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Tumor suppressor p53 plays a central role in preventing
tumor formation. The levels and activity of p53 is under
tight regulation to ensure its proper function. Murine
double minute 2 (MDM2), a p53 target gene, is an E3
ubiquitin ligase. MDM2 is a key negative regulator of
p53 protein, and forms an auto-regulatory feedback loop
with p53. MDM2 is an oncogene with both p53-dependent
and p53-independent oncogenic activities, and often has
increased expression levels in a variety of human cancers.
MDM2 is highly regulated; the levels and function of
MDM2 are regulated at the transcriptional, translational
and post-translational levels. This review provides an over-
view of the regulation of MDM2. Dysregulation of MDM2
impacts significantly upon the p53 functions, and in turn
the tumorigenesis. Considering the key role that MDM2
plays in human cancers, a better understanding of the
regulation of MDM2 will help us to develop novel and more
effective cancer therapeutic strategies to target MDM2 and
activate p53 in cells.
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Introduction

MDM2 (murine double minute 2) is an oncogene that was
originally discovered in a locus amplified on double minute
chromosomes in transformed mouse fibroblasts [1]. Over-
expression of MDM2 can immortalize rodent primary fibro-
blasts and induce transformation in cultured cells [2].
MDM2 contains several conserved functional domains,
which provide the structural basis for MDM2’s oncogenic
properties. The N-terminal p53-binding domain plays an es-
sential role in binding to tumor suppressor p53 protein and
inhibiting the transcriptional activity of p53. The central
region contains the nuclear localization sequence (NLS) and

the nuclear export signal (NES), which are responsible
for the nucleo-cytoplasmic shuttling of MDM2 protein [3],
and the acidic domain and an adjacent zinc finger which
mediate the interaction of MDM2 with many ribosomal pro-
teins (RPs) [4,5]. The C-terminus contains the RING finger
domain [6–8]. The RING finger domain is responsible for
the E3 ubiquitin ligase activity of MDM2, which recruits an
ubiquitin-conjugating E2 enzyme to promote the ubiquitina-
tion and degradation of the target proteins [9]. MDM2
protein has several substrates. Among them, tumor suppres-
sor p53 is a major substrate of MDM2.

p53 is considered as ‘the cellular gatekeeper’ or ‘the
guardian of the genome’. p53 protein can be activated in
response to a wide variety of stress signals. As a transcrip-
tion factor, activated p53 transcriptionally regulates a group
of p53 target genes which lead to various cellular responses,
including apoptosis, cell cycle arrest, DNA repair, senes-
cence, etc., to maintain the integrity of genome and prevent
the tumor initiation and progression [10,11]. MDM2 nega-
tively regulates p53 through multiple mechanisms. As an E3
ubiquitin ligase, MDM2 binds to p53 and ubiquitinates
p53 for proteasomal degradation. MDM2 can mono- or
poly-ubiquitinate p53 depending upon the levels of MDM2
activity. High levels of MDM2 activity promote poly-
ubiquitination and degradation of p53, while low levels of
MDM2 activity induce mono-ubiquitination and nuclear
exportation of p53 [12]. MDM2 can promote p53 transloca-
tion from nucleus to cytoplasm via its NES sequence, which
inhibits p53 function in the nucleus by removing it from its
nuclear site and decreases the p53 protein levels by p53 deg-
radation in cytoplasm [3]. MDM2 can also directly bind to
the N-terminal transactivation domain of p53, which pre-
vents the interaction of p53 with the basal transcriptional
machinery, and in turn inhibits the transcriptional activity of
p53 [13–15]. In addition, MDM2 negatively regulates p53
translation. Ribosomal protein RPL26 increases p53 transla-
tion through binding to the 50-untranslated region (UTR) of
p53 [16]. MDM2 can bind to and ubiquitinate RPL26 for
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proteasomal degradation, which in turn prevents RPL26-
promoted p53 translation [17]. Studies of MDM2-deficient
mice have clearly demonstrated the negative regulation of
p53 by MDM2, which is indispensable at all stages of life
[18]. MDM2 deficiency in mice results in lethality at the
blastocyst stage due to excessive p53-dependent apoptosis.
Importantly, this phenotype can be completely rescued by
the deletion of p53 in mice [18].

