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Attention allows us to selectively process the vast amount of information with which we are confronted, prioritizing some aspects
of information and ignoring others by focusing on a certain location or aspect of the visual scene. Selective attention is guided by
two cognitive mechanisms: saliency of the image (bottom up) and endogenous mechanisms (top down). These two mechanisms
interact to direct attention and plan eye movements; then, the movement profile is sent to the motor system, which must constantly
update the command needed to produce the desired eye movement. A new approach is described here to study how the eye motor
control could influence this selection mechanism in clinical behavior: two groups of patients (SCA2 and late onset cerebellar ataxia
LOCA) with well-known problems of motor control were studied; patients performed a cognitively demanding task; the results
were compared to a stochastic model based on Monte Carlo simulations and a group of healthy subjects. The analytical procedure
evaluated some energy functions for understanding the process. The implemented model suggested that patients performed an
optimal visual search, reducing intrinsic noise sources.Our findings theorize a strict correlation between the “optimalmotor system”
and the “optimal stimulus encoders.”

1. Introduction

The human vision system is a foveocentric structure reflect-
ing the specific anatomical distribution of photoreceptors
across the retina, which ensure the best resolution just in a
small central region called fovea; outside this region, visual
resolution decreases sharply. To overcome this perceptive
limit, the human brain has developed fast and accurate eye
movements (saccades) for pointing the fovea at interesting
objects in space [1]. In other words, each saccade landing
point represents the locus in space where the fovea gets the
most detailed information; outside this point, elements of a
scene may be localized but are less accurately distinguished.
Due to this physiological constraint, the amount of infor-
mation that can be processed at once by visual system is
limited; therefore, spatial attention is used to select relevant
locations of the visual field for enhanced processing [2] that
may occur overtly when associated with an eye movement

toward the selected location or covertly without an eye
movement.While overt attention is strictly related to saccade
motor programming and focuses on the saccade goal, covert
attention is more linked to the perceptual characteristics of
the peripheral vision and is under the influence of stimulus
features (bottom up attraction) and cognitive enhancement
(top down conduction). It has been found that visual search
of complex scenes is influenced by both top-down factors [3]
including previous knowledge, expectations, current cogni-
tive status, and expected goals and bottom-up factors that
reflect sensory features of the stimulus such as orientation,
luminance, shape, and brightness. In particular bottom up
driving of gaze toward the most salient stimuli occurs first;
then as visual exploration goes along; there is an increment
of cognitive processes influencing visual search in a top
down modality. By combining the top down and bottom up
information during search, our brain gets a clear view of the
conspicuous items (both in terms of cognitive relevance and
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Figure 1: Short reference of vision pathway. (a) Selective attention pathway: the LGN, the striate and extrastriate cortex (V1, V4,
inferotemporal cortex, and MT), SC, pulvinar, LIP, FEF, and PFC are known to be involved in attentional processes. (b) Cerebrocerebellar
communication loop: the neuronal circuitry of the cerebellum is thought to encode internal models that reproduce the dynamic properties of
body parts.These models control the movement allowing the brain to precisely control the movement without the need for sensory feedback.
MC: motor cortex. IN: interpositus nucleus. PN: pons. VL: ventrolateral nucleus. SC: superior colliculi. LGN: lateral geniculate nuclei. Visual
areas (VA): V1, V2, V3, V4, and MT (middle temporal). PFC: prefrontal cortex. FEF: frontal eye fields. LIP: lateral intraparietal cortex.

feature saliency) and their location becoming able to build
up an internal, task specific, representation of the scene [4–
6]. More specifically the relative conspicuity of each element
of the scene is reproduced into a saliency map, which allows
to predict where the eyes will be attracted first during the
exploration of a scene. Although the saliency map simply
refers to the bottom up characteristic of a scene, a more
top-down influence of the visual search is represented in the
prioritymap [7]. Covert attention is particularly efficient dur-
ing top-down visual search where it is used to collect global
information of the scene throughout a parallel processing
of conspicuous elements and to increase the discrimination
abilities of peripheral vision by enhancing spatial resolution
at the attended target location [8] and by fading irrelevant
locations. From a neuro hysiological point of view, object’s
features and spatial localizations acquired during visual
exploration through the retina [9] are principally sent to
visual cortex (V1) via lateral geniculate nucleus (LGN) ([10–
12], for a review). However fast spatial information about the
visual scene is also sent to the superficial layer of the superior
colliculi (SC). This subcortical structure, integrating multi-
sensory inputs with eye and head motor plan, is important
for orienting attention, in retinotopic coordinates, towards
newly appearing objects in the visual field [10, 13]. More
upstreaming, information about object’s features and spatial
localization is elaborated in the dorsal (occipitotemporal:
where) and ventral (occipitoparietal: what) streams [14–17]
in order to construct a priority map [7, 10, 18, 19] (see
Figure 1(a)).

