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Abstract

The control of motor behavior in animals and humans requires constant adaptation of neuronal 

networks to signals of various types and strengths. We found that microRNA-128 (miR-128), 

which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling 

networks and excitability. miR-128 governs motor activity by suppressing the expression of 

various ion channels and signaling components of the extracellular signal-regulated kinase ERK2 

network that regulate neuronal excitability. In mice, a reduction of miR-128 expression in 

postnatal neurons causes increased motor activity and fatal epilepsy. Overexpression of miR-128 

attenuates neuronal responsiveness, suppresses motor activity and alleviates motor abnormalities 

associated with Parkinson’s–like disease and seizures in mice. These data suggest a therapeutic 

potential for miR-128 in the treatment of epilepsy and movement disorders.
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miR-128 is one of the most abundant and highest enriched miRNA in the adult mouse and 

human brain ((1, 2) (Fig. S1A). The expression of miR-128 in the mouse brain increases 

gradually during postnatal development and peaks in adulthood ((3, 4) (Fig. S1B)). 

miR-128’s expression in diverse brain regions (Fig. S1D) suggests an important role for this 

miRNA in processes that are common to many neuronal cell-types.

The indication of a potent regulatory role for miR-128 in brain function came from our 

observation of early-onset fatal epilepsy in mice deficient in miR-128 (Fig. 1A). miR-128 is 

encoded by two separate genes, miR-128-1 and miR-128-2, on mouse chromosomes 1 and 9 

(Fig. S2A, B) or human chromosomes 2 and 3, respectively. In mice, germline miR-128-2 

deficiency results in an 80% reduction of miR-128 expression in the forebrain, whereas 

ablation of the miR-128-1 gene eliminates only 20% of miR-128 (Fig. S2A, B). The 

profound decline in miR-128 expression levels in miR-128-2−/− but not miR-128-1−/− mice 

is associated with the development of hyperactivity and increased exploration at 4 weeks of 

age (Fig. 1A, Fig. S2C, D). The juvenile hyperactivity in miR-128-2−/− mice progresses 

quickly to severe seizures and death at 2–3 months of age (Fig. 1A, B, movie S1). The lethal 

impact of miR-128 deficiency in mice can be prevented by treatment with the anticonvulsant 

drug valproic acid (Fig. 1C), thus demonstrating the causal role of seizures in the animals’ 

death.

The hyperactivity and fatal epilepsy in miR-128-2 deficient mice reflects the ability of 

miR-128 to control the excitability of postnatal neurons. Selective inactivation of the 

miR-128-2 gene in forebrain neurons (Camk2a-cre; miR-128-2fl/fl) leads to a reduction of 

miR-128 expression, followed by early onset hyperactivity, seizures, and death, as observed 

in miR-128-2−/− mice (Fig. 1B, D, Fig. S3A). Moreover, correction of miR-128 deficiency 

by ectopic miR-128-2 expression in neurons normalizes motor activity and prevents the 

seizure-induced death (Fig 1E, Fig. S4A, C).

To gain an understanding of the mechanism that mediates miR-128-dependent control of 

motor activity, and to avoid interference between phenotypes caused by the loss of miR-128 

in diverse neuronal cell-types, we restricted the miR-128-2 deficiency to dopamine 

responsive neurons that regulate motor behavior in mice and humans. There are two major 

dopamine responsive Camk2a-expressing neuron types in the mouse forebrain, which have 

distinct contributions to motor activity (5). While activation of the dopamine 1 receptor 

expressing neurons (D1-neurons) increases locomotion, activation of dopamine 2 receptor 

expressing neurons (D2-neurons) reduces locomotion in mice (6). We found that miR-128 

deficiency in D1-neurons (Drd1a-cre;miR-128-2fl/fl), but not in D2-neurons (A2a-

cre;miR-128-2fl/fl), leads to juvenile hyperactivity followed by lethal seizures at around 5 

months of age (Fig. 1F, Fig. S3B, C).

To identify miR-128 targets that are responsible for the abnormal motor activity, we 

analyzed mRNAs associated with the RNA induced silencing complex (RISC) in adult 

neurons in vivo. The RISC-bound mRNAs represent the pool of cellular mRNAs that 

become a subject of miRNA-mediated suppression (7). We used mice that express the 

epitope-tagged RISC component Argonaute 2 (Ago2) (8) in Camk2a-neurons (Fig. S5A). 

Immunoprecipitation of Ago2 (HITS-CLIP, (9)) from the forebrain of these mice yielded the 
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neuron-specific RISC-associated mRNAs (Fig. S5A, B). The perfect base pairing of at least 

six nucleotides between the miRNA seed sequence and the 3′untranslated region (3′UTR) of 

the RISC-associated mRNAs (10) was considered to be the minimal requirement for any 

potential miRNA-mediated mRNA suppression (Fig. S5B, C). Using these criteria, we found 

that the miR-128 seed target sequence (ACUGUG) is the most represented hexamer among 

all RISC-associated mRNAs (Fig. S5C, Table S1)), and identified a total of 1061 potential 

miR-128 target mRNAs in adult neurons (Table S2).

