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Abstract
For decades, it has been hypothesized that gene regulation has had central role in human
evolution, yet much remains unknown about the genome-wide impact of regulatory mutations.
Here we use whole-genome sequences and genome-wide chromatin immunoprecipitation and
sequencing data to demonstrate that natural selection has profoundly influenced human
transcription factor binding sites since the divergence of humans from chimpanzees 4–6 million
years ago. Our analysis uses a new probabilistic method, called INSIGHT, for measuring the
influence of selection on collections of short, interspersed noncoding elements. We find that, on
average, transcription factor binding sites have experienced somewhat weaker selection than
protein-coding genes. However, the binding sites of several transcription factors show clear
evidence of adaptation. Several measures of selection are strongly correlated with predicted
binding affinity. Overall, regulatory elements seem to contribute substantially to both adaptive
substitutions and deleterious polymorphisms with key implications for human evolution and
disease.

It has long been argued that mutations affecting mechanisms of gene regulation must have
had a prominent role in the evolution of humans and other mammals1–3. For several
theoretical reasons, transcription factor binding sites and other cis-regulatory sequences may
be particularly important in evolutionary adaptation4–7. For example, mutations in such
sequences might help to minimize the functional tradeoffs associated with evolutionary
changes because these elements often primarily influence the expression of a single gene in
a particular cell type or under a particular condition, whereas proteins tend to have broader
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effects. In addition, cis-regulatory mutations are often co-dominant (neither allele
dominates), which may allow natural selection to act on them more efficiently than on
protein-coding mutations. Accordingly, several examples of phenotypic changes driven by
cis-regulatory mutations have been identified in recent years, including pigmentation and
bristle patterns in Drosophila melanogaster, skeletal reduction in stickleback fish and
lactose persistence in humans7,8. In addition, some genome-wide analyses have found bulk
statistical evidence of natural selection in noncoding regions near genes, presumably due to
cis-regulatory elements9–12.

Nevertheless, evidence in support of the overall prominence of cis-regulatory mutations in
evolutionary adaptation remains largely anecdotal and indirect, and there is continuing
controversy about the relative roles of regulatory and protein-coding sequences in
evolution8. Large-scale genomic studies of the evolution of transcription factor binding sites
have the potential to advance this debate, but a major limitation of such studies so far has
been a lack of precisely annotated binding sites across the genome. The analysis of
conserved noncoding sequences and/or promoter regions rather than experimentally
identified transcription factor binding sites tends to dilute the signature of natural selection
and makes it more difficult to connect DNA mutations with fitness-influencing phenotypes.
In addition, because polymorphisms are sparse and provide weak information at individual
binding sites, most studies have either pooled polymorphism counts across genomic
regions9,13, which can produce significant statistical biases14, or they have relied on
divergence patterns over longer evolutionary time scales10,12,15, which can be influenced by
binding site turnover, alignment errors or misidentifications of orthology. As a result, many
questions remain about the manner in which transcription factor binding sites evolve and the
general functional consequences of noncoding mutations.

We sought to address these questions using two types of data that have recently become
available: whole-genome sequences for dozens of human individuals16,17 and genome-wide
chromatin immunoprecipitation and sequencing (ChIP-seq) data identifying binding sites for
dozens of transcription factors in multiple human cell types18. We also made use of whole-
genome sequences for several nonhuman primates, which enable patterns of human
variation to be contrasted with patterns of molecular evolution since the divergence of
humans and their closest living relatives 4–6 million years ago. To interpret these data, we
made use of a new probabilistic method, called Inference of Natural Selection from
Interspersed Genomically coHerent elemenTs (INSIGHT), that characterizes the effects of
natural selection on collections of short transcription factor binding sites. Our analysis of
these data using INSIGHT sheds new light on the evolution of transcription factor binding
sites in the human lineage.

