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Moving from the exact result that drainage network configurations
minimizing total energy dissipation are stationary solutions of the
general equation describing landscape evolution, we review the static
properties and the dynamic origins of the scale-invariant structure of
optimal river patterns. Optimal channel networks (OCNs) are feasible
optimal configurations of a spanning network mimicking landscape
evolution and network selection through imperfect searches for
dynamically accessible states. OCNs are spanning loopless configu-
rations, however, only under precise physical requirements that arise
under the constraints imposed by river dynamics—every spanning
tree is exactly a local minimum of total energy dissipation. It is re-
markable that dynamically accessible configurations, the local optima,
stabilize into diverse metastable forms that are nevertheless charac-
terized by universal statistical features. Such universal features ex-
plain very well the statistics of, and the linkages among, the scaling
features measured for fluvial landforms across a broad range of scales
regardless of geology, exposed lithology, vegetation, or climate, and
differ significantly from those of the ground state, known exactly.
Results are provided on the emergence of criticality through adapta-
tive evolution and on the yet-unexplored range of applications of the
OCN concept.

trees and networks | adaptive evolution | feasible optimality |
erosional mechanics | river network patterns

Adrainage basin of a river is the region from which rainfall
becomes runoff flowing downhill and aggregating to form the

river streams. Branching river networks in runoff-generating areas
are naturally fractal (1)—there are basins within basins within
basins, all of them looking alike. Fluvial landforms show deep
similarities of the parts and the whole across up to six orders of
magnitude despite the great diversity of their drivers and controls—
geology, exposed lithology, vegetation, and climate (2). Observa-
tional data reveal the fine detail and large-scale patterns of fluvial
landforms. Such data have been used to characterize river basins
across our planet (2). River networks are spanning trees: spanning,
because there is a route for water to flow from every location of the
basin to the main stream; and a tree, because of the absence of
loops. The scaling associated with the observed spanning trees is
a topic of great interest (3–25). Remarkably, one observes approx-
imate universality in the set of scaling exponents even though one
is considering nonequilibrium conditions. As characteristic of con-
ventional critical phenomena, the exponents were found not to be
independent of each other. Rather, each of them can be derived
through scaling relations postulating the knowledge of geometrical
constraints. In addition, as is common in any good detective novel,
our story comes with unexpected twists. The first surprise was that
the observational exponents do not fall into any known stan-
dard universality class of spanning or directed trees with equal
weight. A pivotal step in the story came through the notion of
optimal channel networks (OCNs). This was directly inspired
by the notable success of variational principles in physics. As

water flows downhill, it loses potential energy. Could it be that
nature selected those spanning trees for which the total energy
dissipation was a minimum? Remarkably, numerical simulations
compared with data suggested that this was likely the case. In a
puzzling twist, it was found that one could solve OCNs exactly and
the resulting exponents associated with the global minimum did not
match either the observational data or the numerical simulations.
The puzzles were resolved through a study of the dynamics of
erosion sculpting the landscape. It was shown that the simplest
dynamical equation, under reparametrization invariance, predicted
that river networks were necessarily trees and had no loops. Even
more interestingly, one could show that every local minimum of the
OCN functional is a stationary solution of the general landscape
evolution equation. The above observations suggested that the
adaptation of the fluvial landscape to the geological and climatic
environment corresponds to the dynamical settling of optimal
structures into suboptimal niches of their fitness landscape and
that feasible optimality, i.e., the search for optima that are accessible
to the dynamics given the initial conditions, might apply to a broad
spectrum of problems in nature. The puzzle was solved: The
statics and dynamics of river networks had been collected in
a neat package. It all fit in and a surprising outcome was the
robust statistical features of the dynamically accessible minima.
This Inaugural Article provides technical details and references

for the various steps of the development of the theory, explores
results on the role of heterogeneity, and reviews recent develop-
ments and applications of the OCN concept in a variety of fields.

Scaling Fluvial Landscapes: Comparative Geomorphology
Accurate descriptions of the fluvial landscape across scales stem
from digital terrain maps, i.e., discretized elevation fields fzig on
a lattice of pixels of unit area. The drainage network is determined
by assigning to each site i a drainage direction through steepest

Significance

Our focus is on a rich interdisciplinary problem touching on earth
science, hydrology, and statistical mechanics—an understanding
of the statics and dynamics of the network structures that we
observe in the fluvial landscape, and their relation to evolution
and selection of recurrent patterns of self-organization. It is an
exemplar of how diverse ideas, numerical simulation, and ele-
mentary mathematics can come together to help solve the mys-
tery of understanding a ubiquitous pattern of nature.