We investigated these miR-128 target genes by analyzing their expression in neurons 

deficient for miR-128. We expected that mRNA transcripts that are targeted directly by 

miR-128 in neurons would show an increased in mRNA expression and subsequent 

ribosome association in the miR-128 deficient cells. We reasoned that the relative 

homogeneity of the D1-neuron population might provide the most accurate assessment of 

miR-128-dependent target genes that are responsible for controlling motor activity. The 

impact of miR-128 deficiency on mRNA expression was evaluated by D1 cell-type specific 

Translating Ribosome Affinity Purification (TRAP) in mice (11). The TRAP approach 

allows a direct comparison between ribosome-associated mRNAs from wild-type and 

miR-128-deficient D1-neurons in vivo (Fig. S6A). Using Sylamer analysis (12), we 

confirmed the expected enrichment of potential miR-128 binding sites among the most 

upregulated genes in miR-128 deficient D1-neurons (Fig. S6B). We found that the 

deficiency of miR-128 in D1-neurons results in a significant up-regulation of 154 of the 

predicted RISC-associated miR-128 target genes (Fig. 2A, Table S3). The fact that only 

~15% of the potential RISC-associated miR-128 targets display increased expression is 

likely to reflect the known redundancy among miRNAs. Many mRNAs are regulated by 

more than one miRNA (13, 14) thus limiting the actual impact of individual miRNA 

deficiency on the expression of miRNA targets in vivo.

Bioinformatic network and pathway analyses of the miR-128 target genes indicates the 

ability of miR-128 to affect molecular processes that are intrinsically linked to the regulation 

of neuronal excitability and motor behavior in mice and humans (Fig. 2B). In particular, 

miR-128 regulates the expression of numerous ion channels and transporters, as well as 

genes that contribute to neurotransmitter-driven neuronal excitability and motor activity 

(Fig. 2B, Table S3, S4). Several of these genes are linked to epilepsy in humans, some of 

which, including the neurotransmitter GABA transporter Slc6a1, the high affinity glutamate 

receptor Slc1a1, the voltage gated sodium channels Scn2b and Scn4b, the voltage-dependent 

calcium channels Cacna2d3 and Cagn2, as well as the carbonic anhydrase Car7, are 

potential targets of clinically approved anti-seizure drugs (Table S3, S4) (15). The high 

abundance of extracellular signal regulated kinase (ERK1/2) signaling network components 

among the miR-128 targets underscores the potential of this miRNA to control signaling 

processes associated with neuronal excitability (Fig. 2B). Moreover, many of the neuronal 

signaling proteins and channels that we identified as direct miR-128 target genes are 

involved in the regulation of upstream signaling events, which can affect ERK activity 

(Tables S3, S4). While ERK1 and ERK2 are not directly targeted by miR-128, the ERK 

network appears to be at the center of the miR-128-controlled signaling circuit in neurons. 

The protein expression levels of potent ERK network regulators, which are directly targeted 
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by miR-128, such as Pea15a (16), D4Ertd22e/Szrd1 (17), and the TARPP protein that is 

encoded by the long splice variant of the miR-128-2 host gene Arpp21 (18, 19), are 

increased in the striatum of mice with a D1-neuron specific deficiency in miR-128 (Fig. 2C, 

S7). Furthermore, mice with a D1-neuron specific deficiency of miR-128-2 display an 

increase in ERK2 activation as compared to their littermate controls (Fig. 2D). Notably, only 

ERK2, but not ERK1, displays increased phosphorylation (Fig. 2D). Deficiency of miR-128 

in D1-neurons appears to specifically activate ERK2 phosphorylation, without affecting the 

activation of other MAP kinase pathways components such as the stress-activated protein 

kinase/Jun-amino-terminal kinase (SAPK/JNK) or protein kinase B (AKT) (Fig. S8). 

Electrophysiological studies in striatal slices from Drd1a-cre; miR-128-2fl/fl mice revealed 

an increase in D1-neuron excitability. The miR-128 deficient D1-neurons show normal 

membrane excitability at the soma (Fig. S9A), but display enhanced dendritic excitability 

(Fig. 3A) as well as a ~20% increase of functional dendritic spines (Fig. 3B, S9B). These 

findings are consistent with a critical role of the ERK2 network in neuronal excitability and 

synaptic plasticity (20, 21).