RESULTS
Probabilistic model

Full mathematical details of the INSIGHT model and inference procedure are presented
separately19, but we summarize the approach here to aid in the interpretation of our results.
Similar to McDonald-Kreitman–based methods for identifying departures from
neutrality9,20–22, INSIGHT obtains information about natural selection by contrasting
patterns of polymorphism and divergence in transcription factor binding sites with those in
flanking neutral regions, thereby mitigating biases from demography, variation in mutation
rate and differences in coalescence time. However, INSIGHT improves substantially on
these methods by making use of a full generative probabilistic model, directly
accommodating weak negative selection23, allowing information from many short (~10-bp)
elements to be combined in a rigorous manner and integrating phylogenetic information
from multiple outgroup species with genome-wide population genetic data.
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The INSIGHT model (Supplementary Fig. 1) assumes that nucleotides within a transcription
factor binding site evolve by a mixture of four selective modes: (i) neutral drift, (ii) weak
negative selection, (iii) strong negative selection and (iv) positive selection. All flanking
nucleotides are assumed to evolve neutrally. This coarse-grained, categorical approach to
modeling the distribution of fitness effects (DFE) is inspired by a simpler method developed
for protein-coding genes in Drosophila24 and by observations indicating that the data
contain only limited information about a full, continuous DFE25,26. Three key assumptions
allow these selective modes to be disentangled. First, strong selection (positive or negative)
is assumed to eliminate polymorphism because it causes mutations to rapidly reach fixation
or be lost24. Second, weak negative selection permits polymorphism, but does not allow
derived alleles to reach high frequencies27. Third, positive selection tends to favor the
fixation of derived alleles (such events are denoted ‘adaptive substitutions’), whereas
negative selection (strong or weak) guarantees that derived alleles will eventually be lost.
Consequently, information about the overall prevalence of selection derives primarily from
rates of high-frequency derived alleles, information about positive selection comes from
levels of divergence, and information about weak negative selection comes from relative
rates of low- and high-frequency derived alleles, all in transcription factor binding sites
relative to flanking neutral regions.

Maximum-likelihood estimates of the model parameters yield three quantities of particular
interest: (i) the fraction of sites under selection (ρ) and the expected numbers of (ii) adaptive
substitutions (E[A]) and (iii) weakly deleterious polymorphisms (E[W]) (Table 1 and Online
Methods). The model allows for likelihood ratio tests for negative and/or positive selection
and the straightforward estimation of confidence intervals for all parameters. Model
parameters can also be used to obtain estimates of two ratios that have been of interest in
previous studies: the fraction of fixed differences driven by positive selection (α)22,27 and
the fraction of polymorphisms subject to weak negative selection (here denoted τ)28,29.
However, because the denominators of α and τ are strongly influenced by both negative and
positive selection, we focus on the more readily interpretable quantities E[A] and E[W] in
our analysis.

Simulation study
To test our methods, we generated synthetic data sets consisting of 10,000 instances of a 10-
bp transcription factor binding site with various mixtures of selective effects, flanked by
5,000 neutral bases on each side (Supplementary Note). We then estimated all model
parameters (Table 1 and Online Methods) from each data set and compared our estimates
with the ‘true’ values used in the simulation (Supplementary Note). We found that our
model-based estimates substantially improved on estimators based on divergence alone,
polymorphism alone or the McDonald-Kreitman framework22. In particular, divergence-
based estimators tended to be distorted by combinations of positive and negative selection
(which have opposing influences on substitution rates; Fig. 1, rows 2 and 3), whereas
polymorphism- and McDonald-Kreitman–based estimators were biased in the presence of
weak negative selection23,27 (Fig. 1, rows 1 and 3). Our model-based estimates, by contrast,
could accommodate combinations of selective effects with minimal bias. In addition, our
estimates were robust to the assumption of a realistically complex demographic history,
unlike methods that estimate a full DFE from the site frequency spectrum25,30–32, which
typically require corrections for demography when applied to real data. Our methods did
slightly underestimate ρ in the presence of moderate positive selection because many
positively selected mutations are lost to drift and leave no signature in the data.
Nevertheless, the effect on estimates of adaptive substitutions (E[A] and α) was small.
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Patterns of selection on transcription factor binding sites
Next, we applied our methods to real data describing transcription factor binding sites,
human polymorphism and patterns of divergence in primate genomes. First, we developed a
pipeline for identifying high-confidence binding sites using ChIP-seq data from the
Encyclopedia of DNA Elements (ENCODE) Project18. Briefly, this pipeline involved de
novo motif discovery, manual inspection of motifs and binding-site prediction at ChIP-seq
peaks, followed by filtering (Supplementary Note). Data were combined across cell types.
Our pipeline yielded a total of 1.4 million binding sites for 78 transcription factors, with
582–106,113 binding sites per transcription factor (median of 9,748; Supplementary Table
1). Each transcription factor binding site was associated with a collection of putatively
neutral nucleotide positions in a 20-kb block containing the binding site. These neutral
positions excluded known protein-coding and RNA genes, conserved non-coding elements,
their immediate flanking sites and the predicted transcription factor binding sites, leaving an
average of 7,315 neutral sites per block. Finally, we summarized patterns of polymorphism
and divergence within transcription factor binding sites and flanking neutral sites using
high-coverage human genome sequence data for 54 unrelated individuals of diverse ancestry
from Complete Genomics17 and synteny-based alignments of the chimpanzee33, orangutan34

and rhesus macaque35 genomes (Supplementary Note).