Various formal models have been proposed: Feature Inte-
gration Theory [20], Guided Search [21], Premotor Theory
[22], Theory of Visual Attention [23], and Winner Takes All
[24]. Feature Integration Theory proposes a two-stage visual
attention process: during first stage humans process several

primary visual features; during second stage, the objects are
analyzed with details. Winner Takes All and Guided Search
are devoted to assign saliency to locations in the visual field.
Recently, Reynolds and Heeger [18] proposed a review of
a normalized model of attention; the model studied how
stimulus features and cognitive attention should work to
perform an efficient visual search.

These models describe how humans could select some
aspects of the scene, but how the motor control system
may optimize visual search by predicting the sensory con-
sequences of an impending saccade? Eye movements are
controlled by the cerebrocerebellar communication loop and
described by feedforward or inverse control models [25–27]
(see Figure 1(b)).

Recently, some authors [28, 29] have applied the theory
of optimal control (OCT) in the mechanisms that regulate
motor control; humans seem to adapt their behavior to
minimize some cost function, such as noise, in performing an
action [30]. Najemnik and Geisler argued that humans could
choose fixations that maximize information gained about the
target’s location; this strategy [31] allows humans to select
features from the scene optimally such as an “ideal searcher.”

Our work aims to extend the OCT principle to the
mechanisms that regulate visual search. We proposed a
method to study how the strategies of selective attention
may be modulated by the motor control performance. Since
the cerebellum is the brain structure where some dynamic
aspects of motor control are optimized to reduce errors, we
compare our formal model with the ocular motor behavior of
well characterized cerebellar patientswhohave specificmotor
control failure [32, 33].

Therefore, we developed amathematical stochasticmodel
based on the Monte Carlo method (MC), able to simu-
late ongoing visual search in a cognitively demanding task
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Figure 2: Example of a display shown in the task and a small portion
of gaze data (red line). Subjects, after a fixation point of 500ms, were
asked to follow an alphanumeric sequence (1-𝐴-2-𝐵-3-𝐶-4-𝐷-5-𝐸)
with their gaze. The numbers and letters appeared in a pseudoran-
dom distribution (letters on top and numbers on the bottom) on a
1024 × 768 px and 51 × 31 cm black screen for 30000ms. The red
line shows some fixations and saccades made by a healthy subject.
Saccades are rapid eye jumps from one region to another region.
During fixations (time duration ≈ 100ms ⋅ ⋅ ⋅ 800ms) humans
acquire information from objects.

(Figure 2). Some common energy functions were evaluated
and we compared model results with a control group of
healthy subjects (CTRL) and two groups of patients with
degenerative cerebellar ataxia. Indeed, the cerebellum is
implicated inmaintaining the saccadic subsystem efficient for
vision; this ability is often disrupted in degenerative cerebellar
diseases, as demonstrated by saccade kinetic abnormalities.

Therefore, two groups of patients affected by spinocere-
bellar ataxia type 2 (SCA2) and patients with late onset
cerebellar ataxia (LOCA) were enrolled in the study. The
results of subjects (CTRL, SCA2, and LOCA) were compared
with the model’s outcome.

2. Material and Methods

2.1. Patient’s Clinical Findings. SCA2 is an autosomal, domi-
nantly inherited neurodegenerative disorder, mainly charac-
terized by cerebellar ataxia, cerebellar atrophy at MRI, and
slow eye movements [34]. LOCA is a group of patients with
degenerative, genetically unrecognized pure cerebellar ataxia
associated with atrophy limited to the cerebellum at MRI.
Demographic, clinical, and genetic data of a larger sample
including the patients recruited here have been reported by
Klockgether, Muzaimi et al., and us [35–38].

2.2. ExperimentDesign. Weused a highly cognitive demand-
ing task, namely, the trail making test [39, TMT], in which
subjects were asked to follow an alphanumeric sequence with

their gaze. The trail making stimulus was a pop-up high
contrast image consisting of a sequence of numbers and
letters (1-𝐴-2-𝐵-3-𝐶-4-𝐷-5-𝐸) arranged in an unpredictable
manner. In our version of the trail making task (TMT),
numberswere at the bottomand letters at the top of the image.

The TMT version proposed was simplified to help
subjects to perform the task efficiently and avoiding any
performance requirement (In the current experiment we
enrolled patients affected by cerebellar disease; psychological
test proposed to patients could be biased by subjective self-
underestimation, fear of judgment, or fatigue; therefore, we
used a simplified easy version to avoid eliciting of frustration).
The distribution of symbols in a predefined geometric order
allowed a more clear definition of the gaze shift during
sequencing, since the distance from the center and between
the symbols required a real gaze shift avoiding the target
detection by periphery [40, 41].