Author contributions: A.R., R.R., J.R.B., A.M., and I.R.-I. designed research; A.R., R.R., and
I.R.-I. performed research; A.R., R.R., A.M., and I.R.-I. analyzed data; and A.R. wrote
the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: andrea.rinaldo@epfl.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1322700111/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1322700111 PNAS | February 18, 2014 | vol. 111 | no. 7 | 2417–2424

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S
IN
A
U
G
U
RA

L
A
RT

IC
LE

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1322700111&domain=pdf&date_stamp=2014-02-06
mailto:andrea.rinaldo@epfl.ch
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322700111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322700111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1322700111


descent at i, i.e., along local gradients ∇
→
zi. Drainage directions

determine uniquely aggregation patterns and network lengths. To
each pixel i, total drainage area Ai (the number of upstream
pixels connected to i through flow directions) is expressed in
pixel units as Ai =

P
jWji Aj + 1, where: Wji is the arbitrary el-

ement of the connectivity matrix (i.e., Wji = 1 if j→ i and
0 otherwise), and 1 represents the unit area of the pixel unit that
discretizes the surface. In the case of uniform rainfall injection for
landscape-forming events, Ai provides a proxy of the flow at point i,
i.e., accumulated flow Qi, as the sum of the injections over all
connected sites upstream of site i (included) Qi =

P
jWjiQj + ri

[where ri is the distributed injection (2)]. In the case of constant
injection ri for landscape-forming events, one has Qi ∝ Ai, a com-
monly accepted hydrologic assumption (2, 3).
Many geomorphological features can be analyzed in the greatest

detail. Channeled portions of the landscape are extracted from
elevation fields through the exceedance of geomorphological
thresholds of slope-dependent total contributing areas (6, 14).
Contributing area Ai at any point is related to the gradient of the
elevation field (the topographic slope) at that point:

��∇
→
zi
��∝ Aγ−1

i ,
where a value of γ around 1=2 is typically observed in runoff-
generating areas (2, 6, 14, 26). Slope–area relations provide a
powerful synthesis of the local physics. Upstream lengths Li (the
along-stream distance from the farthest source draining into i)
are also computed at any channeled site (2, 17, 18). The prob-
ability distributions of relevant random variables (like drainage
area A and upstream lengthL sampled at any site of the catchment)
are characterized by finite-size scaling (2, 17), i.e., PðA≥ aÞ=
a−βFða=AmaxÞ, where Amax is the area at the catchment closure
limiting the distribution; and PðL≥ ℓÞ= ℓ−ψFðℓ=Ah

maxÞ, where β;ψ
are suitable scaling coefficients and h is Hack’s coefficient (27) (F
and F are suitable cutoff functions; Fig. 1). The empirically de-
fined scaling exponents, from vast comparative analyses (2, 17,
18), lie in a narrow [and related (28)] ranges β= 0:42 ÷ 0:45 (29)
and ψ = 0:70 ÷ 0:80 (17), respectively. Fig. 1 shows one significant
example of empirical probability distribution for total contributing
area A. Here (to avoid binning issues), the cumulative probability
of exceedance PðA> aÞ is plotted for five nested subcatchments of
a relatively large basin (∼3,000 km2), showing clearly its power-law

character, jointly with the remarkable collapse of the rescaled plot
defining the finite-size scaling effect induced by the cutoff dictated
by the maximum area at each closure. The finite-size scaling
ansatz provides a compelling observational proof of self-similarity
and a strong version ofHack’s law (27) relating the largest upstream
stream length Lmax to its total cumulative area: Lmax ∝ Ah

max, with
h∼ 0:57. Hack’s coefficient h is a measure of the elongation of
catchment shapes and an unmistakable signature of the fractal
geometry of the river basin (1). The finite-size scaling argument
requires the linkage of aggregation and elongation yielding β= 1− h
(2, 17, 18), a framework in which the accepted standard values
β= 0:43 and h= 0:57 fit perfectly. Scaling in the river basin has
been documented in many other geomorphological indicators,
including exact limit properties (22). Such measures will be used
for comparative analyses with patterns derived from evolution
and selection.

OCNs
We start from a review of the static model of river networks known
as the OCN (11–13, 30). The OCN model was originally based on
the ansatz that configurations occurring in nature are those that
minimize a functional describing total energy dissipation and on
the derivation of an explicit form for such a functional (using,
locally, flow and energy loss, i.e., approximated by Qi ∼ Ai and by
the drop in elevation Δzi ∼Aγ−1

i ). Spanning, loopless network
configurations characterized by minimum energy dissipation
are obtained by selecting the configuration, say s, that mini-
mizes the functional:

HγðsÞ=
X

i

Aγ
i ; [1]

where i spans the lattice, say of N sites. Given that Ai =P
jWj;i Aj + 1, where Wj;i =Wj;iðsÞ is the element of the connectiv-

ity matrix, the configuration s determines uniquely, on a spanning
tree, the values of Ai. It is crucial, as we shall see later, that one
has γ < 1 directly from the physics of the problem subsumed by
the slope–area relation.
Optimal arrangements of network structures and branching