We applied our model and inference procedure to the complete set of binding sites for each
transcription factor and obtained transcription factor–specific estimates of all parameters and
expected values (Fig. 2). For comparison, we also applied our methods to second codon
positions (CDS2 sites, at which all mutations cause amino acid substitutions) in 15,864
protein-coding genes that were carefully filtered to avoid errors from alignment, orthology
identification and gene annotation (Supplementary Note). We obtained an average estimate
across transcription factors (weighted by the number of nucleotides considered) of ρ = 0.33
(Fig. 2a and Supplementary Table 2). In comparison, our estimate for CDS2 sites was ρ =
0.80 (Supplementary Table 3), in reasonable agreement with estimates of 0.70–0.76 from
comparative genomic analyses15,36. Thus, we detect a strong signature of natural selection in
transcription factor binding sites, with about a third of nucleotides estimated to be under
selection, but the fraction is considerably lower than at CDS2 sites. Notably, our comparison
excluded synonymous sites in protein-coding genes but included analogous positions in
transcription factor binding sites at which transcription factors exhibit, at most, weak base
preferences.

We observed considerable variation across transcription factors in the estimates of key
parameters (Fig. 2). Not unexpectedly, many of the transcription factors showing the
strongest evidence of natural selection in their binding sites, such as ZEB1, SP2, FOXP2,
ATF3 and BAF170, have fairly short binding sites (6–9 bp) with strong base preferences and
few degenerate positions. Many of these transcription factors have relatively few binding
sites in our set (700–2,000). Basic helix-loop-helix (bHLH) proteins were significantly over-
represented among the transcription factors associated with strong selection, with five of six
bHLH proteins ranking in the top third by ρ (P = 0.014, one-sided Fisher's exact test).
Transcription factors having roles in apoptosis and development were slightly
underrepresented (Supplementary Tables 4–6). A substantial fraction of the variation in
estimates of ρ was explained by the information content of the associated motifs (R2 = 0.27;
Fig. 3a), a measure of the average binding affinity of the transcription factor for its binding
sites. This finding suggests that the same forces that constrain the sequences of many
binding sites across a genome also influence patterns of evolution at each individual
transcription factor binding site (as has been observed over longer evolutionary time
scales15,37). For transcription factors that have many binding sites, it was possible to
estimate a separate ρ value for each position within the motif, and, in several of these cases,
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we observed a clear correlation between position-specific estimates of ρ and information
content (Fig. 3b).

Notably, a substantial minority of transcription factors showed significant evidence of
positive selection in their binding sites (Fig. 2). We estimated that, on average, an adaptive
substitution occurred about once for every ~8,300 nucleotides in transcription factor binding
sites (E[A] per kilobase = 0.12) (Fig. 2b), and about 1 in 20 recent nucleotide substitutions in
binding sites had been driven by positive selection (α = 0.05). By contrast, CDS2 sites
showed little evidence of adaptive evolution on average (E[A] per kilobase ≈0, α ≈0 for all
sites pooled). Classes of genes previously described as being under positive selection38,39

showed evidence of adaptation by our methods, but seven transcription factors had estimated
values of E[A] per kilobase that exceeded those for positively selected genes (Fig. 2b and
Supplementary Fig. 2). We also found substantial evidence of weak negative selection in
transcription factor binding sites, with an average estimate of E[W] per kilobase of 1.3, 30%
greater than the estimate for CDS2 sites. Overall, our results support previous findings that
negative selection is dominant in the evolution of human protein-coding sequences, with
positive selection primarily influencing a relatively small subset of genes25,32,38, but they
indicate that positive selection has had a somewhat more pronounced influence on binding-
site evolution, at least for some transcription factors.

The two transcription factors whose binding sites showed the strongest evidence of positive
selection, as measured by E[A] per kilobase, were the GATA-binding zinc-finger proteins
GATA2 and GATA3, both key regulators of gene expression in hematopoietic cells.
GATA2 and GATA3 are unusual among the transcription factors associated with strong
selection in having fairly large numbers of binding sites (27,475 and 15,617, respectively),
which together contribute an expected 312 adaptive substitutions, 19% of the total from all
transcription factor binding sites in our study. By contrast, binding sites for the third
member of this family, GATA1, showed much weaker evidence of selection. The 50,389
binding sites for MAFF, a basic leucine-zipper protein best known for enhancing expression
of the oxytocin receptor gene (OTR) but also thought to have broad roles in the cellular
stress response, contributed an additional 286 adaptive substitutions (18% of the total). Also
of interest was the presence of the forkhead-box protein P2 (FOXP2) among transcription
factors whose binding sites are under strong selection, given apparent positive selection in
this gene's protein-coding sequence and its possible role in the development of human
speech40. However, FOXP2 has relatively few binding sites in our set (743), and evidence
for selection was not statistically significant.