During the task, the subject was asked to fixate a central
red dot; after 500ms the dot disappeared, and the subject
could explore the TMT (Figure 2). The TMT is particularly
suitable for studying selective attention, as it does not require
any explicit feedback by subjects, and the test performance
can be evaluated automatically and reproduced by a compu-
tational model.

2.2.1. Subjects Enrollment and Training. Seven SCA2 patients,
a mixed group of six patients with genetic cerebellar ataxia
(LOCA), and 23 healthy subjects were enrolled in the study.
All were in the age range of 25–55 years.

The patients included in the study were previously diag-
nosed as reported by Federighi et al. [37]. Exclusion criteria
for control subjects included any history of neurological or
eye problems, toxic or drug abuse, and current pharmacolog-
ical treatment for neurological or eye diseases. All subjects
gave their informed consent and the study was approved by
the Regional Ethics Committee.

All subjects were trained by a psychologist, before the
experiment, showing a paper version of the TMT. All subjects
performed a first attempt of the experiment for 30 seconds;
after a pause of five minutes the procedure started.

2.2.2. TMT Procedure. Subjects were seated at a viewing
distance of 78 cm from a 32󸀠 color monitor (51 cm × 31 cm
= 33.2 deg × 21.6 degree of visual angle). Eye position
was recorded using an ASL 6000 system, which consists
of a remote-mounted camera sampling pupil location at
240Hz. Head movements were restricted using chin rest
and bite. After the calibration phase, subjects performed
a simple validation phase eliciting four reflexive saccades
and measuring the error between the eye position and the
target; the calibration procedure was repeated until the error
was less than 0.5 degree. A red dot appeared at the screen
center for five seconds; then a randomized version of TMT
(different from the version used during the training step)
appeared for 30 seconds. Subjects could stop the experiment
if they thought they had concluded. All subjects performed
the experiment within the given time. Different sessions of
the experiment were performed for each patient on the same
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Figure 3: Fixations distribution indicators. For each fixation, the
euclidean distance from the center of nearest ROI (DN) and the
euclidean distance in pixels from the center of target (DT) were
evaluated. Dashed blue line represents the eye movement (saccade).

day as well as on different days. When a patient asked to
stop the experiment because he/she was tired, the procedure
was restarted after a resting period. All subjects were able to
perform the task. Seven patients reported fatigue.

2.2.3. Patient’s Test Postassessment. To verify the visual acuity
and the ability to perform the test by patients, we imple-
mented a “guided TMT search”: a grayscale TMT version
was proposed to patients (SCA2, LOCA) where letters and
numbers were highlighted by a red color step-by-step fol-
lowing the alphanumeric sequence (1-𝐴-2-𝐵-3-𝐶-4-𝐷-5-𝐸)
every 2 seconds. We measured the sequencing ability and
the distribution of eye fixations. Indeed, some other studies
[37, 42–45] reported that cerebellar lesions injury may affect
the accuracy of saccades.

2.3. Distribution of Eye Fixations Evaluation. To analyze
visual search and model outcome, we defined some indi-
cators. For each target (letter and number), we defined a
region of interest (ROI) (100 px × 100 px). ROI was defined
as ≈ 200% larger than the symbols of the test. We evaluated
how humans directed next exploration according to the
distribution of latest fixations (see Section 2.4). The fixations
were identified by the dispersion algorithm developed by
Salvucci and Goldberg [46].

For each fixation, we evaluated the Euclidean distance
in pixels from the center of nearest ROI (DN) and the
euclidean distance in pixels from the center of target (DT)
(see Figure 3).

2.4. Selection Mechanism Evaluation. To evaluate ongoing
visual search Engel, Ponsoda et al., Findlay et al. [5, 47, 48],
and, later, us Veneri et al. [41] developed a geometric method
(Figure 4); the proposed procedure defined “observed direc-
tion” as the direction of the subject’s gaze. We evaluated the

𝑑 = (observed direction ⊖ direction reference) ⋅ 𝑤. (1)

𝑤 is a special weight avoiding artifact due to borders; for
example, the weight (𝑤) was set to 1 for letter in the center
and 1.6 = 8/5 for letter near the border. The ⊖ operator is the
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Figure 4: Projection of gaze: the method evaluates the difference
from the direction taken by subject (saccade, dashed blue line) with
respect (DE, DX) to a direction reference. (a) Direction reference
was defined for DEas the vector to the previous fixations made in a
given time interval (on figure only one fixation is shown) and (b) the
expected target for DX.

radial difference between the two directions and ranged from
0 deg to 𝜋 deg.