patterns result from the direct minimization of the functional in
Eq. 1. The basic operational problem to obtain OCNs for
a given domain is to find the connected path s draining it that
minimizes HγðsÞ without postulating predefined features, e.g.,
the number of sources or the link lengths (SI Text). Random
perturbations of an initial structure imply disconnecting and
reorienting a single link at a time. They lead to new config-
urations that are accepted, details aside (SI Text), if they lower
total energy expenditure—iterated until many perturbations are
unable to prompt change by finding better configurations.
Loops possibly generated by the random configuration search in
the fitness landscape were excluded at first without a rigorous
basis. Only later it was shown exactly that they lead to ener-
getically unfavorable configurations (23–25) (Dynamics and SI
Text). Boundary conditions are required for the evolving optimal
trees, as outlet(s) must be imposed (single or multiple outlets
along drainage lines) as well as no-flux or periodic boundary
conditions (2, 31, 32).
Fig. 2 illustrates the ensemble average of PðA≥ aÞ for 128 OCNs

obtained by a greedy algorithm (i.e., accepting only changes that
decrease total energy dissipation; SI Text), in a Monte Carlo
setting where the single outlet imposed as boundary condition
changes for every realization. Note that this result, yielding local
minima of the functional in Eq. 1, proves robust with respect to
initial and boundary conditions or to the insertion of quenched
randomness (2).
Interesting issues emerge on the statics, dynamics, and complexity

(33) of OCNs. Here, we shall discuss the following: the existence of
many dynamically accessible stable states; the practical impossibility
of pointing out a priori the most stable feasible state among all
metastable states without an evolutionary account of the history of

Fig. 1. Statistical evidence of scaling behavior in the fluvial landscape: fi-
nite-size scaling of total contributing catchment area. Empirical probability
distributions of contributing area are simply derived by computing A at
every location from topography and plotting the probability obtained by
counting the relative proportion of sites anywhere in the catchment whose
total contributing area exceeds a current value a, here expressed in square
kilometers. Empirical plot for five nested subcatchments of different maxi-
mum area Amax indicated in the legend. (Inset) Collapse plot of the proba-
bility distribution once properly rescaled. The empirical cutoff function is
argued to behave as Fða=AmaxÞ=PðA≥ aÞaβ , where β is estimated at 0.44. F is
shown to behave properly by collapsing into a single curve regardless of
widely varying Amax . Note that FðxÞ→0 for x→∞ and FðxÞ→ const for x→0.
The nested catchments belong to the Tanaro river basin (Italy).
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the current configuration of the system; the hierarchical structure
and the universality class of dynamically accessible states. Although
the above are features that river networks share with other natural
complex systems (33), the extent of observations and comparative
analyses, the exact relation to the general evolution equations, and
the broad range of scales involved suggest their interest as a general
model system of how nature works (19).

Exact and Computational OCN Analyses
The OCN model has been thoroughly explored (2, 13, 20, 28, 34).
A remarkable result is that local minima exhibit critical behavior
characterized by scaling exponents indistinguishable from those
observed in nature (2, 28). Before embarking in a technical dis-
cussion, we show examples of local and global minima of OCNs
for a multiple-outlet setting (Fig. 3). Fig. 3A shows the result
obtained by Eden growth generated by a self-avoiding random
walk, known to lead to suboptimal structures analog to the ones
attainable by enforcing only pointwise optimality (35, 36). Eden
growth is a benchmark because of its chance-dominated selection
(no necessity is implied by the self-avoiding random-walk dy-
namics, and only tree-like structures are selected by construc-
tion). Such structures were initially thought of as capturing the
essentials of natural selection (3). That turned out to be an ar-
tifact of nondistinctive tests on tree structure (28) echoed by the
statistical inevitability of Horton’s laws (37). Indeed, if topological
measures alone (say, Horton numbers of bifurcation and length
imposed on Strahler’s ordering, or Tokunaga matrices) are used
to sort out the fine comparative properties of trees, one can be
misled into finding spurious similarities with natural forms. The
exercise of comparing Fig. 3 A and B is revealing as the two
constructs have indistinguishable topological features, although
they differ even at eyesight (18, 25, 28).
Distinctive statistics of tree forms must rely on linked scaling

exponents of aggregated areas, lengths, and elongation (28).
Exact proofs are available like in the noteworthy case of Peano’s
basin (1, 34, 38), where topological measures match those of real
basins and OCNs, but fail to satisfy the requirements on aggre-
gation and elongation. More subtle—but equally clear—is the
failure of random-walk–type models (3) or topologically random

Fig. 2. Scaling of total contributing area in single outlet OCNs: ensemble
average of PðA≥ aÞ from 128 OCNs of size 128× 128 obtained by shifting the
outlet’s position for each realization. The dotted line represents an analo-
gous ensemble of realizations endowed with periodic boundary conditions
at the sides, which slightly steepen the ensemble mean scaling exponent
from 0.43 to 0:44± 0:01. (Inset) Four OCN realizations.