Correlation with binding affinity
To allow for variability across transcription factor binding sites, we estimated the local
binding affinity of each binding site in our set (Supplementary Note) and then partitioned all
binding sites by binding affinity and estimated ρ values separately for each group. We
observed a strong correlation between binding affinity and ρ (R2 = 0.87; Fig. 3c), indicating
that the strength of natural selection at individual binding sites is well predicted by local
binding affinity. We also compared the signatures of selection at transcription factor binding
sites that have experienced recent affinity-increasing and affinity-decreasing mutations and
found that affinity-increasing mutations showed an enrichment for adaptive substitutions,
whereas affinity-decreasing mutations showed an enrichment for weakly deleterious
polymorphisms (Supplementary Fig. 3).

Additional correlates of selection
We examined several other possible covariates of natural selection on transcription factor
binding sites and identified a few other trends of interest. The fraction of sites under
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selection, ρ, was positively correlated with the expression levels of associated genes,
consistent with observations in protein-coding sequences39 (R2 = 0.36, P = 0.002;
Supplementary Fig. 4a). We also observed a positive correlation between ρ and the number
of cell types in which each transcription factor binding site was bound as determined from
our ChIP-seq data (R2 = 0.22, P = 0.0004; Supplementary Fig. 4b) and a negative correlation
between the prevalence of weak negative selection (E[W] per kilobase) and distance to the
nearest coding exon (Supplementary Fig. 5). We found no significant correlations with the
tissue specificity of gene expression or distance to the transcription start site. In tests for
elevated or reduced values of ρ, E[A] per kilobase and E[W] per kilobase near subsets of
transcription factor binding sites associated with putative target genes of particular Gene
Ontology (GO)41 categories, several transcription factors showed elevated values of E[A]
per kilobase (indicating adaptive evolution) near genes involved in neural processes,
consistent with a recent analysis of the promoter regions of primate genomes10. Other
transcription factors showed elevated values of ρ near genes involved in development or
cellular differentiation (Supplementary Tables 7–9 and Supplementary Note). To enable
other researchers to explore this data set further, we created a UCSC Genome Browser track
that displays all analyzed transcription factor binding sites and summarizes all relevant
parameter estimates (Supplementary Fig. 6).

Total numbers of adaptive and deleterious mutations
We applied our model to the 15,864 filtered protein-coding genes described, treating each
coding exon as a ‘locus’ and drawing neutral sites from flanking regions. We then compared
estimates of the total expected number of adaptive substitutions (E[A]) for these coding
sequences and our 1.4 million transcription factor binding sites. (We experimented with
several approaches for fitting the model to coding sequences and here report results for the
approach that was most sensitive to adaptation; Supplementary Note.) This analysis
produced cumulative estimates of E[A] = 4,786 for coding sequences and E[A] = 1,635 for
transcription factor binding sites (Fig. 4a and Supplementary Table 3) or about 1.5 and 0.5
adaptive substitutions per hundred generations (ASPHG), respectively, assuming an average
genomic divergence time of 6.5 million years42 and an average generation time of 20
years43. Our estimate for coding sequences implies that the fraction of fixed differences
driven by adaptation in coding regions is ~20%, in reasonable agreement with estimates of
10–35% from previous studies25,27,44. When we extrapolated to all annotated protein-coding
genes, our coding sequence estimate rose to E[A] = 8,954 or 2.8 ASPHG (Supplementary
Note). Although our filtered gene set may not be representative of genome-wide coding
sequences in all respects, it provides an approximate benchmark against which to compare
the estimate for our 1.4 million transcription factor binding sites. Despite the incompleteness
of our transcription factor binding site annotations, their estimated cumulative contribution
to adaptive substitutions is nearly one-fifth that estimated for all protein-coding sequences
(1,635 versus 8,954 adaptive substitutions). We also compared total expected numbers of
weakly deleterious polymorphisms, obtaining estimates of E[W] = 16,937 for coding
sequences and E[W] = 17,024 for transcription factor binding sites (Fig. 4b). Extrapolating
to a full set of genes, as above, yielded E[W] = 31,687 for coding sequences, suggesting that
the contribution of weakly deleterious polymorphisms from our transcription factor binding
sites is more than half that from all coding sequences.

Using the minor allele frequency at each site, we could further calculate the expected
numbers of weakly deleterious mutations per haploid genome (E[D]) for coding sequences
and transcription factor binding sites. Here a deficiency of rare alleles and a slight
enrichment for more common low-frequency alleles in transcription factor binding sites
relative to coding sequences (Fig. 4c) disproportionally increased the estimates for
transcription factor binding sites, yielding E[D] = 386.1 and E[D] = 431.1 for coding
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sequences and transcription factor binding sites, respectively (Supplementary Fig. 7). The
extrapolated estimate for a full set of genes was E[D] = 722.3, which is fairly similar to
previous estimates of 500 (ref. 45) and 674 (ref. 46) (Supplementary Note). Thus, we
estimated the contribution of deleterious mutations per haploid genome from our
transcription factor binding sites to be well over half the total contribution from coding
sequences. Notably, common low-frequency alleles accounted for a substantially larger
fraction of deleterious mutations in transcription factor binding sites than in coding
sequences (Fig. 4d), which may have implications for human disease.