MDM2 is classified as an oncogene due to its malignant
behaviors in tumors. The over-expression of MDM2 has
been observed in a wide variety of human tumors, including
sarcoma, leukemia, breast carcinoma, melanoma, and glio-
blastoma [19]. As a critical negative regulator of p53, high
expression levels of MDM2 decrease p53 protein levels and
function, which lead to increased cancer risk and/or acceler-
ated tumor formation and progression. In human tumors, the
over-expression of MDM2 and p53 mutation are often mutu-
ally exclusive [19]. This observation strongly supports the
notion that inactivation of p53 by MDM2 contributes to the
effect of MDM2 on tumor development. Studies in mice and
cultured cells have shown that MDM2 also has p53-
independent oncogenic functions, which control prolifer-
ation, apoptosis, and tumor invasion and metastasis. For
example, MDM2 transgenic mice with increased MDM2
expression levels in p532/2 background developed an
altered tumor spectrum with an increased incidence of sarco-
mas [20]. In cells, MDM2 can interact with and inhibit the
function of tumor suppressor retinoblastoma protein (RB) in
regulation of cell cycle and proliferation [21]. Foxo3A,
which regulates cell cycle, is a target of MDM2 for ubiquiti-
nation and proteasomal degradation [22,23]. E-cadherin,
which plays a crucial role in cancer metastasis, is also a
target of MDM2 [24]. MDM2 is a positive regulator of
E2F-1, which plays an important role in cell cycle [25], and
XIAP, an anti-apoptotic protein [26]. Therefore, MDM2 is a
key player in human cancers and an important cancer
therapeutic target.

The increased expression of MDM2 in human tumors is
mainly caused by gene amplification. Increased transcription
and/or enhanced translation of MDM2 also contribute to
MDM2 over-expression in human tumors [19]. In addition,
SNP309, a naturally occurring single nucleotide polymorph-
ism (SNP) in the MDM2 gene (a G to T change in the regula-
tory region in intron 1), increases MDM2 mRNA expression
levels, which correlates with increased risk for several
human cancers [27]. In tumors, there is also over-expression
of cancer-specific alternatively spliced MDM2 transcripts,
which are often associated with advanced tumors and poor
prognosis [28,29].

MDM2 is highly regulated at both mRNA and protein
levels in cells. MDM2 is a transcriptional target of p53. p53
binds to p53 consensus DNA binding element in the first
intron of MDM2 gene to transcriptionally induce the

expression of MDM2, and forms an auto-regulatory negative
feedback loop with MDM2 [30–32]. MDM2 expression
levels are also transcriptionally regulated by various onco-
genic and tumor suppressive pathways. In addition, many
stress signals, including DNA damage, oncogenic activation,
ribosomal biogenesis, and chronic stress, and microRNAs
regulate MDM2 protein levels, activity, and cellular localiza-
tion. Here, we will review the regulation of MDM2 by
different stress signals and various oncogenic and tumor
suppressive pathways.

Regulation of MDM2 at the Transcriptional
Level

Transcription of the MDM2 gene is regulated by two distinct
promoters (P1 and P2). The P1 promoter, which is located at
the upstream of the first exon, controls the basal constitutive
expression of MDM2 [33]. The P2 promoter, which is
located in the first intron, is highly regulated and responsible
for the inducible expression of MDM2 (Fig. 1A). Transcripts
from both promoters encode identical full-length MDM2;
however, they show difference in translation efficiency due to
their different 50-UTR. Transcript from the P1 promoter con-
tains two upstream open reading frames and this mRNA is
loaded with ribosomes inefficiently and has lower translation
efficiency. In contrast, the 50-UTR of P2-transcript allows
efficient translation with the help of a 50-UTR-specific
RNA-binding protein, the La antigen [34]. Together, the P2
promoter can transcriptionally induce MDM2 expression, and
the mRNA has increased translational efficiency. Activated
p53, Ras, and estrogen receptor-a all can induce MDM2
transcription from the P2 promoter.