The selection mechanism was evaluated calculating the
direction of saccade at given time 𝑡 (Figure 4(a)) versus the
previous fixations made (DE) in a given time interval and
the direction of saccade versus the expected target (DX)
(Figure 4(b)).

Then, setting the “direction reference” as the direction
from the current fixation to the previous fixation at the given
time 𝑡

𝑓
, the scalar direction difference DE was expressed as

DE = mean (𝑑) . (2)

We defined also

DE (Δ𝑡) = mean (𝑑) ∀ fixations ∈ (𝑡
𝑓
− Δ𝑡, 𝑡

𝑓
) . (3)

Finally, setting the “direction reference” as the direction
from the current fixation to the expected direction (the
direction to target) at a given time 𝑡

𝑓
, the scalar direction

difference DX was expressed as

DX =

mean ((direction observed ⊖ direction target expected)

⋅𝑤) .

(4)

DX models the ability of humans to remember visited
ROI and must be calculated.
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Model perturbation was accomplished through the 𝑠 parameter.

2.5. Calculation. Figure 5 shows the model architecture. The
model was based on three subsystems: the first block (“rel-
evant item selection” of Figure 5) provided the probability of
directing the gaze to the correct target (next symbol) based on
an internal representation of the target with probability 𝑃

𝑟𝑖
;

the second block “fixations distribution” of Figure 5 provided
the probability ofmoving the gaze far from the latest fixations
with probability 𝑃

𝑝𝑓
[41, 49, 50]. Third block (“peripheral

vision”) directed the gaze to target when target was in a
neighborhood of 115 px ≈ 4 degree with probability 𝑃

𝑝
and

modeled covert attention [19]. Latest block perturbed (𝑠)
fixations location in order to simulate model variability.

After normalization, the weighted union probability
between two mutually exclusive events was calculated (5):

𝑃 next target = (1 − 𝑤) ⋅ 𝑃
𝑟𝑖
(DX, 𝜎2

𝑟𝑖
) + 𝑤 ⋅ 𝑃

𝑝𝑓
(DE, 𝜎2

𝑝𝑓
) ,

(5)

where 𝑤 ∈ (0, 1).
The model calculated the probability by (5): then it

selected the direction to move in accordance with the proba-
bility.The procedure was repeated for each symbol and exited
when the model performed the sequence correctly. 𝑤 was
the level of competition between the blocks “relevant item
selection” and “fixations distribution.”

Probabilities are 𝑃
𝑟𝑖

= N(DX, 𝜎2
𝑟𝑖
), 𝑃
𝑝𝑓

= N(DE, 𝜎2
𝑝𝑓
),

and 𝑃
𝑝
= N(𝜇

𝑝
, 1), whereN(𝜇, 𝜎) is the normal distribution

ofmean𝜇 and variance𝜎. DE andDXwere evaluated through
(2) and (4).

Output of model was an array of fixations

(𝑥
𝑓
, 𝑦
𝑓
) = Φ (𝑠, 𝜇

𝑝
, 𝑤; 𝜎
2

𝑝𝑓
, 𝜎
2

𝑟𝑖
) , (6)

where 𝜎
2

𝑝𝑓
was set to 2, according to variance of DE of

subjects, 𝜎2
𝑟𝑖
was set to 3.4, according to variance of DX of

subjects, 𝑠, and 𝜇
𝑝
and 𝑤 were free variables.

2.6. Energy Function. Optimization theory requires the def-
inition of one (or more) energy/cost function to be mini-
mized. Therefore, according to [45, 51, 52], we defined two
function costs based on saccades’ properties; for each saccade,
we evaluated the euclidean distance in pixels from the saccade
start point to the end of saccade (𝐴 sacc), skipping short
saccade inside the same ROI. A global function saccade
energy was measured evaluating the path length through the
following formulas:

𝐽sacc

= ∑

∀𝑡∈saccades

√(𝑥 (𝑡) − 𝑥 (𝑡 − 𝛿𝑡))
2
+ (𝑦 (𝑡) − 𝑦 (𝑡 − 𝛿𝑡))

2

,

(7)

where 𝛿𝑡 = 4.167ms is the sampling time. Equation (7) is the
sum of all saccades’ length.

Fixations represent the cognitive act to process the scene;
cardinality and duration are measures of task performance
[19, 53, 54]. Therefore, the task execution energy was defined
counting the number of fixations inside the ROI to complete
the task:

𝐽fix = ∑

∀fixations in ROI
1. (8)

Equation (8) is the number of stepsmade to complete the task.