DISCUSSION
Since the discovery by Jacob and Monod of the cis-regulatory control of transcription more
than 50 years ago47, there has been a great deal of speculation about the role of cis-
regulatory elements in evolution1–7. Complete genome sequences and genome-wide ChIP-
seq data make it possible to begin to examine these issues empirically on a genomic scale.
Using a novel statistical approach designed to exploit these new data, we have shown that
natural selection has indeed exerted substantial influence on transcription factor binding
sites in the human genome. The transcription factor binding sites we have analyzed have
some limitations—for example, some may represent sites of nonfunctional protein binding
or may be present only in the immortalized cell lines examined by ENCODE—but our use
of experimentally defined binding sites leads to a much clearer signature of selection than
has been observed in studies based on less precisely defined noncoding regions proximal to
genes9–11. Notably, we obtain qualitatively similar results when applying our methods to
alternative genome-wide sets of transcription factor binding sites (Supplementary Note).

We estimate that, overall, the transcription factor binding sites analyzed in this study have
contributed nearly a fifth as many adaptive substitutions (E[A]) and more than half as many
weakly deleterious polymorphisms (E[W]) and weakly deleterious mutations per haploid
genome (E[D]) as coding sequences. However, our analysis considers only a relatively small
subset of all transcription factor binding sites, corresponding to perhaps 5% of all
transcription factors48, a limited set of cell types and conditions, and fairly conservative
predictions of binding sites. In addition, we have not considered regulatory elements
involved in splicing, post-transcriptional regulation and other forms of gene regulation. It is
not possible, at present, to estimate with any accuracy the total number of bases that function
in gene regulation. However, if we assume that noncoding functional elements outnumber
coding bases by at least 2:1, as suggested by patterns of long-term evolutionary
conservation49–51, that these elements predominately function in gene regulation52 and,
further, that mutations in these elements have similar distributions of fitness effects as in our
transcription factor binding sites, then we can obtain rough estimates of the genome-wide
contributions of regulatory sequences. This extrapolation yields a genome-wide estimate of
E[A] = 9,017 (2.8 ASPHG), roughly equal to the extrapolated estimate for coding sequences
(Fig. 4a and Supplementary Note). The projections for weakly deleterious polymorphisms
and mutations per haploid genome from transcription factor binding sites rise to values 3.0
and 3.3 times as large as the corresponding estimates for coding sequences. Although these
calculations are crude, they nevertheless highlight the substantial genome-wide contribution
from regulatory sequences at both the positive and negative ends of the distribution of
fitness effects.

Our observations raise the question of what impact regulatory mutations have on the genetic
load associated with segregating deleterious mutations53,54. This question cannot be
addressed directly using our methods because they do not yield estimates of the selection
coefficient s. However, simulations suggest that the weakly deleterious mutations detectable
by our methods have average population-scaled selection coefficients (2Nes, where Ne is the

Arbiza et al. Page 7

Nat Genet. Author manuscript; available in PMC 2014 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



effective population size and s is the selection coefficient) of between about –16.7 and –7.7
(Supplementary Table 10 and Supplementary Note). Assuming Ne = 10,000, the average
reduction in fitness per haploid genome due to our estimates for coding sequences–or,
equivalently, the expected number of lethal equivalents per gamete–would therefore be 0.3–
0.6 (Supplementary Note). This estimate is somewhat lower than the estimates of 0.7–2.5
lethal equivalents per gamete obtained from reductions in survival in the presence of human
inbreeding54,55. However, if transcription factor binding sites are included and we
extrapolate to a larger set of regulatory elements, our estimates rise to 1.2–2.6, in better
agreement with inbreeding studies. These calculations are also crude, but they hint that most
deleterious mutations segregating in human populations may be regulatory in nature.
Furthermore, our finding that these regulatory mutations occur at higher frequencies, on
average, than those in coding sequences (Fig. 4d) suggests somewhat different genetic
architectures for regulatory and coding deleterious variations. For example, elevated derived
allele frequencies most likely correspond to increased average allele ages and greater
sharing of deleterious alleles across populations, differences that may have implications for
the roles of these mutations in human diseases and their detectability in association studies.

