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Abstract

The search for the genetic defects in constitutional diseases has so far been restricted to direct methods for the identification
of genetic mutations in the patients' genome. Traditional methods such as karyotyping, FISH, mutation screening, positional
cloning and CGH, have been complemented with newer methods including array-CGH and PCR-based approaches (MLPA,
gPCR). These methods have revealed a high number of genetic or genomic aberrations that result in an altered expression or
reduced functional activity of key proteins. For a significant percentage of patients with congenital disease however, the under-
lying cause has not been resolved strongly suggesting that yet other mechanisms could play important roles in their etiology.
Alterations of the 'native' epigenetic imprint might constitute such a novel mechanism. Epigenetics, heritable changes that do
not rely on the nucleotide sequence, has already been shown to play a determining role in embryonic development, X-inacti-
vation, and cell differentiation in mammals. Recent progress in the development of techniques to study these processes on full
genome scale has stimulated researchers to investigate the role of epigenetic modifications in cancer as well as in constitu-
tional diseases. We will focus on mental impairment because of the growing evidence for the contribution of epigenetics in
memory formation and cognition. Disturbance of the epigenetic profile due to direct alterations at genomic regions, or failure
of the epigenetic machinery due to genetic mutations in one of its components, has been demonstrated in cognitive derange-
ments in a number of neurological disorders now. It is therefore tempting to speculate that the cognitive deficit in a significant
percentage of patients with unexplained mental retardation results from epigenetic modifications.
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Epigenetics: an introduction

A Pubmed search, limited for the last 3 years, for
the word “Epigenetic” reveals about 3500 publica-
tions of which almost a 1000 are reviews. This
high percentage of reviews that often only refer to
epigenetics, clearly illustrates that errors in epige-
netic regulation are considered as the “golden
egg”, possibly explaining many of the unsolved
cases in current clinical and molecular genetics.
Due to the lack of high-throughput, high-resolu-
tion, and robust techniques to study these process-
es in the past, experimental epigenetic research
remained relatively scarce.

It is clear that the phenotype of an individual is not
solely based on its sequence information but that sec-
ondary modifications, independent of the nucleotide
sequence, play an important role. The broadest defi-
nition of epigenetics is a heritable change in a DNA-
dependent process (expression/repression of particu-
lar genes, DNA replication, recombination, and repair
or chromosome function and stability) that does not
rely on the primary DNA sequence. For instance, it is
clear that although the sequence of a genome is iden-
tical in a liver and a brain cell of an individual, the
gene expression profiles in both cells are completely
different. This difference mainly relies on epigenetic
factors. Epigenetic modifications therefore, can be
attributed to changes in the environment or to muta-
tions in genes that affect local chromatin structures. In
this review we will focus on those changes that affect
gene expression.

In the eukaryotic nucleus, the basic unit of chro-
matin is the nucleosome that consists of 147 bp of
DNA wrapped around an octameric complex of his-
tones H2A, H2B, H3 and H4. Linker histones, like
histone H1, bind and stabilize the nucleosome struc-
ture and organize the linker DNA located between
successive nucleosomes. It is hypothesized that this
interaction is required for the formation of the high-
er-order 30 nm chromatin fibre [1]. The association
of linker histones with nucleosomes also hinders the
action of ATP-dependent chromatin remodeling
enzymes [2]. Proper chromatin function is further
dictated by epigenetic marks that constitute the
epigenome. These include 1) DNA methylation of
the cytosine residue of CpG dinucleotides, 2)
methylation, acetylation, phosphorylation, or ubiqg-
uitylation of the histone tails, 3) use of histone vari-
ants, 4) nucleosome distribution and interaction, or
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5) higher order chromatin structures (such as loops
and scaffolds) [3]. These epigenetic marks are then
deciphered by other factors (the ATPase-dependent
remodelers; the silencing Polycomb group (PcQG)
and the activating Tritorax group (TtxG) complexes
[4]). Any modification in this epigenetic program
can have an impact on the proper function of each of
the DNA-dependent processes.

Methylation of DNA is a hallmark for gene
silencing. Indeed, methyl binding proteins (MBP)
that bind to methylated CpGs (reviewed in [5]) will
induce the repression by recruitment of co-repres-
sors such as a histone deacetylase (HDAC) in the
case of MECP2 [6]. Methylation of cytosine at
position C5 in CpG dinucleotides [5] is conferred
by DNA methyltransferases (DNMTs) of which
DNMT1 is the maintenance DNMT while DNMT3a
and DNMT3b are de novo DNMTs [7]. The contri-
bution of DNMT2 in methylation is still question-
able [8]. Recently, a link between histone H1 and
DNA methylation was discovered in mouse [9, 10].
Reduction of the H1 levels by 50% in mouse
embryonic stem cells not only affects chromatin
structure but the expression of specific genes as
well. A large part of these deregulated genes repre-
sent either imprinted genes or genes located on the
X chromosome that are known to be regulated by
DNA methylation. Intriguingly, the authors found
that DNA methylation at specific CpG dinu-
cleotides is reduced in the mutant mouse ES-cells
while no alterations in global DNA methylation are
noted. This strongly suggests that a certain level of
H1 protein is required for the maintenance or estab-
lishment of specific DNA methylation patterns
leading to gene repression. Evidence is thus accu-
mulating that linker histones participate in the epi-
genetic regulation of gene expression.