2.7. Stochastic Model Application. The basic idea was to apply
the stochastic model defined in Section 2.5 to study some
target function (energy 𝐽sacc, 𝐽fix, and 𝐴 sacc) as an optimal
control problem. Optimization problems can mostly be seen
as one of two kinds: we need to find the extrema of a target
function cost over a given domain; performance is highly
dependent on the analytical properties of the target function.
Therefore, if the target function is too complex to allow an
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𝑝
, and𝑤, model reproduced all valid explorations. Subjects’ andmodel’s outcomes were compared to understand

the selection mechanism.

analytical study or if the domain is too irregular, the method
of choice is rather the stochastic approach [55, 56]. Since
visual search is a complex systemunder the influence ofmany
mechanisms, it is not easy to predict the selectionmechanism
through an implicit and deterministic model; therefore, we
developed a stochastic model based on the MC simulation
(To understand Monte Carlo simulation the reader should
consider the following case: a player wants to measure the
surface of his carpet in his room 3m × 3m; the player may
randomly launch a button 100 times and count the number
of times (𝑘) the button falls onto the carpet. It is easy to verify
that the carpet surface is 𝑘 ⋅ (3m × 3m)/100. In our work,
the sought-after measure is the energy to execute the task
(the carpet surface) and the sought after system is the set
of parameters (the carpet geometry).) [57]. Therefore, the
model attempted all possible explorative strategies, varying
parameters 𝑠, 𝜇

𝑝
, and 𝑤. For each 𝑛 = 1000 simulations, we

varied parameters and we evaluated the function cost 𝐽sacc,
𝐴 sacc, and 𝐽fix (Monte Carlo optimization).

From an intuitive point, the model computed the solu-
tions domain perturbing fixations distribution; the outcome
could be compared with subjects’ visual search (CTRL,
LOCA, and SCA2) data; see Figure 6.

3. Results

3.1. Subjects. The positive trend of DE(Δ𝑡) − DE (Figure 7)
for all groups suggested that saccade’s direction tended to
move away from latest fixations. In particular, the trend of
gaze direction with respect to the distribution of fixations
made increased in the last second (Δ𝑡 = 1 s) suggesting that
the basic model operation (Section 2.5) was compatible with
subjects’ exploration.

To assess the differences of exploration strategy among
groups, we evaluated distance to nearest ROI (DN) and
number of visited regions of interest (𝐽fix). ANOVA did not
report significant difference on 𝐽fix (𝑃 = 0.126, 𝐹(2,33) =
2.209) and it was confirmedby posthoc analysis (𝑝CTRL-SCA2 =
0.6596, 𝑝CTRL-LOCA = 0.0653, and 𝑝SCA2-LOCA = 0.0641).
On the contrary, ANOVA reported a significant difference

123456789
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Figure 7: Direction difference trend of subjects. The method
calculated the direction difference DE from previous fixations made
on the time intervals [0 ⋅ ⋅ ⋅ 9], [0 ⋅ ⋅ ⋅ 8], ⋅ ⋅ ⋅ , [0 ⋅ ⋅ ⋅ 1] seconds (on the
𝑥-axis only the upper interval’s value is reported). The figure shows
the standard deviation of CTRL, LOCA, and SCA2 for Δ𝑡 = 1, 4, 6,
respectively. The positive trend of the lines shows that saccade’s
direction tended to move away from latest fixations.

on DN (𝑃 = 0.001, 𝐹(2,33) = 9.52) and post-hoc Holm-
Sidak confirmed the significant difference of DN CTRL-
SCA2 (𝑝CTRL-SCA2 < 0.001, 𝛼(33) = 0.0170) and between
CTRL-LOCA (𝑝CTRL-LOCA = 0.0105, 𝛼(33) = 0.0253) and no
significant difference between patients (𝑝SCA2-LOCA = 0.4217,
𝛼(33) = 0.0500).

Our preliminary conclusion was that performance could
be considered equivalent among groups but with different
strategies (Table 1). Indeed, patients (LOCA and SCA2)
preferred sparser fixations instead of targeted saccades. This
strategy was found by several authors [58–60] and has been
referred fixation as “center-of-gravity” fixations. Center-of-
gravity occurs when targets are surrounded by nontargets,
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Table 1: Mean value and standard deviation (in brackets) of tests.