Enhanced ERK2 activation is linked to increased motor activity and seizures in mice (22–

24). The hyper-activation of ERK2 and concomitant increase in D1-neuron sensitivity to 

dopamine occurs also during Parkinson-like disease in mice caused by chemically induced 

depletion of dopamine in the mouse striatum (25–27). The reduced levels of dopamine and 

concurrent increase of D1-neuron sensitivity result in hyper-responsiveness to the motor 

activity-inducing effects of dopamine (26–28). In humans, the D1-neuron hyper-

responsiveness is one of the major causes of dyskinesia, a side effect of L-Dopa treatment in 

Parkinson’s disease (25–27).

We found that miR-128 deficiency in striatal D1-neurons mimics the hypersensitivity of D1-

neurons in mice suffering from Parkinson’s-like syndrome. The deficiency of miR-128 in 

D1-neurons enhances motor activity in response to Drd1-specific agonist treatment in mice 

(Fig. 3C). The D1-neuron hyper-responsiveness to the Drd1-agonist is also associated with 

an increase in ERK2 phosphorylation in the striatum of Drd1a-cre; miR-128-2fl/fl mice (Fig. 

3D). The increase in dopamine sensitivity and enhanced ERK2 activation in mice with 

Parkinson’s-like disease are accompanied by increased expression of dopamine-induced 

immediate early genes (IEG) in D1-neurons (25–27). Similarly, Drd1-agonist treatment 

enhances IEG expression in miR-128 deficient D1-neurons as compared to the D1-neurons 

of control mice (Fig. 3E). The increased locomotor activity characteristic of Drd1a-cre; 

miR128-2fl/fl mice was normalized by pharmacological inhibition of the mitogen-activated 

protein kinase kinase MEK1, a major activator of ERK2 in neurons. In vivo administered 

MEK1-specific inhibitor SL327 does not affect motor activity in wild type mice (22) but 

does normalize ERK2 phosphorylation and motor activity in the mutant mice (Fig. 4A). In 

turn, overexpression of miR-128 in Camk2a-neurons is associated with reduced ERK2 

activation (Fig. S10A) and decreased motor activity (Fig. S4B) in mice. The effect of 

increased miR-128 expression in adult neurons protects mice against abnormal motor 

activities associated with chemically-induced Parkinson’s disease (Fig. 4B, S10B) and 

seizures (Fig. 4C).
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In summary, we have identified miR-128 as a modulator of signaling pathways that control 

neuronal excitability and motor activity in mice. The human miR-128-2 gene on 

chromosome 3p lies within a region that has been linked to idiopathic generalized epilepsy 

(29, 30). It is tempting to speculate that changes in miR-128 or miR-128 target gene 

expression could be a potential cause of increased neuronal excitability and epilepsy in 

humans. Our understanding of miR-128’s role in neuronal signaling could prove 

advantageous in the design of novel therapeutics for epilepsy and motor disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. miR-128 controls motor behavior in mice
(A) Deficiency in miR-128-2 causes hyperactivity and premature death in mice. (Left 

panel) Motor activity was determined by measuring total horizontal distance in a 60 min 

open field assay (n=23 and 12). (Right panel) The lifespans of miR-128-2−/− mice and 

littermate controls are shown (n= 20 and 46). (B, C) miR-128 deficiency causes fatal 
seizures that can be prevented by anti-convulsant treatment (B) Representative display 

of spontaneous tonic-clonic seizure episodes in miR-128-2−/− (black) or Camk2a-cre; 

miR-128-2fl/fl mice (red) during a 22-day observation period. (C) The lifespans of control 

miR-128-2−/− (dotted line, as shown in A) or sodium valproate-treated (red, n=11) 

miR-128-2−/− mice are shown (D) Deficiency in miR-128 in postnatal neurons causes 
hyperactivity and fatal epilepsy. Motor activity and survival rates of Camk2a-cre; 

miR-128-2fl/fl mice (n=21 and 25) and littermates (n=8 and 47) are shown. (E) Ectopic 
expression of miR-128 normalizes hyper-locomotion and prevents death of Camk2a-
cre; miR-128-2fl/fl mice. Motor activity in Camk2a-cre; miR-128-2fl/fl; Rosa-miR-128 (n=4, 

blue) and wild-type mice (n=10, gray) are shown. The lifespans of Camk2a-cre; 

miR-128-2fl/fl mice in the presence (n=4, blue) or absence (n=9, black) of ectopic miR-128 

expression are shown. (F) miR-128 deficiency in D1-neurons causes hyperactivity and 
fatal epilepsy. Motor activity (n=26 and 42) and lifespans (n= 16 and 28) of mice with a 

D1-neuron specific miR-128 deficiency or control mice are shown. Error bars show s.e.m., 

Welch’s t-test, non-significant (ns), * p≤0.05, ** p≤0.01, *** p≤0.001. Kaplan-Meier graph 

shows survival curves of mutant and littermate control mice, *** p≤0.001, log rank tests.
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Figure 2. miR-128 controls signaling protein expression and activation of the ERK signaling 
network in neurons
(A) Venn diagram shows the RISC-associated mRNA targets of miR-128 (red) and mRNAs 

that are up-regulated in miR-128 deficient D1-neurons (blue). The overlapping 154 mRNAs 

are considered as direct miR-128 targets. (B) (Left) Gene ontology annotations of the 154 

miR-128 target genes are shown with pathway enrichment presented as −log10 (p-value). 