Also in humans, disturbances in methylated DNA-
induced gene silencing might lead to disease (reviewed
in [11]). Aberrant DNA methylation patterns have now
been demonstrated not only in cancer [12, 13] but also
in constitutional diseases [11, 14]. The best known epi-
genetic factor is imprinting (reviewed in [11]) in which
one of both parental alleles is methylated and therefore,
inactivated. Imprinting defects has been demonstrated
in tumors (e.g. Wilms tumor) [15] as well as in consti-
tutional disorders e.g. Prader-Willi and Angelman syn-
dromes [16]. Moreover, it became apparent that
imprinted regions are also characterized by differences
in chromatin conformation, histone modification, repli-
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cation timing and recombination rate clearly pointing
to an integrated epigenetic modification network that
influences multiple DNA-dependent processes [17].
Many key players in these processes have been identi-
fied including DNMTs, histone acetyltransferase
(HAT), HDAC:s, histone methylases, chromatin-modi-
fying enzymes and members of the SWI-SNF family
that are part of the ATP-dependent chromatin remodel-
ing complexes [18-20].

Besides DNA, also the other constituents of the
basic chromatin unit, the histones, can be modified to
functionally and structurally alter chromatin organi-
zation. The histone tails are subject to covalent post-
translational modifications such as lysine acetylation,
lysine and arginine methylation, serine and threonine
phosphorylation, lysine ubiquitylation and sumoyla-
tion, and ADP-ribosylation. These modified histone
tails present a code that is ‘read’ by regulatory factors,
thereby generating altered chromatin structures and
functions. This mechanism, which is superimposed
on the genetic code, was named “the histone code”
[21, 22]. Evidence validating this hypothesized theo-
ry is accumulating. In accordance with this theory,
protein domains that specifically recognize modified
histone tails have been identified. The complexity of
the histone code is increased by the co-existence of
different histone tail modifications in cis and by
mechanisms as mono-, di- and tri-methylation of
lysine residues [23]. The net electrical charge of his-
tone proteins can be altered by covalent modifications
like acetylation and ADP-ribosylation. Modification
of the electrostatic interactions between histones and
the negatively charged DNA phosphate backbone
alter the conformational and functional state of the
genome [24]. In this regard, polyADP-ribosylation of
histone HI1 by polyADP-ribose-polymerase-1
(PARP-1) has been suggested to enable the transcrip-
tion needed for long-term memory formation in
Aplysia [25] and to promote neurotrophic effects in
rats [26]. PolyADP-ribosylation of H1 causes fast and
transient chromatin relaxation rendering the DNA
accessible to repair and transcription factors [27].

In general, methylated DNA, deacetylated his-
tone tails and methylated H3K9 allow the binding
of factors that cause a closed chromatin environ-
ment and hence, a repressed transcriptional state
[17]. On the other hand, unmethylated DNA, acety-
lated histone tails and methylation of H3K4 dictate
an open chromatin structure, which allows for gene
transcription at this region. Therefore, alteration of
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these epigenetic marks will lead to altered gene
expression and eventually to disease [11, 14, 18,
28-30]. The interplay of histone acetylases (HATSs)
and histone deacetylases (HDACs) will generate an
acetylation imprint on Lysine residues. Similarly,
methylation marks are placed by histone methyl-
transferases (HMTs) and Arg methyltransferases
(PRMTs) [31, 32], and are removed by H3K4
demethylase LSD1 [33], and a new family of JmjC
domain-containing histone demethylation proteins
(JHDM1) that has recently been identified [34, 35].

It is thought that several more proteins
involved in chromatin remodeling will be discov-
ered in the near future. The recruitment of these
histone tail modifying enzymes to particular
genes or DNA regions is in part driven by the
presence of enhancer or repressor regulatory
sequences in the DNA, but is in part also driven
by non-coding RNAs. The best known link
between non-coding RNA and chromatin modifi-
cation is the inactivation of one of both X chro-
mosomes in female mammals to allow for dosage
compensation between both sexes (reviewed by
[36]). This process is well-studied in mouse
embryos and embryonic stem cells. Before blas-
tocyst stage of the female embryo, the paternal X
chromosome is inactivated by an imprinted
mechanism [37]. During blastocyst stage, this
inactivated paternal X chromosome becomes
reactivated in the cells of the inner cell mass that
give rise to the embryo proper and one of both X
chromosomes will subsequently be silenced by a
random X inactivation mechanism. A required
region in the X inactivation process is the X inac-
tivation center (Xic). Xic generates multiple non-
coding RNAs, such as Xist and its antisense RNA
Tsix, which regulates the expression of Xist.
Once it is decided which X chromosome will be
inactivated, a process, that is dependent on a
transient colocalization of both Xics [38, 39],
will downregulate Tsix leading to the in cis
spreading of Xist RNA on the X chromosome
that will be inactivated. Subsequently, different
chromatin-remodeling factors are recruited that
will place epigenetic marks on nucleosomes of
the X chromosome to be inactivated resulting in
a transcriptionally repressive state.