Indicators Acronym CTRL LOCA SCA2

Group dimension 𝑁 23 6 7

Age 27–50 40–55 42–55

Distance to nearest ROI (px) DN 23.9 (14.35) 57.31 (±13.68) 65.54 (±18.49)

Number of fixations in ROI (visited ROI) 𝐽fix 28.90 (±11.18) 37.5 (±6.15) 29.2 (±11.16)

Number of fixations 39 68.1 49.3

Saccade amplitude (px) 𝐴 sacc 317.36 (±69.64) 212.22 (±46.10) 233.32 (±73.05)

Within subject saccade amplitude variance 49634 (±21329) 24040 (±6200) 33138 (±16031)

Percentage of saccade directed to target
when DT ≤ 4 degree (%)

𝑃
𝑝

0.90 0.45 0.60

and the saccades, instead of landing at the designated target,
land in the midst of the whole configuration. This effect was,
firstly, attributed to an error of the filter selection [61] and
then was considered a necessary mechanism to execute more
efficient saccades [60, 62]. We concluded that patients could
direct the gaze into the ROI, but preferred sparse fixations.
To understand this effect, we compared human results with
model results.

3.2. Model Simulation. Using varying parameters 𝑠, 𝜇
𝑝
, and

𝑤, the model (Figure 5) calculated the 𝐽fix, 𝐽sacc, and 𝐴 sacc:
the three surfaces (slightly smoothed for readability) shown
in Figures 8 and 10, report the domain of all available explo-
rations choosing the minimum value along the dimension of
the parameter 𝑤.

To assess the validity of the model we evaluated the
normalized root mean square error (NRMSD) of 𝐽fix.
NRMSD varied from 9% to 26%: NRMSDCTRL = 0.091,
NRMSDLOCA = 0.17, and NRMSDSCA2 = 0.26. We accepted
this result as an acceptable error; indeed, only 11%of subjects
reported a NRMSD > 0.20 and, in any case, NRMSD < 0.40.

The model reported a local minimum 𝐽fix = 19, when
𝑠 = 100, 𝜇

𝑝
= 100, and 𝑤 = 0.6; subjects, however,

performed a less efficient exploration (Table 1). To study this
result, in depth, we calculated the 𝐽sacc parameter, which
provided an estimate of saccadic energy; we have to note that
it is not possible to compare 𝐽sacc of subjects and model due
to noise on saccade’s trajectory; indeed, in two recent papers
[37, 38], we found that motor control noise of SCA2 reported
a significant difference with CTRL and LOCA. Figure 8(b)
shows the overall solutions domain varying parameters 𝑠,
𝜇
𝑝
, and 𝑤. Overall minimum hyperplane was found at 𝑠 ≈

32 ± 8.2, which corresponded to DN ≈ 60.
Comparison of model simulations with subjects’ perfor-

mance was done by setting model’s 𝜇
𝑝
equal to 𝑃

𝑝
of subjects

(0.90, 0.45, and 0.60); Figure 9 shows the model compared to
subjects’ exploration: the three groups of lines of Figure 9(a)
showed themodel numbers of steps to complete the task (𝐽fix)
for 𝜇
𝑝

= 0.90, 𝜇
𝑝

= 0.45, and 𝜇
𝑝

= 0.60 and varying 𝑠

and 𝑤. The 𝑠 parameter controlled the dispersion of fixations
with direct (nonlinear) influence on DN, and𝑤 provided the

needful variability to adapt within group variability among
subjects. The three lines of Figure 9(b) show the saccade
energy (𝐽fix) of the model and the corresponding value of
subjects.

To evaluate the influence of saccade control on visual
search, we analyzed saccade amplitude (𝐴 sacc): ANOVA
reported a significant difference among groups (𝑃 = 0.0037,
𝐹(2, 33) = 6.64) and post-hoc holm-sidak confirmed
the significant difference of 𝐴 sacc between CTRL-SCA2
(𝑝CTRL-SCA2 < 0.001, 𝛼(33) = 0.0170) and CTRL-LOCA
(𝑝CTRL-LOCA < 0.01, 𝛼(33) = 0.0253) and no significant
difference between patients (𝑝SCA2-LOCA = 0.5769, 𝛼(33) =

0.050). Indeed, we found that saccade amplitude of patients
(SCA2 and LOCA) was less than 23.5% and 28.1% of healthy
subjects’ saccades (Table 1).

Comparing 𝐴 sacc of subjects and model, model reported
similar value (Figure 10(a)) to subjects with an error rate of
≈ 7%; analyzing the 𝐴 sacc trend varying fixations’ dispersion
(DN), it seems plausible that SCA2 and LOCA preferred an
exploration which minimized saccade amplitude. We tried
to minimize the following empirical function cost bringing
together the goal parameter 𝐴 sacc, 𝐽sacc, and 𝐽fix

ℎ (𝜃
0
, 𝜃
1
, 𝜃
2
)

= 𝜃
0
⋅

𝐴 sacc
max (𝐴 sacc)

+ 𝜃
1
⋅

𝐽sacc
max (𝐽sacc)

+ 𝜃
2
⋅

𝐽fix
max (𝐽fix)

.

