephrocalcinosis
cannot be excluded. No patients in our series had
hepatosplenomegaly.

The specific phenotype seen with the R76W HNF4A muta-
tion suggests this mutated hepatic transcription factor binds to

different target(s). The R76 residue is in the DNA-binding
domain and directly contacts the DNA DR1 response element
comprised of AGGTCA half sites.?® In functional studies, there
was a decrease in DNA binding, but this was not mutation spe-
cific.’® Our modelling demonstrates differences in charge and
hydrophobicity with the R76W mutation compared to wild
type in areas of intimate DNA contact (see online supplemen-
tary figure S3). Therefore, the mechanism of the mutation-
specific phenotype is likely to involve altered DNA binding, but
the details of this and the novel target bound/unbound are not
known.

The tubulopathy we see in these patients is a generalised
Fanconi syndrome with extended features, which include
nephrocalcinosis and alterations in the handling of magnesium,
oxalate and calcium, with a subsequent effect on calcium homeo-
stasis. We did not see a significant acidosis which is usually
described in Fanconi syndrome. We hypothesise that high urine
concentrations of calcium, phosphate and oxalate predispose to
renal tract calcification. The renal impairment may reflect
damage from calcification, or altered tubular excretion of creatin-
ine. Glycosuria may have a delaying effect on the development of
diabetes in these individuals, akin to treatment with SGLT?2 inhi-
bitors. The changes we have seen in magnesium handling with
both elevated serum and urine levels are intriguing; this appears
to be an overflow rather than a leak as seen with calcium, phos-
phate and urate. Proximal tubular transport is via a variety of
mechanisms®: cotransport of glucose, amino acids and phosphate
with sodium generates energy for non-sodium ion transport
against an electrochemical gradient. Low molecular weight pro-
teins are reabsorbed using the endosomal pathway, and urate
handling is through apical URAT1 and luminal GLUT9 and a
complex series of organic anion and cation transporters. Calcium
resorption is mediated by the paracellular route via the increased
potential difference set up by the sodium cotransporters, and
60% of calcium resorption occurs in the proximal tubule. The
mechanisms for the generalised dysfunction in Fanconi syndrome
remain unsolved, but hypotheses include disturbances in cellular
energy metabolism, membrane characteristics and transporters.”’
Present understanding of physiology is inadequate to fully
explain the extent of the tubulopathy.

In conclusion, we present a novel atypical cause of autosomal-
dominant Fanconi syndrome with nephrocalcinosis caused by
the HNF4A R76W mutation. This unique mutation-specific
phenotype is characterised by increased birth weight, neonatal
hyperinsulinaemic hypoglycaemia which may progress to dia-
betes, and Fanconi syndrome with nephrocalcinosis. It has not
been described in patients with other mutations in HNF4A, or
other monogenic diabetes genes. This finding provides new
insights into the genetic regulation of proximal tubular matur-
ation, as well as the precise renal effects HNF4A gene muta-
tions. In silico modelling suggests a pivotal role for this
particular residue in DNA binding, and we hypothesise that the
renal phenotype is a consequence of a defective interaction of
HNF4A with major regulatory genes. The fact that there are no
other mutations in HNF4A that cause this phenotype suggests
that this particular residue must be crucial in the renal proximal
tubule. In summary, this is an unusual case of a mutation-
specific phenotype in HNF4A with a renal Fanconi syndrome
and nephrocalcinosis in addition to the previously described B
cell phenotype.
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