p53–MDM2 negative feedback loop
p53 is a transcription factor that can be activated by diverse
cellular stresses. In response to stress signals, activated p53
can transcriptionally induce MDM2 through binding to two
adjacent p53-responsive elements located in the P2 promoter
of the MDM2 gene [30,32] (Fig. 1A). The p53-mediated
induction of MDM2 can be positively regulated by MDMX,
a closely related MDM2 homolog. Similar to MDM2,
MDMX binds to p53 transcriptional activation domain and
inhibits the transcriptional activity of p53 [35]. Under DNA
damage and ribosomal stress conditions, MDMX is required
for optimal p53 binding to the MDM2 promoter and select-
ively increases p53-mediated induction of MDM2, which
could be an additional mechanism by which MDMX
down-regulates p53 [36,37]. The induction of MDM2 by
p53 can also be negatively regulated by orphan receptor
TR3, which mainly functions as a transcription factor. TR3
down-regulates p53 transcriptional induction of MDM2
through direct interaction of TR3 with p53 to block its
acetylation [38].
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As p53 and MDM2 regulate each other, they form an
auto-regulatory negative feedback loop. One feature of this
p53–MDM2 feedback loop is that MDM2 and p53 levels
oscillate, especially in response to stress [39,40]. MDM2
protein levels decrease immediately in response to stress,
such as gamma irradiation. The immediate decrease of
MDM2 levels after stress results in an increase of p53
protein levels, which can then transcriptionally induce
MDM2 expression, and in turn results in the decrease of p53
protein levels mediated by MDM2. The dynamic pattern of
p53 and MDM2 varies depending upon the stress signals.
For example, p53 shows a series of repeated pulses in re-
sponse to double-stranded DNA breaks. Different dynamic
behaviors are important signals, which lead to very different
cellular responses and cell fate. A recent report showed that
sustained p53 activation in cells preferentially induces p53
target genes that are involved in senescence, which is very
different with the group of p53 target genes induced in cells
with repeated p53 pulses [41]. In turn, cells have different
fate: cells with repeated p53 pulses recover from DNA
damage, while cells with sustained p53 activation often
become senescent.

The importance of p53–MDM2 feedback loop has been
further characterized in vivo in a recent study employing a
genetically engineered mouse with a mutated p53-binding
element in the P2 promoter of the MDM2 gene [42]. Mice
that are deficient for p53–MDM2 feedback loop are viable.
While p53 cannot induce MDM2 expression through the P2

promoter, constitutive MDM2 levels from the P1 promoter
are sufficient for maintaining the proper p53 protein levels,
including the degradation of p53 protein after stress.
However, loss of P2-induced MDM2 expression enhances
p53-dependent DNA damage response in these mice.
Increased p53 activity, especially p53-dependent apoptosis in
response to stress sensitizes hematopoietic stem cells (HSCs),
which causes drastically increased lethality upon gamma ir-
radiation in these mice [42]. These observations challenged
the prevailing view of the p53–MDM2 feedback loop by
providing in vivo evidence showing that constitutive MDM2
levels from the P1 promoter are sufficient for development,
homeostasis, and longevity, while p53-induced MDM2 levels
from the P2 promoter are essential for attenuation of p53
function, especially in the HSCs after DNA damage.

Transcriptional regulation of MDM2 by oncoproteins
and tumor suppressors
In addition to p53, MDM2 can be transcriptionally regulated
by several oncogenic and tumor suppressive pathways
(Fig. 1A). For example, MDM2 has been shown to be a
direct transcriptional target of MYCN oncogene. MYCN
binds to a consensus E-box in MDM2 P2 promoter and tran-
scriptionally induces MDM2 expression levels. In neuroblast-
oma cells with MYCN amplification, inhibition of MYCN
decreases MDM2 levels, and in turn leads to the increase of
p53 levels and function [43]. MDM2 can also be induced by
the transcription factor of the human nuclear factor of

Figure 1. The regulation of MDM2 at the transcriptional and translational levels (A) The MDM2 gene has two promoters (P1 and P2). The P1

promoter controls the basal constitutive expression of MDM2, and the P2 promoter is highly regulated and responsible for the inducible expression of