Other potential links between non-coding RNAs
and chromatin remodeling in mammals are repre-
sented by RNA-interference-mediated heterochro-



matin assembly, e.g. at pericentromeric regions, and
gene silencing (reviewed by [40]).

To date, still little is known about the genome-
wide distribution of DNA methylation, histone mod-
ification or other epigenetic factors in health or dis-
ease. Recently however, novel methods that com-
bine existing and new technologies will speed up the
search for epigenetic mechanisms underlying differ-
ent disease states. Ongoing clinical trials for epige-
netic therapy are currently focused on inhibitors of
DNA methylation and histone deacetylation but
future knowledge might direct therapeutic concepts
into new directions (reviewed by [14]). In this
review, we will focus on mutations that lead, direct-
ly or indirectly, to an altered epigenetic status lead-
ing to constitutional neurodegenerative diseases.

Epigenetics in neurodegenerative
disease

Evidence for epigenetics in neurons

Recent studies on primary modifications of histone
tails in neuronal cells provided ample evidence for a
role of epigenetic factors that control proper neuronal
development and functioning. The RE1 silencing
transcription factor (REST) binds to the repressor
element 1 (RE1) conserved motif to repress the tran-
scription of neuron-specific genes in differentiated
nonneuronal cells [41, 42]. It acts in conjunction with
the co-repressors SIN3A and CoREST. The
REST/SIN3A complex associates with HDACI,
HMT G9a and LSDI1 [43, 44], while the
REST/CoREST repressor interacts with HDAC2
[45], MeCP2, HMT SUV39HI1, HPI and possibly
SWI-SNF [46]. In addition, COREST was recently
shown to play a role in H3K4 demethylation [47]. All
these findings strongly indicate that the REST-
dependent silencing of neural-specific genes in non-
neuronal cells is epigenetically regulated with subse-
quent chromatin reorganization. Moreover, DNA
methylation was also found in differentiated non-
neuronal cells [48] although the binding of REST to
RE1 is methylation-independent. Neuronal-specific
gene expression in differentiated neurons is thought
to rely on the absence of binding of REST. The exact
mechanism however, is not known yet. The two cur-
rent models are; 1) degradation of the REST complex
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and dissociation from the RE1 sites, and 2) displace-
ment of REST from RE1 by a small double-stranded
non-coding RNA (reviewed by [49]). In addition to
the REST complex a novel silencing mechanism was
recently reported in nonneuronal cells. The transcrip-
tion factor AP4 was shown to form a functional com-
plex with the co-repressor geminin that recruits the
co-repressor SMRT as well as HDAC3 to repress the
expression of target genes including PAHX-AP1 and
DYRKIA, in nonneuronal cells [50]. Finally, several
learning models in mice provide evidence that acety-
lation of histones H3 and H4 have regulatory roles in
memory formation (reviewed by [51]).

Imprinting and disease

Imprinting is the process in which expression of a
gene is restricted to only one of the parental alleles.
Paternal or maternal imprinting means that an allele
inherited from the father or the mother, respectively,
is not expressed in the offspring. A few dozen of
imprinted genes are currently known. These genes
are mostly organized in clusters and often coordi-
nately regulated by imprinting centers (ICs) [52].
The most consistent feature of imprinted regions is
DNA methylation although other epigenetic marks
also occur, including histone modifications, anti-
sense transcripts, boundary elements, silencers and
condensed chromatin structures [53, 54]. The two
best known examples for which deregulation of
imprinting leads to congenital disorders associated
with mental impairment are Prader-Willi/Angelman
syndrome at 15qll-ql3 [55], and Beckwith-
Wiedemann syndrome at 11pl5.5 [56]. In both
regions, ICs regulate expression bidirectionally over
distances up to 1 Mb. Deletions at 15q11—q13 cause
different phenotypes depending on the parental ori-
gin of the affected chromosome. Deletions at the
paternal chromosome result in Prader-Willi syn-
drome while those on the maternal counterpart lead
to Angelman syndrome. The imprinted expression
of several genes present in the deleted region are
therefore candidate genes for the different pheno-
types of these syndromes. Loss of the genes SNRPN,
NDN, MAGEL2 and MKRN3 that are expressed
solely from the paternal allele results in Prader-Willi
syndrome while the genes coding for UBE3A and
ATP10A are expressed exclusively from the mater-
nal allele and their loss results in Angelman syn-
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drome. In Beckwith-Wiedemann syndrome the
imprinted region at 11p15.5 is about 1 Mb and
involves the KIP2/LITI and IGF2/HI19 regulated
domains. The genomic aberrations and epigenetic
changes that mark these syndromes are recently
reviewed in detail [57]. However, the precise mech-
anisms by which ICs mediate their imprinting marks
in these regions still remain largely unknown.
Recently, a cell lineage-specific imprinting has been
demonstrated in the brain [58].