Our results may be influenced in some respects by the simplifying assumptions underlying
our model. Our estimates of the fraction of nucleotides under selection (ρ) depend on the
assumption that a negligible fraction of high-frequency derived alleles is under selection. If
modes of selection that cause alleles to remain at elevated frequencies or produce a steady
influx of high-frequency derived alleles–such as balancing selection or recurrent positive
selection–are common, the parameter ρ will be underestimated, and other parameters could
also be influenced. To have a substantial influence on our results, however, these
phenomena would have to be more prevalent than suggested by current evidence39,56,57.
Another possible concern is that our estimates of ρ (and derived quantities) could be
artificially elevated by reduced diversity in flanking neutral sites due to background
selection or hitchhiking. Similarly, it is conceivable that fine-scale differences between
binding sites and flanking neutral regions in mutation, fixation or SNP detection rates could
lead to biased parameter estimates. However, follow-up experiments indicate that our
approach adequately controls for these effects (Supplementary Figs. 5 and 8–10 and
Supplementary Note). Evolutionary turnover of transcription factor binding sites58,59 is
another possible confounding factor in our analysis. For example, losses of transcription
factor binding sites in chimpanzee could lead to the overcounting of substitutions in the
human lineage. However, simulations indicate that our model is effective in mitigating this
problem by making use of outgroup sequences only to infer ancestral alleles (Supplementary
Fig. 11 and Supplementary Note). Finally, our analysis ignores structural variants, focusing
on point mutations, because they are most common, easiest to detect and easiest to model.
Structural variants and point mutations generally show qualitatively similar patterns of
selection51,60, but it will be of interest in future work to consider broader classes of
mutation.

ONLINE METHODS
Probabilistic model

The INSIGHT model is detailed elsewhere19 and outlined in the Supplementary Note.
Briefly, it incorporates a statistical phylogenetic model for outgroup genomes, a Jukes-
Cantor62 model for divergence along the human branch and simple Bernoulli models for the
occurrence of low- and high-frequency polymorphisms in human samples. It assumes a
mixture of selected and neutral positions in binding sites and assumes that all flanking
sequences evolve neutrally. The parameter ρ is the coefficient for the mixture model. The
other two key global free parameters are η, which scales the rate of divergence, and γ, which

Arbiza et al. Page 8

Nat Genet. Author manuscript; available in PMC 2014 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scales the rate of low-frequency polymorphisms, both in selected sites relative to neutral
flanking sites (Table 1). The phylogenetic parameters are pre-estimated using RPHAST63,
and the neutral parameters (β1, β2 and β3, λi and θi for each locus i) are pre-estimated from
the flanking sites. The remaining parameters are estimated by maximum likelihood using an
expectation maximization algorithm.

Simulation study
Synthetic data were generated by forward simulation using SFS CODE64. We considered
two demographic scenarios: one with a single human population of constant size (Ne =
10,000) and another with separate African, East Asian and European populations and
recently estimated demographic parameters65. For each of the assumed distributions of
fitness effects and each demographic scenario (Fig. 1 and Supplementary Figs. 12 and 13),
we generated 10,000 independent loci consisting of a transcription factor binding site of 10
bp in size with 5,000 neutral flanking sites on each side. Nucleotides within the transcription
factor binding sites were assigned selective modes by sampling from a multinomial
distribution corresponding to each assumed mixture of fitness effects. We assumed mutation
and recombination rates of μ = 1.8 × 10–8 and ρ = 1.1 × 10–8 events per nucleotide per
generation, respectively. The recombination rate was held constant, but mutation rates were
allowed to vary across loci by sampling from a normal distribution with the given mean and
a standard deviation equal to one-tenth of the mean. Data were generated for 50 individuals
(100 chromosomes). The true values of all parameters were based on the selective modes
assigned during simulation. For comparison, we used the simple divergence-based estimator
of Kondrashov and Crow66, an analogous polymorphism-based estimator and the
McDonald-Kreitman–based estimator of Smith and Eyre-Walker22. Complete details appear
in the Supplementary Note.

Pipeline for transcription factor binding site identification
The transcription factor binding site identification pipeline is detailed in the Supplementary
Note. Briefly, precomputed ChIP-seq peaks for 122 transcription factors from the Hudson
Alpha Institute for Biotechnology and the Stanford-Yale-USC-Harvard consortium in the
ENCODE Project were obtained from the UCSC Genome Browser (see URLs), excluding
time-course experiments, chemically treated cell types, controls and data sets with release
dates after June 2012. Motifs were identified for each transcription factor in multiple rounds
of analysis with MEME67 using subsampling strategies similar to those used in MEME-
ChIP68. Motifs were manually inspected and compared with those in motif databases, and a
single best motif was selected for each transcription factor. Transcription factors were
discarded if a high-quality motif could not be identified. Binding sites at ChIP-seq peaks
were then identified using MAST (P < 0.0001, E value < 10). Binding sites were merged
across cell lines and, where applicable, from the two data providers. Transcription factors
having fewer than 500 binding sites were discarded, leaving 78 transcription factors. Motifs
and corresponding binding sites were trimmed by eliminating edge positions with
information content of <0.5.