MDM2. p53 binds to MDM2 P2 promoter to induce the expression of MDM2. In addition to p53, MDM2 can be transcriptionally regulated by several

oncogenic and tumor suppressive pathways. (B) Increased expression of alternatively and aberrantly spliced MDM2 variants have been detected in many

types of human cancers. Among over 40 MDM2 spliced variants identified in human cancers, MDM2 isoforms A, B, and C are the isoforms that most

frequently over-expressed in human cancers. (C) A group of microRNAs bind to the 30-UTR of the MDM2 mRNA to inhibit its translation.
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activated T cells (NFAT) family, NFAT1 [44]. Dysregulation
of the NFAT signaling promotes malignant transformation,
and the over-expression of NFAT has been observed in
human tumors. The MDM2 P2 promoter contains a consen-
sus NFAT1-binding element. NFAT1 directly binds to this
binding element and transcriptionally induces the expression
levels of MDM2, which in turn reduces p53 function in
response to stress signals. Both NFAT1 and MDM2 are over-
expressed in human liver cancers, and there is a positive cor-
relation between the expression levels of NFAT1 and MDM2
in human tumors [44]. This positive regulation of MDM2 by
NFAT1 could contribute to the role of NFAT1 in tumor
development and progression. IFN regulatory factor 8 (IRF8),
a transcription factor, has been reported to induce the expres-
sion of MDM2 in germinal center (GC) B-cells. IRF8 binds
to MDM2 P2 promoter to transcriptionally induce the
MDM2 expression levels. In GC B-cells of IRF8-deficient
mice, the MDM2 expression levels are greatly down-
regulated [45]. The expression of MDM2 can be negatively
regulated by PTEN. PTEN is a tumor suppressor with lipid
phosphatase activity. PTEN down-regulates MDM2 P1 pro-
moter activity through its lipid phosphatase activity; MDM2
transcripts from P1 promoter are up-regulated in cell lines
deficient for PTEN [46]. Clearly, regulation of the mRNA
expression levels of MDM2 could be an important mechan-
ism by which oncogenes promote tumorigenesis while tumor
suppressors prevent tumor development.

Polymorphisms in the MDM2 gene
The expression levels of MDM2 can be transcriptionally
regulated by naturally occurring polymorphisms in the
MDM2 gene (Fig. 1A). The G to T change in SNP309, a
common SNP in the first intron of the MDM2 gene,
enhances the binding affinity of transcriptional activator
Sp1, and leads to the increased MDM2 transcriptional levels
(increased by 2- to 4 fold) in humans, which in turn attenuate
p53 function and activity [27]. The transcription of MDM2
from SNP309 G allele by Sp1 can be regulated by estrogen;
estrogen preferentially enhances the Sp1 binding towards the
MDM2 SNP309 G allele. The MDM2 expression levels in
estrogen-responsive cells with the SNP309 G allele are sig-
nificantly higher than that in cells with the SNP309 T allele
[47]. SNP309 G allele has been shown to correlate with
increased risk for several cancers and/or early onset age of
cancers, often in a gender-specific manner; SNP309 G allele
in females is often associated with the highest increased risk
for cancers, including breast cancer [48,49]. MDM2
SNP309 is a common SNP with the frequencies differing
among different ethnic backgrounds. The G allele is about
40% in Caucasian population and about 10% in African
Americans. A recent study revealed a second rare functional
SNP in the MDM2 promoter, SNP285 with a G to C change.
SNP285 resides on the SNP309 G allele and only exists in

Caucasian population with �8% allele frequency. The
SNP285C/309G haplotype decreases the binding affinity
of Sp1 towards MDM2 promoter, and is associated with
reduced risk for cancers, including breast and ovarian
cancers in Caucasian population [50]. Therefore, under-
standing the collection of functional SNPs in the MDM2
gene, which modulates the MDM2 expression levels and in
turn affects the p53 function and the cancer risk, may help in
cancer prevention as well as selection of a better treatment
for cancer.