(9)

We found that SCA2 and LOCA preferred to minimize
saccade amplitude (𝜃

0
= 1) and saccade energy (𝜃

1
≈ 1.3)

rather than steps to complete the task (𝜃
2
≈ 0.1); the opposite

was true for CTRL (𝜃
0,1,2

= 1, 0, 5.29).

3.3. Patients Test Postassessment Results. Since subjects with
cerebellar injury have reported low precision on visual search
tasks, we asked patients (SCA2, LOCA) to perform a “guided
TMT search” where letters and numbers were highlighted in
red step-by-step. Patients were able to complete the sequence
with few fixations outside the ROI (DN = 3.01). We
concluded that the low precision performance reported by
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Figure 8: Results of the model varying parameters. (a) The number of steps to complete the task by model and by subjects. The surface
reports the domain of all available explorations of model that humans could perform. Stressing covert attention humans could perform
the best exploration (“center-of-gravity” fixations), but similar performance could be gained directing the gaze to an intermediate region to
acquire overall scene information; this strategy was preferred by SCA2 and LOCA. (b) Saccade energy spent by the model for all available
explorations that humans could perform. An overall minimum hyperplane was found at 𝑠 ≈ 32 ± 8.2.
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Figure 10: Mean saccade amplitude reported by model. (a) Overall
space of saccade amplitude (𝐴 sacc) reported by model varying
parameters and (b) compared with subjects’ performance. Model
reported that patients (SCA2 and LOCA) preferred a visual search
exploration in order to reduce𝐴 sacc. ANOVAconfirmed a significant
difference of 𝐴 sacc between CTRL and patients.

several authors [37, 42, 45] was negligible compared to the
size of the ROI. Similar findings were reported by van Beers.

4. Discussion

Assuming an error rate ≈14% (NRMSD for 𝐽fix) of the model,
both patients and healthy subjects performed a subopti-
mal exploration with different strategies: trend reported in
Figure 9(b) suggested that patients (SCA2, LOCA) preferred

sparser fixations at an intermediate position between the
targets (“center-of-gravity” fixations) and optimally tuned to
keep saccade amplitude (𝐴 sacc) as low as possible and energy
saccade (𝐽sacc) in a neighborhood of the minimum (subopti-
mal exploration); on the contrary, healthy subjects (CTRL)
preferred saccades directed near targets (target selection).
Performance (𝐽fix) of SCA2 patients was similar to healthy
subjects (CTRL); LOCA patients completed the task with
more energy and steps but not with a significant difference
from CTRL.

These different strategies on visual search exploration
between healthy subjects (CTRL) and cerebellar patients
(LOCA and SCA2) suggested a direct or indirect influence
of the cerebellum on the visual selection processing.

4.1. Theoretical Considerations about the Cerebellum’s Role.
Traditional views of the cerebellum hold that this structure
is engaged in the control of action with a specific role in
the motor skills [63]. The properties of cerebellar efferent
and afferent projections (see Figure 1(b) for a short ref-
erence) suggest that the cerebellum is generally involved
in (“not necessarily” [64]) integrating motor control and
sensory information to coordinate movements. The model
of neuronal circuitry of the cerebellum proposed by Ito [27,
32, 65] makes it possible to consider more concrete ideas
about cerebellar processing: cerebellum is thought to encode
internal models that reproduce the dynamic properties of
body parts.These models control the movement allowing the
brain to precisely predict the consequence of a movement
without the need for sensory feedback [66–68] or to per-
form a quick movement in the absence of visual feedback
[27]. Indeed, cerebellum is able to reproduce a stereotyped
function of the desired displacement of eyes and provides
a reference signal during movement [69]. To explain this
mechanism two models have been proposed. Kawato et al.
[26] proposed a forward model (cerebellum forward model)
that simulates the dynamics (or kinematics) of the controlled
object including the lowermotor centers andmotor apparatus
(Figure 1(b)); the motor cortex should be able to perform
a precise movement using an internal feedback from the
forward model instead of the external feedback from the
real control object [65, 67]. As such, motor learning can
be considered to be a process by which the forward model
is formed and reformed in the cerebellum through based
learning.When the cerebellar cortex operates in parallel with
the motor cortex, as mentioned above, it forms another type
of internal model that bears a transfer function, which is
reciprocally equal to the dynamics (or kinematics) of the
control object [25, 26]. The inverse model can then play the
role of a feedforward controller that replaces themotor cortex
serving as a feedback controller.