Autosomal genes and neurodegeneration

RELN and schizophrenia

Several studies have demonstrated that the mRNA
levels of the reeling gene (RELN), located at
7q22.1, are significantly reduced in neurons from
patients with schizophrenia and bipolar disorders
compared to nonpsychiatric subjects [59, 60].
RELN is an extracellular matrix protein that plays a
role in neuronal migration, axonal branching and
synaptogenesis during brain development. It is
expressed in cerebellar granule neurons and acts as
a regulator of 4r¢ mRNA translation in synaptoneu-
rosomes [61]. In these cells, an increase of Dnmt1
was also noticed [62]. Evidence for a role of
changes in methylation at the Re/n locus came from
experiments in mice where administration of
methionine induced a downregulation of RELN due
to an increase of methylation at its promoter [63,
64]. Interestingly, treatment with antisense Dnmtl
or valproic acid, an HDAC inhibitor, counteracted
the decrease of RELN in vitro. Administration of
valproic acid to mice even corrected the
schizophrenia-like behaviours induced by methion-
ine [65]. The corresponding hypermethylation of
the RELN promoter has now been demonstrated in
schizophrenic and bipolar patients by two indepen-
dent groups [66, 67] suggesting that this enhanced
methylation compromises promoter activity with a
subsequent reduction in expression. Recent data
also demonstrated hypomethylation of the promot-
er of the membrane-bound catechol-O-methyltrans-
ferase (MB-COMT) (22q11.21) in these patients,
resulting in enhanced expression of COMT and a
potential increase of dopamine degradation in their
frontal lobe [68]. The availability of heterozygote
Reln knockout mice, which demonstrate cognitive
dysfunction and an altered hippocampus synaptic
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complex [69], can now be used to further investi-
gate the underlying mechanisms. These initial find-
ings in this field stress the importance of epigenetic
changes in complex diseases.

CBP and neurodegenerative disorders
CREB-binding protein (CBP) is a transcriptional
co-activator that binds phosphorylated cyclic AMP
response element binding protein (CREB), which
then induces gene transcription. CBP is a large
nuclear protein that comprises several different
domains including a bromodomain and a histone
acetyltransferase (HAT) domain [70]. Therefore, it
may form the link between transcription and DNA-
or chromatin-binding factors. This protein plays an
important role in many biological processes includ-
ing neural plasticity [71]. It is believed that activat-
ed CREB connects the neuronal activity-induced
protein kinase pathway with the transcription of
genes important in learning and memory formation.
Rubinstein-Taybi syndrome (RTS) is a rare disorder
caused by dominant mutations in CBP at 16p13.3
[72, 73]. 1t is characterized by mental retardation
and many other physical abnormalities [74].
Impaired function of the co-activator CBP, might
affect the proper establishment of long-term memo-
ry in RTS patients [75-77]. The HAT activity of
CBP may guide the transcriptional processes by
relaxing repressive chromatin structures [78, 79].
Therefore, it is likely that defective CBP or parts of
CBP act as a dominant negative protein in RTS
patients. Indeed, mice that are heterozygous for a
C-terminal truncation of CBP have impaired long-
term memory [80, 81].

Huntington disease (HD) is caused by a CAG
expansion in exon 1 of the huntingtin (h#f) gene at
4p16.3. This polyglutamine (polyQ) expansion
results in a mislocalization of the protein in the
form of aggregates in the nucleus [82]. The expand-
ed polyQ tract subsequently binds to the HAT
domain of CBP resulting in a significant reduction
of transcription and ultimately leading to neuronal
death [82, 83]. Moreover, upon reversal of
hypoacetylation, rescue of cell death and prolonged
survival of Huntington’s disease mice was demon-
strated, pointing towards a crucial role of reduced
HAT activity in Huntington patients [84, 85].

Alzheimer’s disease (AD) is a late-onset neurolog-
ical disease that progresses to severe memory deficits
and ultimately neuronal death. Mutations in the amy-



loid precursor protein (4PP) and the presenilin genes 1
and 2 (PSI and PS2) have been related to the increase
of the B-amyloid (BA) peptide although the precise
mechanisms are not known yet [86, 87]. The neuronal
loss in Alzheimer’s’ disease has been connected to epi-
genetics in two ways. First, several studies demonstrat-
ed that mutations in APP and PSI affect the
CREB/CBP pathway (reviewed in [88]). BA deposits
impair phosphorylation of CREB [89] and this can be
restored in vivo [90, 91]. The conditional knockouts of
PSI and PS2 in excitatory neurons of the forebrain of
mice lead to decreased levels of CBP and subsequent-
ly, a reduced transcription of CREB-dependent genes in
the brain [92]. Second, the intracellular domain of APP
(AICD) that is obtained after cleavage with - and -
secretases [93] regulates transcription through recruit-
ment of Fe65 and the histone acetyltransferase TIP60,
which was recently shown to be implicated in chro-
matin remodeling and DNA repair [94].