Alternative splicing variants of MDM2
In human tumors, in addition to the over-expression of full-
length MDM2, there is often increased expression of alterna-
tively and aberrantly spliced MDM2 variants. MDM2 spliced
variants have been detected in high percentage of many types
of cancers, including invasive breast cancer (�30%), pediat-
ric rhabdomyosarcoma (�80%), and soft tissue sarcoma
(�50%) [51–53]. So far, over 40 MDM2 spliced variants
have been identified in human tumors. Among these variants,
MDM2 isoform A, isoform B, and isoform C, are frequently
over-expressed in many types of human tumors (Fig. 1B).
The mechanisms for the over-expression of MDM2 isoforms
in tumors are not well understood. It has been reported that
ultraviolet (UV) irradiation can induce the alternative splicing
of the MDM2 gene, which results in the increased MDM2
isoform B levels in cultured human cells [54]. The over-
expression of MDM2 spliced variants are often associated
with advanced tumors and poor prognosis [29]. The over-
expression of some MDM2 isoforms in transgenic mouse
models promotes tumor formation [55]. However, the function
of MDM2 isoforms is not well understood. An interesting
feature of many MDM2 isoforms is that they lose the
p53-binding domain, the NLS and NES, but retain the
C-terminus. Therefore, most MDM2 isoforms cannot directly
bind to p53 to regulate its levels and activity, while they still
have the ability to interact with full-length MDM2. As full-
length MDM2 negatively regulates p53 protein levels and
activity, MDM2 isoforms can indirectly regulate p53. It has
been reported that MDM2 isoforms can increase wild-type
p53 levels in in vitro cultured cells [56,57]. However, p53
activation by MDM2 isoforms in cells cannot explain the pro-
moting effect of MDM2 isoforms on tumorigenesis observed
in vivo. p53 is the most frequently mutated gene in human
tumors; �50% of human tumors contain the mutant p53.
Mounting evidence suggests that many tumor-associated
mutant p53 proteins gain new functions to promote tumori-
genesis in addition to the loss of wild-type p53’s function
in tumor suppression, defined as gain of function (GOF)
[58–60]. The results from our recent study suggest that
MDM2 isoforms may regulate the levels and function
of mutant p53 to promote tumorigenesis. We found that
MDM2 isoform B, the MDM2 isoform most frequently
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over-expressed in human tumors, interacts with full-length
MDM2 to inhibit MDM2-mediated mutant p53 degradation,
which in turn promotes mutant p53 accumulation and GOF in
tumorigenesis [61]. Furthermore, a MDM2 isoform similar to
human MDM2 isoform in structure is over-expressed in ma-
jority of tumors of mice with knock-in of R172H mutant p53
(equivalent to human R175H), and correlated with mutant
p53 accumulation in tumors. Consistently, this MDM2
isoform promotes mutant p53 accumulation and tumorigen-
esis [61]. In addition, MDM2 isoforms have p53-indpendent
function in tumorigenesis since the promoting effect of
MDM2 isoforms on tumorigenesis has also been observed in
p53-deficient mice [54,55,62]. Future studies on the function
of MDM2 isoforms and the mechanisms for their over-
expression in tumors will further increase our understanding
of their role in tumorigenesis.

Regulation of MDM2 at the Translational
Levels

In addition to the transcriptional regulation of MDM2,
enhanced translation of the MDM2 transcripts also increases
MDM2 protein levels, which has been suggested to be an
important mechanism for the over-expression of MDM2 in
human tumors. As described in the above section, MDM2
transcripts from P1 or P2 promoter have different translation
efficiency due to their differences in the 50-UTR. Another
important group of factors that regulate MDM2 translation is
microRNAs which target for MDM2 (Fig. 1C). MicroRNAs
are a group of small non-coding RNAs, which regulate the
translation of gene products through binding to its partially
complementary sites in the 30-UTRs of target mRNAs,
leading to translational repression of their target genes.
Several microRNAs that target MDM2 have been reported,
including miR-143/145, miR-605, miR-25, miR-32, miR-
18b, and miR-661 [63–67]. Some of these microRNAs,
including miR-143/145, miR-605, and miR-32 can be regu-
lated by p53 at transcriptional or post-transcriptional levels.
These microRNAs inhibit MDM2 translation, which in turn
increases p53 protein levels and function. Many of these
microRNAs show tumor suppressive properties, and often
have decreased expression levels in many human tumors.
For example, the decreased expression levels of miR-143/
145 have been observed in many different cancers, including
breast cancer, colon cancer, prostate cancer, bladder cancer,
etc. [68]. The expression levels of miR-25 in human colon
cancer tissues have been shown to be decreased compared
with adjacent normal tissues [69]. The decreased expression
levels of miR-18b have been observed in a panel of melan-
oma cell lines and primary melanoma cancers, mainly due to
hyper-methylation [66]. Another recent study showed that
miR-661 targets both MDM2 and MDMX to activate p53 in
a cell-type-dependent manner [67]. The role of miR-661,