Genome sequence data
Information about human polymorphisms came from the 69 Genomes data set from
Complete Genomics (see URLs). Although larger data sets are available16, this one was
selected for its high coverage, which allows singleton variants to be characterized with fairly
high confidence. Our simulation results indicate that the sample size is large enough for our
purposes. We eliminated data from the child in each of 2 trios and all but the 4 grandparents
in the 17-member CEPH (Centre d'Etude de Polymorphisme Humain) pedigree, leaving 54
individuals. Genotype calls were extracted from the masterVar files. Outgroup data were
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obtained from the alignments in the UCSC Genome Browser of the chimpanzee (panTro2),
orangutan (ponAbe2) and rhesus macaque (rheMac2) genomes with the human reference
genome (hg19). Filters were applied to eliminate repetitive sequences, recent duplications,
CpG sites and regions not showing conserved synteny with outgroup genomes. Our analysis
considered only the autosomes (chromosomes 1–22). Complete details appear in the
Supplementary Note.

Analysis of real data sets
The INSIGHT program was run separately on the full set of binding sites for each of the 78
transcription factors analyzed. Binding sites with fewer than 100 flanking nucleotides (after
filtering) were excluded. To avoid overfitting due to sparse data, we added a single small
‘pseudolocus’ to each data set. We assumed a low frequency threshold of f = 15% for most
analyses but also experimented with f = 10% and 20% (Supplementary Fig. 14). After
parameter estimation, the expected values E[A] and E[W] were obtained by summing over
the appropriate conditional distributions across all non-filtered nucleotide positions in the
set, given the estimated parameters and observed data. Site frequency spectra (Fig. 4 and
Supplementary Fig. 15) represent counts of derived alleles out of 108 chromosomes.
Ancestral alleles were determined by parsimony at sites where the chimpanzee allele was
shared by at least one of the other outgroups (orangutan or macaque). Details appear in the
Supplementary Note.

Variances in parameter estimates
Variances in parameter estimates of ρ, η and γ were obtained by calculating the 3 × 3
negative Hessian matrix for the log-likelihood function at its maximum (an approximation
of the Fisher information matrix) and then inverting this matrix. The square roots of the
diagonal elements of the resulting matrix were used as approximate standard errors for these
parameters. These variances were propagated to the quantities E[A] and E[W] using an
approximation. The error bars in the figures extend one standard error above and below the
maximum-likelihood estimates of the parameters. Complete details appear in the
Supplementary Note.

Likelihood ratio tests
Likelihood ratio tests (LRTs) were used to assess the significance that parameters of interest
have values greater than zero (Fig. 2) and that the parameters differ significantly between
two sets of elements belonging to different classes (GO analysis for ρ). The first type of test
was carried out by fitting the model to the data with all parameters free, fitting it again with
a parameter of interest fixed at zero and then comparing twice the difference in the
maximized log likelihoods to an appropriate asymptotic null distribution (all variants of χ2

distributions). The second type of test was accomplished by fitting the model separately to
two partitions of a data set, fitting it once to the complete data set and again comparing
twice the difference in maximized log likelihoods to an appropriate null distribution.
Complete details appear in the Supplementary Note.

Information content and binding affinity
Information content was calculated from the inferred motif models as
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where k is the number of positions in the motif and  is the probability of observing base b
at position i of a binding site69,70.

The predicted binding affinity of a binding site having sequence X = (x1,..., xk) was
calculated as

where  is the probability of observing base xi at position i in a binding site and πxi is the
background frequency of base xi (estimated across the genome)71,72. Additional details
appear in the Supplementary Note.