From these studies it is clear that disturbance of
the CBP/CREB pathway might result in neurode-
generation through an epigenetic effect on tran-
scriptional regulation of brain-specific genes.
Similarly, the CBP/CREB proteins have been
implicated in depressions too [95].

Two other examples of how epigenetics can reg-
ulate neuronal function are circadian rhythmicity
and seizures. Circadian rhythmicity is a continuing
transcription-translation feedback loop regulated by
the circadian clock [96] and has been shown to
depend on histone acetylation [97]. Second,
seizures induce many transcriptional changes in the
brain, which might result from histone modifica-
tions, including at the CREB promoter, and subse-
quent chromatin remodeling [98, 99]. A schematic
representation of the CBP/CREB transcriptional
activation pathway is shown in Fig. 1.

Other autosomal MR-related genes

Mutations in the CHD7 gene at 8ql12.1, a member
of the chromodomain helicase DNA binding fami-
ly, causes CHARGE syndrome of which mental and
somatic developmental delay is one of the hall-
marks [100, 101]. It contains two N-terminal chro-
modomains, a SNF2-like ATPase/helicase domain
and a DNA-binding domain [102]. This family of
proteins is thought to have important roles in chro-
matin remodeling, and thus gene expression, in
early embryogenesis [103]. As a second example,
the euchromatin histone methyl transferase 1
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(EHMTI) gene was found to be closely related to
the enzyme G9a. These enzymes appear to be
H3K9 HMTases, present in euchromatic regions
that form complexes with heterochromatin protein
1, E2F-6, and Polycomb group (PcG) proteins [104,
105]. These proteins have also been shown to inter-
act with the XLMR protein, ATRX as will be dis-
cussed in the section ‘ATRX syndrome’. Deletions
at 9q34 that include EHMT1 have been related to
the mental impairment in patients [106].

X-linked mental retardation genes

Mental retardation (MR) is one of the most common
disorders affecting 2—3% of the human population. It
is a non-progressive cognitive impairment mostly
affecting normal brain development marked by
learning (IQ < 70) and behavioural disabilities. Since
more males than females are suffering from MR
(1.3/1 ratio), the search for disease-associated genes
has, up to now, predominantly been focused on the X
chromosome (XLMR) [107-110]. For this, the clini-
cal genetics group at our Centre in Leuven has col-
lected, in collaboration with the EuroMRX
Consortium (http://www.euromrx.com/), many hun-
dreds of DNA samples from presumed XLMR fami-
lies. Although combined efforts in molecular genet-
ics, positional cloning and mutation screening have
led to the identification of tens of MR genes on the X
chromosome, linkage analysis data and mutation
screening of the known XLMR genes strongly indi-
cate that the contribution of each yet identified gene
is very small (< 1%). Hence, many more genes or
mechanisms should be involved in MR [108].
Therefore, the X chromosome can be used as a
model to study novel approaches. One such approach
was array-CGH for which new genes and mecha-
nisms have been identified [111-114], but it is also
tempting to believe that changes in the epigenetic
codes in the brain will result in cognitive deficits
since several XLMR genes identified to date seem to
play determining roles in chromatin remodeling.
Each of those will be briefly discussed. A schematic
overview of the different methods to identify genetic
mutations that result in disease is given in Fig. 2.

Fragile X syndrome

Fragile X mental retardation is characterized by
moderate to severe mental retardation,
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Fig. 1 CBP/CREB-dependent transcriptional regulation. A. In unstimulated conditions, chromatin regions con-
taining CBP/CREB-regulated genes are in a closed configuration. The histone tails are not acetylated and gene
expression is silenced. B. Upon activation, the CREB protein binds to its consensus sequence in promoters of reg-
ulated genes. It is phosphorylated by protein kinase A (PKA) and subsequently interacts with CBP. The HAT domain
of CBP acetylates the histone tails and opens up the surrounding chromatin with gene expression as a consequence.
C. Different mutations (indicated by an asterisk on CBP and RSK2), or side products due to mutations (Htt aggre-
gates, BA 4, and AICD) in neurological diseases prohibit the normal trancriptional activation of the CBP/CREB
complex at different levels as indicated in the schematic representation.

macroorchidism, large ears, prominent jaw, and
high-pitched jocular speech, and is caused by muta-
tion of the FMRI gene at Xq27.3. More than 95%
of the fragile X cases are due to an expansion of the
CGG repeat at the 5* end of FMRI, resulting in
transcriptional silencing of FMRI, and thus, the
absence of the FMR1 protein (FMRP) [115, 116].
FMRP is involved in the metabolism of neuronal
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mRNAs, and therefore, absence or mutation of
FMRP will lead to spine dysmorphogenesis and
impairment of synaptic plasticity (reviewed in
[117]). Extensive analysis of differences in epige-
netic modifications in lymphoblastoid cell lines of
normal and fragile X individuals has led to some
well-defined observations. Next to methylation of
the CpGs of the repeat tract and FMRI promoter
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Fig. 2 Four different methods to detect causal mutations. Current methods to identify genetic mutations are standard
karyotyping (I), array-CGH analysis (II) and mutation screening (I1T). With the development of novel techniques such
as ChIP-on-chip, it becomes now feasible to investigate the contribution of epigenetic modifications (IV).