either pro- or anti-tumorigenic, depends upon p53 status.
While low expression levels of miR-661 correlate with poor
survival probability in breast cancers with wild-type p53,
high miR-661 expression levels correlate with aggressive
malignant behaviors in various cancers harboring mutant
p53 [67]. Therefore, these microRNAs join the MDM2-p53
feedback loop to down-regulate MDM2 levels and increase
p53 protein levels and function.

Regulation of MDM2 Protein

MDM2 protein levels and activity are highly regulated by
many extracellular and intracellular stress signals, including
genotoxic stress signals, oncogenic activation, ribosomal
stress, and psychological stress signals. These stress signals
function through distinct signaling pathways to regulate the
ability of MDM2 to interact with p53, MDM2 E3 ubiquitin
ligase activity, and the cellular localization of MDM2
(Fig. 2).

Figure 2. The regulation of MDM2 protein levels and activity MDM2

protein levels and activity are highly regulated by many stress signals and

factors. These stress signals regulate the ability of MDM2 to bind to p53,

MDM2 E3 ubiquitin ligase activity, cellular localization of MDM2, and the

stability of MDM2 protein. Genotoxic stress signals, such as IR and UV,

negatively regulate MDM2 protein levels and activity mainly through

post-translational modification (phosphorylation) of MDM2. Oncogenic

activation negatively regulates MDM2 E3 ligase activity, and promotes

MDM2 localization in nucleoli through ARF. Ribosomal stress signals

negatively regulate MDM2 E3 ubiquitin ligase activity through interaction

of RPs with MDM2. Some oncogenes, including AKT and Wip1, directly

increase MDM2 activity. Chronic psychological stress signals increase the

levels of neurohormones, including glucocorticoids and catecholamines,

which can increase MDM2 activity through distinct pathways.
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Genotoxic stress signals
Genotoxic stress signals such as ionizing radiation (IR) and
UV irradiation could cause DNA damage that activates
protein kinases (ATM for IR and ATR for UV). ATM and
ATR phosphorylate MDM2 at Ser-395 and Ser-407, respect-
ively [70–72]. The phosphorylation of MDM2 at these two
positions blocks the ability of MDM2 to export p53 to cyto-
plasm [70]. MDM2 Ser-395 phosphorylation also reduces the
E3 ligase activity of MDM2 [73], and promotes the interaction
of MDM2 with p53 mRNA to enhance p53 protein synthesis
[74,75]. ATM also regulates MDM2 indirectly through fol-
lowing mechanisms: first, ATM activates c-Abl, another
kinase to phosphorylate MDM2 at multiple sites which in
turn reduces the function of MDM2 to negatively regulate
p53 [76]; secondly, ATM reduces the levels of herpesvirus-
associated ubiquitin-specific protease (HAUSP), a specific
deubiquitinase for MDM2 that prevents MDM2 from auto-
ubiquitination. The decrease of HAUSP results in the
increased MDM2 degradation through auto-ubiquitination
[77]. All these regulations on MDM2 result in a rise of p53
protein levels and activity.