Robustness to binding site turnover
The potential impact of binding site turnover was assessed by simulation. We simulated both
losses of chimpanzee binding sites and gains of human binding sites, at various rates, under
various mixtures of selective effects. We observed almost no sensitivity to relaxation of
constraint on the chimpanzee lineage, even at fairly high rates of binding site loss
(Supplementary Fig. 11). The model also behaves reasonably when gains in humans involve
genuine positive selection. We did observe some overestimation of adaptive substitutions in
a scenario in which binding sites emerge fully formed and immediately come under negative
selection, with no intermediate adaptive interval, but this scenario is unlikely to have a
major impact on our results (Supplementary Note).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Results for data sets simulated under three different mixtures of selective modes. Four
selective modes (pie charts) are considered: neutral evolution (2Nes = 0), weak negative
selection (2Nes = –10), strong negative selection (2Nes = –100) and positive selection (2Nes
= 10). Bars represent the fraction of nucleotides under selection (ρ) and the expected
numbers of adaptive substitutions (E[A]) and weakly deleterious polymorphisms (E[W]) per
kilobase of transcription factor binding site sequence analyzed. Separate bars are shown for
true values in the simulations and model-based estimates. Estimates of ρ are additionally
compared with simple estimators based on divergence and polymorphism rates, and
estimates for E[A] per kilobase are compared with a McDonald-Kreitman–based estimator
(MK). The first bar in each pair represents simulations with constant population sizes, and
the second bar represents a realistically complex demographic scenario for human
populations. The nonzero values of E[W] per kilobase in the absence of weak negative
selection (second row) reflect residual polymorphism in strongly selected sites. Error bars, 1
s.e.m. (additional results are shown in supplementary Figs. 12 and 13, and further details are
given in the supplementary Note).
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Figure 2.
Estimates of key parameters for the binding sites of each transcription factor in our study.
(a–c) Shown are estimates of the fraction of nucleotides under selection (ρ) (a), the expected
number of adaptive substitutions per kilobase (E[A] per kilobase) (b) and the expected
number of deleterious mutations per kilobase (E[W] per kilobase) (c). Weighted averages are
indicated by lines in matching colors. Estimates for second codon positions in protein-
coding sequences (CDS2) are shown for comparison (dark-gray lines). Arrows indicate
estimates for CDS2 sites in subsets of genes identified as being under positive selection in
mammalian phylogenies39 (yellow) or human populations38 (red) or denoted as
housekeeping genes on the basis of gene expression patterns (light blue) (supplementary
note). Flags in c indicate overlapping arrows. Transcription factor names in red indicate
statistical significance after a correction for multiple tests61 (adjusted P < 0.05). Asterisks
indicate nominal P < 0.05. Error bars, 1 s.e.m. (additional results are shown in
supplementary Fig. 2 and supplementary Table 2). Notably, these estimates are fairly
insensitive to the threshold for low-frequency derived alleles (supplementary Fig. 14).
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Figure 3.
Information content, binding affinity and selection. (a) Information content per motif
position versus estimates of ρ (the fraction of sites under selection) for the 78 transcription
factors analyzed in our study. (b) Motif logo for JUND (top) and position-specific estimates
of ρ (bottom). Error bars, 1 s.e.m. Notice that positions with high information content tend
to be under selection, and positions with low information content tend not to be under
selection. This relationship holds for some but not all transcription factors. (c) Predicted
binding affinity versus ρ. All binding sites were partitioned into 20 equally sized bins by
predicted binding affinity, and ρ was estimated separately for each partition using INSIGHT.
Additional details are given in the supplementary Note.
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Figure 4.
Genome-wide analyses of adaptive and deleterious mutations in protein-coding sequences
and transcription factor binding sites. (a) Expected numbers of adaptive substitutions on the
human lineage (E[A]). The analysis was performed on a subset of genes that passed rigorous
data quality filters (dark blue), and results were extrapolated to a full set of genes (light blue)
(supplementary Note). The gray dashed outline for transcription factor binding sites
indicates a crude extrapolation to the entire genome, assuming that two nucleotides function
in gene regulation for every one that encodes proteins. The alternative y axis (right) shows
estimated adaptive substitutions per hundred generations (ASPHG). Error bars indicate 1
s.e.m. above and below the mean (supplementary Note). (b) Plot as in a showing expected
numbers of weakly deleterious polymorphisms (E[W]). (c) Site frequency spectra (SFS) for
polymorphic sites in transcription factor binding sites, coding sequences and neutral
flanking sequences. The first 5 derived allele frequencies (DAFs) are shown as counts out of
108 chromosomes (complete results in supplementary Fig. 15). (d) Cumulative distribution
function (CDF) for expected weakly deleterious mutations per haploid genome (E[D]) in
transcription factor binding site and coding sequences. Notice that the distribution is shifted
toward more common alleles in transcription factor binding sites. Results are similar with
alternative thresholds for low-frequency alleles.
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Table 1

summary of model parameters and expected values

Locus-specific model parameters

θ i Population-scaled mutation rate at locus i

λ i Scale factor for neutral divergence at locus i

Global model parameters

ρ Probability that each transcription factor binding site nucleotide is under selection

β1, β2, β3, Fractions of neutral polymorphic sites with low-, intermediate- and high-frequency derived alleles

γ Scale factor for θi in selected sites

η Scale factor for λi in selected sites

Derived parameters

α Fraction of fixed differences due to positive selection

τ Fraction of polymorphic sites subject to weak negative selection

Posterior expected values

E[A] Number of fixed differences due to positive selection (adaptive substitutions)

E[W] Number of polymorphic sites subject to weak negative selection

E[D] Number of weakly deleterious mutations per haploid genome
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