sequences, reduced levels of acetylation of H3 and
H4 at FMR1 were observed in cells from fragile X
patients when compared to controls [118]. The
same group also demonstrated hypomethylation at
H3K4 as well as hypermethylation of H3K9 at
FMRI [119]. Acetylation of histones and methyla-
tion of H3K4 are typical markers of an active chro-
matin structure, while methylation of H3K9 is asso-
ciated with a repressive state of the chromatin.
These data all point to a tightly repressed state of
the chromatin at the FMRI locus in fragile X
patients, also reflected in the observed lack of

FMRI transcription. A model was suggested in
which DNA methylation of the expanded CGG-
repeat triggers binding of MBPs, thereby recruiting
HDACs and other components of the transcription-
al repression machinery to FMR1, resulting in chro-
matin condensation and repression of gene tran-
scription. Recently, this model was extended via
chromosome conformation capture (3C) assays
[120]. In normal cells where FMRI is active, chro-
matin interactions are reduced in a 50 kb region
around the FMRI promoter. Histone modifications
on the other hand, were shown to occur over much
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shorter distances. It was suggested that these local
histone modifications contribute to the reduced
chromatin interactions and as such establish a more
open chromatin structure allowing active genes to
loop out and interact with other genes [120]. A
slightly different order of epigenetic events occur-
ring at the FMR 1 promoter, is proposed by the anal-
ysis of a unique cell line derived from a full muta-
tion FMRI carrier with normal intelligence [121].
Similar to fragile X cells, histone deacetylation and
H3K9 methylation were present. However, DNA
methylation was missing as well as demethylation
of H3K4. Normal levels of FMRI mRNA were
detected, but FMRP protein levels were reduced
due to less efficient mRNA translation as a result of
the expanded CGG repeat. These findings were
complemented by pharmacological treatments with
5-aza-deoxycytidine, which reverses DNA methy-
lation, and their effect on the epigenetic markers at
FMRI (Tabolacci 2005). These studies demonstrate
that H3K4 methylation as well as DNA methylation
have key roles in activating the expression of FMRI
gene, while histone acetylation plays a less impor-
tant role. An adapted model was given wherein
methylated H3K9 recruits HMTs associated with
HDACI via the heterochromatin protein 1 (HP1),
resulting in histone deacetylation, DNA methyla-
tion and H3K4 demethylation.

Dissecting and understanding the epigenetic
modifications at the FMRI locus may allow addi-
tional ways for pharmacological intervention and
rescue of fragile X syndrome phenotypes. Until
now, MPEP, an antagonist of metabotrophic gluta-
mate receptor 5 (mGluRS) has been effective to
reverse sensitivity to audiogenic seizures and
abnormal open field exploratory behaviour in a
fragile X syndrome mouse model [122]. Similarly,
use of mGIluR antagonists or lithium in a
Drosophila model of fragile X restores some mem-
ory defects [123]. It is tempting to speculate that
disruption of a key epigenetic modification at the
FMRI locus could also contribute to (partial) rescue
of some fragile X syndrome phenotypes in human.

Rett syndrome

Mutations and gross deletions of the methyl CpG-
binding protein 2 (MECP?2) gene at Xq28 are asso-
ciated in about 80% of patients with Rett syn-
drome, a progressive neurodegenerative disorder
affecting almost exclusively females [124, 125].
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Mutations in males result in a broad spectrum of
phenotypes ranging from nonsyndromic MR to
very severe neurological symptoms [126].
Interestingly, not only loss-of-function mutations
but also a 2-fold increase of the MECP2 dosage
results in a severe neurological phenotype. This
was first observed in mice with artificial overex-
pression of MECP2 [127, 128], and later in male
MR patients due to a duplication of a small region
at Xq28 including the MECP2 gene [114]. MECP2
is expressed in many tissues but shows highest lev-
els in postmitotic neurons. It specifically binds to
methylated CpG dinucleotides at promoters, where
it forms a complex that includes SIN3A, HDACI
and HDAC2 [6]. This co-repressor complex is
thought to reorganize the adjacent chromatin envi-
ronment with subsequent repression of transcrip-
tion. Although MeCP2 can interact with several
other components of HDAC complexes, the link
between histone deacetylation and MeCP2-mediat-
ed transcriptional repression is not yet clear.
Similarly, the function of MeCP2 in establishment
of histone methylation and its role in HMT com-
plexes remains unknown. In any case, several stud-
ies suggest that MeCP2 contributes to the estab-
lishment of various epigenetic marks and subse-
quently, a role in transcriptional repression
(reviewed in [129])

A growing number of genes are being identified
for which the expression is altered in brains of
Mecp2 knockout mice or Rett patients. These are
BDNF [130, 131], UBE3A and GABRB3 [132, 133],
Sgkl and Fkbp5 [134], the DLX5/DLX6 imprinted
gene cluster [135], and very recently, overexpres-
sion of Ugcrcl [136] as well as all four inhibitors of
differentiation (/D1-ID4) [137] have been reported
in MECP?2 deficient mice. Moreover, lower levels
of several dendrite-specific and synaptic proteins
have been demonstrated in brain extracts of Rett
patients [138, 139]. The contribution of each of
these alterations to the disease state however, has
yet to be established.