Oncogenic activation
Aberrant activation of a list of oncogenes, including E2F-1,
beta-catenin, Myc, and Ras, has been shown to increase the
levels of ARF, a tumor suppressor, to negatively regulate
MDM2 function [78–80]. The down-regulation of MDM2
function in turn activates p53, which is essential for tumor
suppression. ARF negatively regulates MDM2 through
binding to the central domain of the MDM2 protein to
promote MDM2 accumulation in the nucleoli. This inter-
action also down-regulates the E3 ubiquitin ligase activity of
MDM2. In turn, MDM2 is segregated from p53 and the
activity of MDM2 to negatively regulate p53 is decreased
[81,82]. Deletion and silencing of ARF are the events often
observed in cancers that disrupt the ARF-MDM2-p53
signaling for tumor surveillance [83]. In addition to
ARF-mediated negative regulation of MDM2, results from a
recent report show that E2F1 can directly inhibit MDM2
expression by suppressing its promoter activity in a
p53-dependent manner [84].

There are oncogenes, including AKT, Wip1, that directly
regulate the activity of MDM2. The IGF-1/AKT oncogenic
pathway plays critical roles in the regulation of cell prolifer-
ation and survival. MDM2 is a substrate of AKT kinase;
AKT directly phosphorylates MDM2 at Ser-166/186 [85].
MDM2 Ser-166/186 phosphorylation promotes MDM2 to
localize in the nucleus, increases the interaction of MDM2
with p300, which promotes MDM2-mediated p53 degrad-
ation, and inhibits the interaction of MDM2 with ARF
[86,87]. Altogether, the phosphorylation of MDM2 at
Ser-166/186 by AKT increases MDM2 activity to down-
regulate p53 protein levels and function. Wip1, a serine/

threonine phosphatase with oncogenic activity, is often over-
expressed in several human cancers. Wip1 can be transcrip-
tionally regulated by p53 and is often induced by p53 at a
later time point after genotoxic stress [88,89]. Wip1 can
dephosphorylate MDM2 at Ser-395, the site which is often
phosphorylated by ATM, thereby restoring the activity of
MDM2 to negatively regulate p53 [89]. Therefore, Wip1 is
an important regulator for the p53–MDM2 feedback loop.

Ribosomal stress
Ribosomal biogenesis is a coordinated cellular process that
plays an essential role in a number of important cellular
activities [90]. Perturbations of ribosomal biogenesis induce
ribosomal stress, which can impact upon MDM2 activity
and p53 function. Several RPs, including RPL5, RPL11,
RPL23, RPL26, RPS3, RPS7, RPS14, and RPS27/L, have
been shown to interact with MDM2 [91,92]. RPs mainly
bind to the central region of MDM2. The RP–MDM2 inter-
action inhibits the E3 ubiquitin ligase activity of MDM2,
which results in the accumulation and activation of p53 [93].
A possible mechanism by which the RP–MDM2 interaction
at the MDM2 central region inhibits MDM2 E3 ubiquitin
ligase activity is to reduce the flexibility of MDM2 protein
and therefore inhibits its function [4]. While it is currently
unclear why so many RPs bind to and regulate MDM2 in
response to ribosomal stress, it is clear that the RP-MDM2-
p53 pathway is important in monitoring the proper riboso-
mal biogenesis in cells.