The dotted orange line indicates p= 0.05. (Right) The components of the ERK1/2 network 

(p=10−46, right-tailed Fisher’s exact test) that are directly targeted by miR-128 are indicated 

in solid grey. (C) Expression levels of miR-128-targeted ERK regulators in the striatum of 

Drd1a-cre; miR-128-2fl/fl and littermate controls were analyzed by Western blotting (n=4 

each). (D) Increased ERK2 phosphorylation in the striatum of mice with D1-neuron-
specific miR-128 deficiency. Representative Western blot analysis of ERK1/2 

phosphorylation in the striatum of control and Drd1a-cre; miR-128-2fl/fl mice is shown; bar 

graphs display phospho-ERK/ERK protein ratios (n=4). Error bars show s.e.m., Welch’s t-

test, * p≤0.05, ** p≤0.01.
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Figure 3. miR-128 controls D1-neuron excitability and responsiveness to dopamine. (A, B) 
miR-128 regulates D1-neuron dendritic excitability and number of spines
(A) Single action potentials were generated in the soma and action potential invasion was 

calculated by dividing the distal calcium signal by the maximum proximal calcium signal 

per cell (n=4 cells, 11–21 shafts per group). Mann-Whitney nonparametric test, *** p≤0.001 

(B) Representative maximum intensity projection images of distal dendrites in control and 

mutant D1-neurons are shown. Boxplots display population spine densities (n=10–11 cells 

per group). Mann-Whitney nonparametric test, error bars show 90th percentile interval, * 

p≤0.05. (C–E) miR-128 regulates motor response, ERK2 phosphorylation, and 
immediate early gene (IEG) induction upon dopamine D1 receptor (Drd1) activation in 
D1-neurons. (C) Motor activity of Drd1a-cre; miR-128-2fl/fl and control mice (n=25 and 

30) was evaluated in an open-field chamber. Saline and 3mg/kg Drd1 agonist SKF81297 

were injected i.p. at 10 and 20 minute, respectively. (D) ERK2 phosphorylation was 

quantified by Western blotting of striatal lysates derived from Drd1a-cre; miR-128-2fl/fl and 

control mice that received saline or D1-agonist SKF81297 injection (n=5 each). Bar graph 

displays the ratio of phospho-ERK2 to total ERK2 expression. (E) IEG and D1-neuron-

expressed Darpp32 gene expression levels were measured by qRT-PCR of D1-neuron 

specific polyribosome-associated mRNAs purified from saline or SKF81297 treated Drd1a-

TRAP; Drd1a-cre; miR-128-2fl/fl and control mice (n=5 each). Error bars display s.e.m., 

Welch’s t-test, * p≤0.05, ** p≤0.01, ***p p≤0.001.
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Figure 4. Abnormal motor activity caused by miR-128 deficiency is corrected by 
pharmacological ERK inhibition or ectopic miR-128 expression
(A) Drd1a-cre; miR-128-2fl/fl and littermate control mice were injected i.p. with either 

vehicle or 12 mg/kg of the MEK1 inhibitor SL327 (n=5/group). Western blot analysis of 

ERK2 phosphorylation at 30 min after drug injection (left) and motor activity following 

vehicle or SL327 injection (right) are shown. 2-way ANOVA followed by Bonferroni post-

test. Error bars show s.e.m., * p≤0.05, ** p≤0.01, *** p≤0.001. (B) Overexpression of 
miR-128 suppresses D1-neuron hyper-responsiveness in the dopamine-depleted 
striatum. The number of contralateral rotations at baseline and in response to cocaine (10 

mg/kg) or D1-agonist SKF81297 (5 mg/kg) in unilateral 6-OHDA lesioned Camk2a-cre; 

Rosa-miR-128 or control mice (n=11/group) are shown. Error bars show s.e.m., Welch’s t-

test, ** p≤0.01. (D) miR-128 reduces the susceptibility to chemically-induced seizures in 
mice. The numbers of Camk2a-cre; Rosa-miR-128 or littermate control mice (n=12/group) 

that exhibit tonic-clonic seizures 60 minutes after i.p. injection of pro-convulsive drugs 

kainic acid (30mg/kg, p-value=0.005) or picrotoxin (3mg/kg, p-value=0.04) are shown. p-

values were calculated by Fisher’s exact test.
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