ATRX syndrome

Mutations in the ATRX (alias XNP) gene at
Xq21.1 are rather frequent and can result in a
broad spectrum of clinical phenotypes of which
most include severe mental retardation and a vari-
able degree of a-thalassaemia. ATRX is a large
nuclear protein that contains an N-terminal zinc



finger domain and seven helicase motifs at its C-
terminus. These motifs resemble the helicases
found in the SWI/SNF subgroup of the Tritorax
group of proteins that are involved in chromatin
remodeling [140]. Therefore, it is not surprising
that ATRX interacts with other proteins involved
in this process such as heterochromatin protein 1
(HP1), the Polycomb group protein Enhancer of
Zeste 2 (EZH2) [141-143], and the transcription
cofactor DAXX, for which the complex displays
chromatin remodeling activities [143]. ATRX
localizes at heterochromatic regions at the peri-
centromeres and the short arm of acrocentric
chromosomes, supporting a role in chromatin
condensation. Finally, methylation differences
have been reported in patients with ATRX syn-
drome. These differences might disturb the nor-
mal chromatin organization near these loci [144].
In Atrx knockout mice, changes in DNA methyla-
tion patterns are also reflected in the presence of
an abnormal X-inactivation pattern in extra-
embryonic tissue [145].

Coffin-Lowry syndrome

The Coffin-Lowry gene, RSK2 (alias RPS6KA3)
at Xp22.12, is a serine/threonine kinase of the 90
kDa ribosomal protein S6. Mutations in this gene
mostly result in severe MR associated with other
major characteristics like skeletal anomalies
[146]. The severity seems to be correlated with
specific mutations in this gene. Unlike most other
X-linked disease genes, mutations in RSK2 do
not result in skewed X-inactivation leading to
clinical features in female carriers too. The rela-
tion of RSK2 with chromatin remodeling is evi-
dent from its requirement for the EGF-mediated
phosphorylation of histone H3 [147, 148] and its
interaction with CBP [149]. The pleiotrophic role
of the CREB/CBP pathway has been described
earlier in this review. Finally, it was demonstrat-
ed that RSK2 is part of an active preinitiation
complex at the collagenase promoter that also
consists of the methyltransferase SET9 and the
SWI/SNF protein Brg-1 [150].

Other XLMR genes

A presumed role in chromatin remodeling was
suggested for other X-linked genes involved in
cognitive functioning based on the similarity with
other known proteins or the presence of specific

J. Cell. Mol. Med. Vol 10, No 4, 2006

domains known to be implicated in these process-
es. These include the JARIDIC gene, which con-
tains a plant homeodomain (PHD) also found in
ATRX as well as several other DNA-binding
motifs [151]. Several genes of the Kriippel-type
zinc finger protein family (ZNF41, ZNF$I,
ZNF674) have been related to XLMR [152—154].
All members of this family contain a KRAB
domain that binds KAP-1 and subsequently
recruits HP1 in a complex including HDAC3 and
SETDBI1 [155, 156], which is highly suggestive
for an epigenetic function. Finally, BCOR, mutat-
ed in a syndromic form of MR is a key regulator
in transcription during embryogenesis and is
thought to have a role in histone acetylation and
chromatin remodeling [157].

An overview of cognitive disorders that result
from epigenetic modifications is given in Table 1.

Epigenetic analysis to detect novel
XLMR genes

As mentioned above, we believe that part of the
unexplained cases of the XLMR population will
result from modifications of the normal epigenetic
profile at specific loci in the genome. The identifi-
cation of these critical alterations can now be
achieved through a variety of recent techniques.
For a more comprehensive overview of the avail-
able methods in this field see other excellent
reviews [3, 28, 158, 159].

These modifications should be a direct or indi-
rect consequence of mutations that are present
somewhere on the X chromosome but are difficult
to trace because of current technical limitations.
Such mutations might result in an altered expres-
sion of a known or unknown XLMR gene. Direct
expression profiling of these genes in EBV-trans-
formed peripheral blood lymphocytes (EBV-
PBLs) by microarray however, has so far not been
shown to be a reliable method to detect changes in
mRNA levels (unpublished data) because of the
very low to undetectable expression levels of
many XLMR genes in this cell type. Therefore, an
alternative indirect way to define expression
changes could be to measure DNA methylation
and histone modification [6, 160, 161] changes at
promoter regions. We therefore hypothesize that
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Table 1 Cognitive disorders that result from epigenetic modifications.