Chronic psychological stress
Ample epidemiological evidence suggests that chronic psy-
chological stress has significant negative impact upon the
onset, progression, and mortality of human cancers [94–96].
The results from recent studies show that the neurohormones
elevated during chronic stress, including glucocorticoids and
catecholamines, can activate MDM2 to down-regulate p53
through distinct pathways [97,98]. Elevation of glucocortic-
oid hormones under chronic stress conditions activates glu-
cocorticoids receptor pathway, which then transcriptionally
induces SGK1 kinase. SGK1 phosphorylates MDM2 at
Ser-166/186, the same sites phosphorylated by AKT, to
activate MDM2 [97,99], which in turn down-regulates p53
function. Catecholamines, including epinephrine and nor-
epinephrine, activate MDM2 through binding to one type of
adrenergic receptor (AR), b2-AR, to activate PKA-b-arrestin
pathway [98]. The activation of b-arrestin-1 promotes
AKT-mediated activation of MDM2, as well as the inter-
action of MDM2 with p53. The activation of MDM2 by neu-
rohormones to negatively regulate p53 under chronic stress
could be an important mechanism by which chronic stress
promotes tumorigenesis.
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MDMX
In addition to the above stresses, the E3 ubiquitin ligase
activity of MDM2 can be regulated by MDMX, a close
homolog of MDM2. MDMX is another important negative
regulator of p53. The importance of negative regulation of
p53 by MDMX is demonstrated by the early embryonic
lethality of MDMX-null mice which can be rescued by the
loss of p53 [100]. Unlike MDM2, MDMX is not under tran-
scriptional regulation of p53. Furthermore, MDMX has no
intrinsic E3 ubiquitin ligase activity despite the high similar-
ity of the RING domain between MDM2 and MDMX [101].
It has been shown that MDMX can bind to the transactiva-
tion domain of p53 and block the transcriptional activity of
p53 [102]. Importantly, MDMX can modulate the levels and
activity of MDM2, which in turn regulates p53 protein levels
and function [103,104]. While both MDM proteins can form
homodimers through their RING domains, heterodimers of
MDMX and MDM2 are more stable than homodimers of
either protein [105]. Hetero-dimers of MDMX and MDM2
preferentially reduce auto-ubiquitination of MDM2 and in-
crease MDM2-mediated ubiquitination and degradation of
p53 [103,106,107]. Consistently, the MDM2-binding defect-
ive mutant MDMX knock-in mice are embryonic lethal due
to p53 activation [108], demonstrating the regulation of
MDM2 by MDMX as an important mechanism for p53
regulation.

Conclusion

Oncoprotein MDM2 is a key negative regulator of p53; the
main function of MDM2 is to degrade p53 protein and
inhibit p53 activity. Many human tumors have high MDM2
protein levels, which could in turn inactivate p53 function.
Therefore, targeting MDM2 is a valuable therapeutic strat-
egy for cancer treatment. Several agents have been devel-
oped to target the protein–protein interaction of p53–
MDM2 or the E3 ubiquitin ligase activity of MDM2 to
increase p53 protein levels and activity. Small molecules,
including Nutlins and MI-219, bind to MDM2 in its
p53-binding pocket to disrupt p53–MDM2 interaction
[109,110]. Another small molecule RITA binds to the p53
N-terminus to block p53–MDM2 interaction [111]. A re-
cently identified small molecule RO-5963 is a dual inhibitor
of p53–MDM2 and p53–MDMX interaction, which in turn
leads to the activation of p53 [112]. Stapled peptides with
improved stability have also been utilized to target p53–
MDM2; stapled peptides SAH-p53s bind to MDM2 and
block p53–MDM2 interaction [113]. Another group of
agents targets MDM2 E3 ubiquitin ligase activity. For
example, small molecule HLI98 binds to MDM2
C-terminus to compromise its E3 ubiquitin ligase activity
[114]. Other small molecules that belong to this category
include MPD compounds, MEL23 and MEL24 [115,116].

More studies in the future are needed to develop MDM2
inhibitors that can be used safely and effectively for cancer
treatment in clinic. It is worth noting that MDM2 also retains
the ability to interact with and regulate mutant p53 protein.
For example, in transgenic mice with knock-in of tumor-
associated hotspot p53 mutations (R172H or R270H, which
equivalent to human R175H and R273H, respectively),
mutant p53 protein levels are kept low in normal tissues and
only accumulate in tumor tissues [117–119]. Loss of
MDM2 in these mice clearly increases mutant p53 protein
levels in normal tissues, and further promotes tumor devel-
opment of these mice [118]. Since some tumor-associated
mutant p53 proteins gain new activities in promoting tumori-
genesis, targeting MDM2, especially its function in negative
regulation of p53, in patients carrying mutant p53 in their
tumors may cause unwanted oncogenic effects. It is therefore
very important to determine the status of p53 of cancer
patients before giving MDM2 inhibitors. While most studies
on MDM2 focus on its regulation of p53, increasing evi-
dence has shown that MDM2 also has p53-independent
functions. It is unclear whether MDM2 inhibitors currently
developed have any impact upon p53-independent functions
of MDM2. Studies to further understand p53-independent
functions of MDM2 are needed with the goal to target
MDM2, especially its oncogenic function, in cancers.
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