As further proof of this theory, it is well known that cere-
bellar lesions [43, 44] induce permanent deficits, affecting
dramatically the consistency [42, 45] and the accuracy of
saccades [37]. While a wide range of evidence has emerged
accounting for a dominant role of cerebrocerebellar interac-
tions in motor control and its movement-related functions
are the most solidly established that, recent studies have
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clearly suggested an influence of the cerebellum in cognitive
and behavioral functions [65, 67, 70, 71], including fear
and pleasure responses [72–74]. Allen et al. [75], through a
magnetic resonance experiment, found a direct activation,
during visual attention, of some cerebellar areas independent
from those deputed to motor performance. Paulin [64]
developed a computational physical model estimating the
movement status, useful for trajectory tracking and trajectory
prediction; Paulin concluded that the cerebellum is not a
motor control device per se but a device for optimizing
sensory information about movements. Kellermann et al.
[76] identified a cerebelloparietal loop consisting of posterior
parietal cortex (visual area V5, cerebellum) that facilitates
predictions of dynamic perceptual events. Other studies pro-
vided findings about a direct implication of the cerebellumon
language, verbal working memory [77–81], and timing [82].
Gottwald et al. reported significant defects of patients with
focal cerebellar lesions in the divided attention and working
memory but not in selective attention task [83]. In addition,
Exner et al. [84], Golla et al. [85], and later Hokkanen et al.
[86] reported normal attentional shifting in patients affected
by cerebellar lesions.

4.2. The Dominant Role of the Cerebellum. A number of
functional hypotheses (sometimes contradictories [87]) have
been advanced to account for how the cerebellum may con-
tribute to cognition and a large amount of neuroanatomical
studies showed cerebellar connectivity with almost all the
associative areas of the cerebral cortex involved in higher
cognitive functioning [73]; nevertheless, the hypothesis of the
dominant role of the cerebellum on motor control remains
the most probable to explain our findings and was confirmed
by the proposed model. Cerebellar patients have a well-
known disturbance in controlling saccade endpoint error.
The two groups reported here, however, substantially show
a different saccadic behavior, due to the involvement of
diverse anatomic structures. The saccadic behavior mainly
characterizing SCA2 is the low speed with quite preserved
accuracy indicating a failure of the brainstem saccade gen-
erator more than cerebellum. LOCA shows a well-preserved
speed but a complete loss of saccadic error control. This
pathophysiological substrate, however, does not distinguish
their visual exploration during sequencing; indeed, both
groups of patients similarly performed a multi step visual
search avoiding the direct foveation of the target. This
multistep spatial sampling strategy probably enables these
patients to increase the discriminative potentialities of the
covert attention avoiding unnecessary large saccades moving
the eyes over wrong targets. If this strategy is true, saccades
not only are associated with an overt shift of attention but
also increase the potentialities of covert attention during
active search. Moreover, when the cerebellum has reduced
capacities, the control of long saccade is difficult, due to
propagation of error; [51] and [45] found that patients
affected by SCA2 reduced saccade velocity in reflexive tasks
(involuntary movement); Rufa and Federighi [88] found
that SCA2 patients, sometimes, interrupted saccades. Then,
it is plausible that in voluntary movements (free visual
search test) patients, affected by cerebellar disease, adapted

visual search exploration to minimize the saccade control
effort; they preferred sparse fixations and short saccades, but
maintained overall saccade energy around aminimum point.
The implemented model supported this hypothesis.

5. Conclusions

In our work, we implemented a stochastic model able to
replicate humans strategies during an ongoing sequencing
test; the model results were compared to the performance of
a group of healthy subjects and two groups of patients having
well-documented motor control disease.

From the methodological point of view, we introduced
the optimization method (OCT) to study the properties of
selective attention. Todorov and later van Beers proposed the
OCT as a valuable instrument to link eye/handmotor control
and the central nervous system to minimize the consequence
of motor control noise. Najemnik and Geisler implemented
a Bayesian framework to validate that human visual search is
a sophisticated mechanism that maximizes the information
collected across fixations. We “connected” these two theories
to integrate the motor control and information-processing
systems on a single reproducible model. Our conclusions are
similar to the conclusion of Najemnik and Geisler: humans
tend to tune visual search in order to maximize information
collected during the search, but, in clinical context, patients
try to minimize the effort to control eye movements.

Therefore, our opinion is that humans tend to apply
an optimal selection to minimize a function cost (effort,
energy), and we provided evidence of this theory studying
the motor control influence through a model based on MC
optimization method and comparing results with cerebellar
patients. Proposed model, however, is affected by some
restrictions: model is specific for the TMT test and it is not
easy to generalize to other psychological tests; function costs
have to be defined according to the disease studied. In our
future work, we aim to adapt the basic principle of OCT and
MC on the real image processing model.
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