Disease OMIM Gene  Chrom band Function
Schizophrenia 181500 RELN 7922 Extracellular matrix protein at synapses
Rubinstein- o .

Tt Srrimoe 180849 CBP 16p13.3 Transcriptional co-activator
Alzheimer 104300 APP 21921 Transmembrane protein in brain
CHARGE 214800 CHD7 8ql2.1 ATP-dependent chromatin remodeling
Syndrome
Fragile-X 309550 FMRI Xq27.3 Regulator of translation at synapses
Syndrome 47 & ynap

Rett Syndrome 312750  MECP2 Xq28 Binds to methylated CpGs to repress genes

Coffin-Lowry 303600 RSK2 Xq21.1 Serine-threonine protein kinase; interacts with
Syndrome CBP
ATRX o . . .
301040 ATRX Xp22.12 DNA-binding helicase; chromatin remodeling
Syndrome
Mental .
. 607001 EHMT]I 9q34.3 Histone methyltransferase
retardation
Menta.l 300534  JARIDIC Xpl1.22 Role in chromatin remodeling (?)
retardation
Mental 314995 ZNF41 Xpll.1 Transcriptional regulator (?)
retardation Pt P & '
Mental 314998 ZNF81 Xpll.1 Transcriptional regulator (?)
retardation Pt P & '
Mental 300573 ZNF674 Xpll.1 Transcriptional regulator (?)
retardation Pt P & '
Mental 300485 BCOR Xpll.4 Transcriptional regulator during embryogenesis
retardation Pt P & & ryos

*OMIM: number in the 'Online Mendelian Inheritance in Man' database
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM&cmd=Limits).

analysis of epigenetic alterations in EBV-PBLs
can be representative for the situation in brain, but
this still needs to be firmly validated. In this
respect, only few relevant studies have been pub-
lished. As discussed in the section ‘Fragile X syn-
drome’, these reports demonstrated that the epige-
netic marks of DNA methylation as well as his-
tone acetylation and methylation in EBV-PBLs
from Fragile X patients are indeed representative
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for a strong reduction of FMR1 mRNA expression
in brain with a subsequent altered spine shape and
density [118, 119, 121]. In Rett syndrome
patients, distinctive profiles of histone acetylation
and methylation were found in PBLs, compared
to controls. Moreover, these alterations seemed to
correlate better with the phenotypic outcome
when compared to the location of the mutation in
the MECP2 gene [162].



An epigenomic profile of a patient can be
investigated at specific loci by PCR-based
approaches, or at the whole genome level when
combined with microarray technologies (ChIP-on-
chip). Towards this end, highly specific antibodies
against methylated (Me) or acetylated (Ac)
residues of histone H3 and H4 have been devel-
oped [163]. By generating high density arrays it is
now possible to fine map methylation at high res-
olution (reviewed by [164-166]. With these pro-
files, bioinformatic tools should allow to deduce
the underlying defective (X-linked) gene. It is
anticipated that some of the epigenetic changes
will affect known XLMR genes so a particular
focus will have to be at promoters of these genes.
The selection of patients with idiopathic MR will
be complemented with MR patients with apparent-
ly balanced translocations or inversions for which
no candidate MR gene seems to be present.
Indeed, epigenetic effects on the regions flanking
the chromosomal alteration might disturb the local
epigenetic environment of genes.

Conclusions

Our current understanding on epigenetic mechanisms
has resulted in the identification of several disease-asso-
ciated modifications of the epigenome predominantly in
DNA methylation, and histone acetylation and methy-
lation, resulting in altered chromatin condensation and
a subsequent altered transcription. Comparison of the
epigenomes of normal individuals with those of MR
patients will help to uncover novel genes or mecha-
nisms that result in memory deficits. However, data
should be interpreted with caution. As recently has been
demonstrated for the large genetic and genomic vari-
ability in the normal population, epigenetic polymor-
phisms are expected to substantially extend this natural
variability. Till recently, it was assumed that most poly-
morphisms were single nucleotide substitutions (SNPs)
[167], but in addition to this many deletions, duplica-
tions, amplifications and inversions (5 to 500 kb) have
been observed [168—171]. It is anticipated that variabil-
ity at each layer of the epigenetic profile is present mak-
ing the interpretation of data very difficult especially for
modest changes. Epigenetically modified loci or
regions that are also found in healthy individuals most
likely represent epigenetic polymorphisms. No such
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modifications have been described so far but a database
that catalogs this variability is a requirement for effi-
cient identification of disease-related changes.

The few congenital diseases described here that
have been associated with epigenetic modifications,
directly or indirectly, most probably constitute only the
tip of the iceberg. For example, several other histone
modifications exist, which might equally affect recruit-
ment or binding of chromatin structure regulating pro-
teins. In the next decade, an increased knowledge in this
field as well as the development of new techniques to
study it will boost the detection of new epigenetic links
with diseases. This knowledge might have a great
impact on novel therapeutic drug discovery or strategies
that might be able to significantly ameliorate, prevent or
even reverse the clinical outcome of MR patients.
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