Fig. 3. Different degrees of optimality in multiple-outlet networks obtained in the same rectangular domain imply substantial modifications only detected by truly
distinctive statistics. (A) Optimality enforced only locally and tree-like constraints (35, 36) settle the system into unrealistic shapes whose topological structure is still
indistinguishable from the one found in real rivers and in dynamically accessible states of total energy minimization: Eden growth patterns of self-avoiding random
walks filling the domain. (B) An imperfect OCN (i.e., T =0; SI Text) leading to a local minimum of total energy dissipation. Note that OCNs bear long-lived signatures
of the initial condition owing to the myopic search procedure, but actually reproduce perfectly, besides topology, also the aggregation and elongation structures
observed in real river landscapes (2). (C) Ground-state OCNs obtained through simulated annealing using a very slow schedule of decreasing temperatures T (SI Text).
The reaching of the ground state is confirmed by the matching of the exact mean field exponents (20) with those calculated for C. Note also the somewhat
unrealistic regularity of the drainage patterns (redrawn after refs. 25 and 28).
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networks (39, 40) to comply with stringent statistical compar-
isons (28). Note that the latter models were especially influential
in suggesting that chance alone was behind the recurrence of
natural patterns, because of the equal likelihood of any network
configurations implied by the topologically random model. In-
stead, their purported similarity with natural patterns is now seen
as an artifact of lenient comparative tools because statistical
properties and “laws” derived in that context are inevitable for
spanning trees. This applies to certain properties of directed
networks as well (22).
Necessity is at work in the selection of natural networks

because all spanning trees are not equally likely. Fig. 3B (18) shows
a local minimum of Eq. 1 obtained by the greedy algorithm (SI
Text). The fine features of the trees match perfectly those found in
nature (2, 28). These results, obtained by accepting configurations
perturbed by disconnecting and reorienting a single link at a time
only if the new configuration lowers total energy dissipation, entail
a myopic search capable of exploring only close configurations.
Fig. 3C is instead obtained through the Metropolis procedure,
where a massive annealing strategy has been implemented. This
implies that many energetically unfavorable changes have been
accepted owing to a schedule of slowly decreased temperatures (SI
Text) reaching a ground state characterized by mean field scaling
exponents (ref. 20; see below), here matched perfectly. Even at
eyesight, the differences in the aggregation structure and in the
regularity of the selected landforms are striking.
Fig. 4 further elaborates on this point. It shows the progressive

departure of the exponent β from the typical observational value
of 0:43± 0:02 along with refinements of the minimum search
procedure (2). The scaling exponents of rapidly annealed minima
on highly constrained OCNs are consistently found in the range
β= 0:48± 0:010, whereas the limit value 0:50± 0:005, correspond-
ing to the ground state (20), is consistently obtained only for the
least constrained arrangements (Fig. 4B), that is, subject to mul-
tiple outlets, periodic boundary conditions, and through a sched-
ule of slowly decreasing temperatures in the annealing scheme to
avoid any legacy of the initial configuration. Each constraint
affects the feasible optimal state to a different degree depending
on its severity, matching the observation of consistent scaling ex-
ponents with minor but detectable variations in describing the
morphology of different fluvial basins (2). Different fractal sig-
natures embedded in linked scaling exponents thus suggest that
evolution is adaptive to the climatic, lithologic, vegetational, and
geologic environment. The worse energetic performance and yet
the better representation of natural networks by suboptimal OCNs
imply a defining role for geologic constraints in the evolution of a
channel network. In fact, channel networks cannot change widely
regardless of their initial condition, because these conditions leave

long-lived geomorphic signatures (41). A question, arguably of
general validity for open dissipative systems with many degrees
of freedom, is whether the optimization that nature performs in
the organization of the parts and the whole, could really be
farsighted—that is, capable of evolving in a manner that com-
pletely disregards initial conditions. This would allow for major
changes of structural features in the search for more stable con-
figurations even though it would necessarily involve evolution
through many unfavorable states. The experiments shown in
Figs. 2–4 suggest that the type of optimization that nature per-
forms, at least in the fluvial landscape, is myopic. The proof that
river networks are not free to explore extended regions of their
fitness landscapes suggests that nature might not search for
global minima in general when striving for optimality but rather
trades to settle in for dynamically accessible local minima whose
features are still scaling, although differently from the universal
features of inaccessible ground states.
Analytical results complete our static view of dynamically ac-

cessible optimal states (2, 17, 20, 28, 34). Exact properties for the
global minimum of the functional HγðsÞ in Eq. 1 are addressed
first. Let us consider two limit cases (γ = 0 and γ = 1). As per
H1ðsÞ, we denote with xi the along-stream length of the pathway
connecting the ith site to the outlet. It is straightforward to show
that

P
i Ai ∝

P
i xi (2, 20). Thus, the minimization of energy dis-

sipation for γ = 1 corresponds to the minimization of the weighted
path connecting every site to the outlet, i.e., the mean distance
from the outlet, and the global minimum is the most direct network.
The configurations yielding a minimum of H1ðsÞ is realized on a
large subclass of the set of spanning trees, all of the directed ones
where every link have positive projection along the diagonal ori-
ented toward the outlet. The γ = 1 case gives a minimum energy
scaling E∼L3 (where L is the characteristic linear size of the lat-
tice). This follows from the observation that any directed network
corresponds to the Scheidegger model of river networks (4), where
all directed trees are equally probable by construction. Such model
can be mapped into a model of mass aggregation with injection
exactly solved (8–10), later shown (42) to be map exactly the time
activity of the abelian sandpile model of self-organized criticality
(5). The corresponding scaling exponents are as follows:

β= 1=3;ψ = 1=2; h= 2=3:

All directed trees are equally probable having the same mean
distance to the outlet, and each stream behaves like a single
random walk (10).
The γ = 0 case, instead, implies the minimization of H0ðsÞ, the

total weighted length of the spanning tree. Every configuration has

A B

Fig. 4. Ensemble mean of the statistics of aggregated area in 100 realizations of OCNs generated with different boundary conditions: (A) plot of PðA≥ aÞ
obtained through ensemble averaging of the largest networks developing within 32×32, 64× 64, and 128× 128 lattices with multiple-outlet domains with
lateral periodic boundary conditions (no-flux condition at the top boundary). Here, local minima are found through a greedy search procedure (SI Text). Note
that the imposed periodicity relaxes constraints on the aggregation of the accessible minimum energy configurations. (B) As above for the largest lattice.
Here, the minimum search procedure is a carefully annealed Metropolis algorithm (SI Text). Note that the ensemble mean exponent is 0:5± 0:005, matching
the characteristics of the ground state (redrawn from ref. 2).
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the same energy because every spanning tree has the same number
of links (L2 − 1 for a L×L square lattice). The minimum energy
E gives E∼L2 for each network, in analogy to the problem of
random spanning trees, and the related scaling exponents for a
square lattice are as follows (20):

β= 3=8;ψ = 3=5; h= 5=8:

For arbitrary values of γ, it has been shown exactly (15) that
a configuration s that minimizes HγðsÞ also minimizes total po-
tential energy. In fact, for that configuration, one has

P
i A

γ
i ∝ z,

where the mean catchment elevation z∝
P

izi =
P

i
P

j∈xðiÞΔzj
[where xðiÞ is the path from i to the outlet] is constrained by
∇zi ∼ Δzi ∝ Aγ−1

i (the local drop in elevation Δzi along a drainage
direction is added Ai times, i.e., as many times as the contrib-
uting sites upstream of i).
For all 0< γ < 1, and in the thermodynamic limit ðL→∞Þ, the

globalminimum in the space,S, of all spanning trees of the functional
Eðγ;S′Þ=

P
i AiðS′Þγ scales with minS′∈SEðγ;S′Þ∼ maxðL2;L1+2γÞ

(where S′ denotes the subset of optimal trees). BecauseEðγ;S′Þ is
an increasing function of γ equal to L2 for γ = 0, then for γ ≥ 0 one
has Eðγ;S′Þ≥L2 (SI Text). The result (SI Text) is Eðγ;S′Þ≥L1+2γ

yielding the lower bound

E
�
γ;S′

�
≥max

�
L2;L1+2γ�

holding for every tree S, and thus also for the minimum over S′
(20). Relevant scaling exponents are derived from there. For in-
stance, as undirected networks have hAi∼Lφ, where φ≥ 1, and
recalling that β is the scaling exponent for total contributing area,
and the above result yields, for γ > β (17) (SI Text):

β= 1=2;ψ = 1;φ= 1; h= 1=2;

valid for γ ∈ ð1=2; 1Þ. The exponents are the same as in mean field
theory and for the Peano basin (34, 38), and indeed significantly
different from the range of scaling exponents observed in nature
(28). The most striking result is that the exponent of the distribu-
tion of aggregated areas is β= 1=2, quite different from the con-
sistent range 0:43± 0:02 for observational values (2).
The features of the minima of HγðsÞ=

P
iki A

γ
i ðsÞ, where ki

condenses information on spatial heterogeneities, are also re-
vealing. Two cases have been analyzed, namely the case of ran-
dom bonds modeling local heterogeneity (21, 34), and the case of
random spatial injections driving landscape-forming discharges.
In the first case, one obtains a bound for total energy dissipation
through an argument analogous to the homogeneous case—thus,
all exact results for the homogeneous case apply (34). A different
type of heterogeneity, however, may be introduced through the
forcing injection field ri [recall that the accumulated flow Qi is the
sum of the injections over all connected sites upstream of site i
(included), i.e., Qi =

P
jWjiQj + ri]. One thus wonders about dif-

ferences between the probabilities of accumulated flow, PðQ≥ qÞ,
and area, PðA≥ aÞ (where Ai =

P
jWji Aj + 1). In fact, optimization

would have to be carried out by minimizing HγðsÞ=
P

iQ
γ
i , the

proper energy dissipation functional, to collapse into equivalent
formulations when Q∼A for uniform injections. Hence one
expects different degrees of aggregation, reflected in cumulated
areas, depending on the spatial patterns of injection. This is actu-
ally the case (Fig. 5). Formally, this can be seen in the Kullback–
Leibler (KL) divergence framework (43), where, given two prob-
ability distributions [like those yielding PðQ≥ qÞ and PðA≥ aÞ],
their KL divergence quantifies the loss of information incurred

Fig. 5. Ensemble average of the statistics of 100 OCNs obtained for a heterogeneous injection field. Here, the injection term ri (i= 1,L2, where L is the lattice
size) is, for each OCN, one realization of a random space function (RSF) log-normally distributed with unit mean (for consistency) and variance equal to 2:
(Upper Left) comparative analysis of the ensemble mean probabilities PðQ≥qÞ (blue) and PðA≥aÞ (red). The correlation scale of the RSF ri is set at L=20.
(Lower Left) Same for the above with correlation scale at L=4. (Right) OCN where the size of the channel is drawn proportionally to Q. One notes thin channels
extending at large contributing areas in correspondence to the patches of relatively weak injections.
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when one is used to approximate the other. Fig. 5 shows that the
structure of the aggregation is altered by the correlation structure
of the injection field (highlighted by diverging distributions for Q
and A). Consistently with the ansatz labeled “practice makes crit-
ical” (43), the effect of added heterogeneity is that of making the
system more critical, as underlined by the sharper finite-size effect
(blue curves). The correlation scale of the forcing noise affects the
scaling exponent of aggregation implying the selection of scaling
landforms that adapt to environmental frustrations.

Dynamics
River landscapes may be defined by nodes on a regular lattice
representing the elevation field where network links are de-
termined by steepest descent on the topography whose evolution
determines the network structure. The equation that has been
proposed to describe the evolution of the landscape, among a
realm of essentially equivalent forms (e.g., refs. 2, 14, 21, 24, 44,
and 45), is as follows:

∂z
�
t; x→

�

∂t
= −αQ

�
t; x→

�m��� ∇
→
z
�
t; x→

�
 
���
n
+D∇2z

�
t; x→

�
+U; [2]

where z again denotes the elevation at the point x→= ðx; yÞ of the
substrate plane. The first term at the right-hand side is an ero-
sional component relevant to channeled sites, and the second is
a diffusive term known to portray hillslope evolution; the third
term is a constant term modeling the geomorphologic uplift in
tectonically active areas. The existence of uplift originating in
tectonic forces allows a landscape to evolve forced by two con-
currently active processes, uplift (endogenic) and degradation
(exogenic). A stationary state results from their balance. A sim-
ple argument leading to Eq. 2 follows from the general form
_z=Fð∇

→
z;∇2z; . . . ;QÞ, where an explicit dependence on z is ex-

cluded because it would break translational invariance (21, 24).
Note that landscape-forming fluxes Q

→
(a 2D vector) become

scalars, i.e., Q= jQ→j∼ A because Q
→

is assumed parallel to ∇
→
z

(21, 24), where we introduce A, total contributing area at x→, as
a proxy the landscape-forming discharge (3). The diffusive term
acts on the surface even at points with zero contributing areas
unlike the first term, which vanishes when the flux becomes zero.
In the absence of the diffusive term, the presence of maxima on
the surface will cause the formation of singularities during the
evolution, because, e.g., points at the top of a hill will never be
eroded by the first term (both A and ∇

→
z vanish). The presence of

a diffusive term, however small, is then essential (24). In the
discretized version of the model, however, each site collects at
least a unit area and thus no singularities appear even in the
absence of the diffusive term. Reparametrization invariance in
the small gradient approximation requires that to leading order
one has m= 1; n= 2 (21, 24). The above is consistent with estab-
lished geomorphological tenets: fluvial processes in landscape-
forming events (whose erosive transport rates are defined by
αA∇z2) are responsible for the imprinting of the network by
landscape-forming events. Hillslope processes—mass wasting de-
fined by the divergence of a diffusive flux yielding the term D∇2z
in Eq. 2—act over larger timescales by smoothing landscapes
without the capability of altering their basic fluvial signatures (41).
An interesting question is how networks resulting from the

erosional dynamics are related to the landforms arising from
minimization of total energy dissipation. Specifically, any land-
scape reconstructed from an optimal configuration using the
slope–area relation has been shown to be a stationary solution of
the evolution equation (Eq. 2). This superficially might seem
obvious because the relation between topographic gradients and
cumulative area is locally verified by construction [the stationary
solutions of Eq. 2 ð_z= 0Þ require that j∇→zj∝ A−m=n if U ≠ 0, thus
γ =m=n= 1=2]. One must notice, however, that the slope–area

relation alone does not imply stationarity because the flow may
not (and in general will not) be in the direction of the steepest
descent in the reconstructed landscape (23). Thus, OCNs consist
of the configurations s, which are local minima of Eq. 1 in the
sense specified below: Two configurations, s and s′, are close if
one can move from one to the other just by changing the di-
rection of a single link (i.e., the set of links s ∪ s′ represent
a graph with a single loop). A configuration s is said a local
minimum of the functional in Eq. 1 if each of the close config-
urations s′ corresponds to greater energy expended. Note that
not all changes are allowed in the sense that the new graph again
needs to be loopless. Thus, a local minimum is a stable config-
uration under a single link flip dynamics, i.e., a dynamics in
which only one link can be flipped at a given time only when the
move does not create loops and decreases the functional Eq. 1.
Any elevation field obtained by enforcing the slope–area relation
to a configuration minimizing at least locally the functional Eq. 1
is a stationary solution of the landscape evolution equation
yielding the slope–area rule at steady state. This, in turn, implies
that the landscape reconstructed from an optimal drainage net-
work with the slope–area rule is consistent with the fact that the
flow must follow steepest descent. The proof can be sketched as
follows: consider a configuration realizing a local minimum of
the dissipated energy, and a site i. The link issuing from i will join
one of the nearest neighbors of i, say k. Let j be one of the
remaining nearest neighbors such that changing the link from
i→ k to i→ j one still gets an allowed configuration. Paths emerging
from k and j will intersect downstream in a given point w (case a)
or will never intersect until they reach their outlets (case b). Let
Skj denotes the set of all points in the path from k to w in the first
case and from k to its outlet in the second. Likewise, one may
define Sjk . Changing the link from i→ k to i→ j will cause only
the areas of sites belonging to the sets Skj and Sjk to change. In
particular, all areas in the set Sjk will be increased of an amount
equal to the area Ai contributing to the flow through i, and all
areas in the set Skj will be decreased by that amount. Thus, such
a change will cause a change ðΔHÞk→j in the dissipated energy
equal to the following:

ðΔHÞk→j =
X

x∈Sjk

½ðAx +AiÞγ −Aγ
x �+

X

x∈Skj

½ðAx −AiÞγ −Aγ
x �;

where γ = 1=2 and Ax are the contributing areas before the flip.
The condition for a configuration to be a local minimum of HγðsÞ
translates into the set of conditions ðΔHÞk→j > 0 for each i and j
such that j is a nearest neighbor of i and gives rise to a loopless
configuration. The elevation field determined by the local min-
imum configuration through the slope–area relation represents
a stationary solution of the landscape evolution equation when
the elevation field determined by a graph using slope–area rela-
tions is such that the drainage directions derived with the steep-
est descent rule yield again the graph from which the elevation
field originated. This implies that if i→ k is the drainage direc-
tion in the point i, the biggest drop in elevation from i to its
nearest neighbors is in the direction of k. This condition yields
zðjÞ> zðkÞ for any j that is a nearest neighbor of i and different
from k. The converse is not true, however, i.e., a stationary so-
lution of the landscape evolution equation is not necessarily
a local minimum of the dissipated energy under the single link
flip dynamics. Thus, minimizing the functional in Eq. 1 leads
exactly to configurations that solve Eq. 2 in stationary conditions.
The proof for the general case 0< γ < 1 is elsewhere (24).

Complexity
The transformations due to coarse graining of the state of a given
system is termed renormalization, and the goal is to study quan-
titatively the change that a physical quantity undergoes under
different degrees of aggregation. We will focus on the behavior
of energy dissipation of OCNs under coarse graining. Because
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optimal energy expenditure is the foundation of the OCN concept,
its variation under a change in the scale of observation of the
landscape is of considerable importance. Although a full account
is reported elsewhere (2), here it suffices to coarse grain the site
of a lattice of size L in squares of side L=λ, where the initial OCN
is described at a resolution of pixels of side length L ðλ= 1Þ. The
conserved property is elevation: The 3D structure of the OCN is
assigned everywhere through the exact slope–area relationship
ΔziðAiÞ=A−1=2

i , where Δzi approximates the topographic gradient.
The original sites are then grouped in squares of side L=λ, with
λ≥ 2 (Fig. 6), such that, from an initial number of pixels N, one
coarse grains the description of the terrain to a total number of
pixels N=λ2. The elevation of each of the new sites (a larger
pixels of side λL) is computed as the average elevation of the λ2

constituent pixels of side length L. From this coarse-grained 3D
landscape, a new drainage network is drawn following as flow
directions the lines of steepest descent as in the original construct.
The above transformation preserves the mean elevation of the
basin [and thus its drainage network is still an OCN (2)]. Examples
of OCNs progressively coarse-grained according to the previous
rules are shown in the Inset of Fig. 6. The key result highlighted
therein is that effectively the probability distribution of aggregated
area is invariant under coarse graining, i.e., PðA> aÞðλÞ ∼PðA> aÞ.
Under such premises, one obtains that total energy expenditure
E of OCNs under coarse-graining scales as follows:

EðλÞ ∝ λ−δE;

with δ= 2ð1− βÞ∼ 1:1− 1:2> 0 (2). All of the above shows the
statistical invariance of OCNs with the transformation group that
preserves the mean elevation (and thus the total energy dissipation)
of the system. This is deemed as fundamental evidence of the
fractal features of minimum energy structures.
A remarkable result is that every tree is a local minimum of Eq. 1

when γ < 1, a result hinted at above and formally demonstrated
elsewhere (23, 24). As noted above, it explains why the original
ansatz of accepting only spanning tree configurations, as opposed
to standard looping networks, was correct after all (SI Text). Fig. 7
illustrates the main result in the simple case of a four-bond lattice,
a case that has been generalized to arbitrary lattices (23).
Finally, central to models postulating chance-dominated net-

work selection is the assumption of equal likelihood of any tree-
like configurations. The foundations of OCNs, however, postulate
that certain spanning loopless network configurations are more
likely than others. Indeed, their overall likelihood is controlled
by the functional Eq. 1 defining total energy expenditure of the
network structure both as a whole and in its parts. The set of
possible configurations for the system is constituted by the en-
semble of all rooted trees spanning a given lattice of sites defined
by a complete set of oriented links among connected neighbor
sites. Following ref. 46, the thermodynamic rationale behind the
scaling properties of the energy and entropy of OCNs can be
studied by assigning a probability PðsÞ to each particular
spanning tree configuration s, i.e., PðsÞ∝ e−HðsÞ=T , where T is
a suitable parameter resembling Gibbs’ temperature of ordinary
thermodynamic systems. The functional HðsÞ is the Hamiltonian
of the system, i.e., a global property related to energetic charac-
ters. Network models where all spanning trees are equally likely is
the limit case for T →∞. OCNs belong to the class of config-
urations where HðsÞ=HγðsÞ=

P
i A

γ
i (where i spans the L2 sites

occupied by a L×L square lattice) and represent the maximum
probability case for T → 0. We show, following ref. 46, that the
OCN concept applies at any finite temperature for L→∞. For
a fixed γ, let HγðSÞ denote the finite set of all possible values that
may be taken on byHγðsÞ for trees s∈S. Given an energy level, E,
let NðEÞ be the degeneracy, or the number of different spanning
trees s for which HγðsÞ=E. One has PðHγðsÞ=EÞ=

P
s:HγðsÞ=E

PðsÞ∝ NðEÞe−E=T . Defining formally the thermodynamic entropy
as σðEÞ= log NðEÞ, one obtains PðHγðsÞ=EÞ∝ e−FðEÞ=T , where
a free energy FðEÞ=E− T σðEÞ has been introduced. Indeed, the
most probable states correspond to an energy level E that mini-
mizes FðEÞ. One has exactly that for the set s∈SE of OCNs it is
E=mins HγðsÞ ∝ L2+δ with δ> 0 for γ ≥ 1=2 (SI Text). For

Fig. 6. Effects of coarse graining at different levels λ of the probability of
exceedence of total area A for the OCNs shown in Inset. It is remarkable the
invariance of the probability distribution under coarse graining, a signature
of the scaling aggregation structure. (Inset) Renormalized OCNs with λ=1
(Upper Left), λ= 2 (Upper Right), λ= 4 (Lower Left), and λ= 8 (Lower Right).

A B C

Fig. 7. The four-bond lattice. (A) The four-node arrangement, with indications on the currents that respect continuity (note that a unit flux is injected at each
node). The dot is the outlet. Here, the current a is taken as the parameter regulating the entire distribution of fluxes owing to continuity. (Lower Left) The
only loopless configurations of the system are generated by integer values of a: possible trees correspond to the cases a= 0,− 1,1,2. (B) Plot of the function E
vs. a from E = jajγ + ja+ 1jγ + j1− ajγ + j2− ajγ (with γ = 0:5), which is derived by computing energy dissipation after implementation of continuity at the nodes.
In particular, the plot of EðaÞ highlights that there are local minima in correspondence with one of the four currents being zero (a= 2,1,0,− 1), corresponding
to the four trees shown in Lower Left (SI Text). (C) Energy functions EðaÞ vs. a for the cases γ = 0:5,0:75,1,2. The particular behaviors highlighted in the plot are
discussed in SI Text.
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spanning trees, the number NðEÞ of configurations s with given
energy E scales as NðEÞ∝ μL

2
(46). We thus conclude that, for

OCNs with γ ≥ 1=2, in the limit L→∞, entropy scales sub-
dominantly to the energy with system size (SI Text), i.e., the con-
figuration s that minimizes Hγ also minimizes FðEÞ whatever the
value Gibbs’ parameter T , provided that the system is large
enough. Hence OCNs, which would correspond to T = 0, re-
produce natural conditions for any “temperature.” Because flu-
vial networks usually develop migration of divides and
competition for drainage in the absence of geologic controls over
domains large with respect to the scale of channel initiation, it is
likely that natural networks evolve under conditions that well
approximate the thermodynamic limit L→∞.
The OCN model has been shown to belong in the class of self-

organized critical approaches (2, 19) through a sandpile-like cel-
lular automaton of river network evolution (15). Developments
and applications of OCNs have appeared recently. For example,
OCN arrangements have been used to design laboratory experi-
ments with protist metacommunities where patches (true living
ecosystems) are arranged in optimal network shapes to simulate
the type of directional biological dispersal one expects in fluvial

environments (47, 48), or used in spatially explicit models of
epidemics of waterborne disease where river networks act
as ecological corridors for pathogens (49). The OCN concept of
feasible optimality has inspired a number of studies on fractal
structures in nature not necessarily related to true equilibrium
properties of the system, e.g., a class of nonequilibrium interfaces
in random exchanges Ising ferromagnets (50). Also, 3D OCNs
have been proposed and compared with metabolite distribution
networks in organisms to deduce allometric scaling properties
(32). Preliminary comparisons of Steiner trees with OCNs also
promise avenues of research (32). The finding that 3D OCNs
have characteristics analogous to 2D versions, as well as scaling
properties similar to metabolic networks in biological organisms,
suggest that they may prove more than academic exercises.
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