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Abstract

For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might
be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult
stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and
their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues
have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of
hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However,
the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments.
In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific dif-
ferentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For suc-
cessful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized
cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering
approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells,
thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environ-
mental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches.
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Development of tissue engineering as
a novel experimental approach for
the treatment of liver diseases 

Alternatives to organ transplantation for the treatment
of certain liver diseases are currently under investiga-
tion. Whole organ liver, split-liver, and related living-
donor liver transplantation are clinically safe and well
established procedures for the treatment of end-stage
liver failure. However, donor organ shortage and the
need of life-long immunosuppressive treatment are
still the major limitations of all these options [1].
Therefore, the development of cell based therapeutic
strategies for liver diseases are under ongoing exper-
imental evaluation. Using cells instead of organs in
this setting should permit (i) expansion of cells in an
in vitro phase, (ii) genetic or immunological manipu-
lation of cells for transplantation, (iii) tissue typing
and cryopreservation of cells for transplantation in a
cell bank, and (iv) the genetic modification of patients
own cells for autologuous transplantation [2, 3]. In
recent studies, a tissue engineering approach using
isolated hepatocytes for in vitro tissue generation and
heterotopic transplantation of liver cells has been
established [4]. In this setting, a three dimensional
matrix was used as a carrier for cell culture and trans-
plantation of hepatocytes. Use of polymeric matrices
permits the three dimensional formation of a neo-tis-
sue and specific stimulation of the cells by special
modification of the matrix-surface essential for
appropriate differentiation of the cells [5, 6]. In such
a setting it was shown that coating the matrices with
isolated ECM-molecules or modifying the matrices
with matrix-bound releasable growth factors (e.g.
FGF) could improve sufficient differentiation of hep-
atocytes [7, 8]. Additionally, culturing hepatocytes on
three dimensional matrices permitted culture in a
flow bioreactor system with increased function and
survival of the cultured cells [9]. Hepatocytes on three
dimensional matrices were easily transplanted into
rats within the mesenteric leaves in a safe and
reversible surgical procedure [10]. Heterotopic trans-
plantation of hepatocytes on matrices allowed the
transplantation of a cell number equivalent to a whole
organ [11]. Further studies showed an efficient long-
term engraftment of hepatocytes in a heterotopic
location as well as a proliferation of the engrafted
cells [12]. Heterotopically transplanted cells integrat-
ed functionally into the recipient and were metaboli-
cally active: in the glucuronyl-transferase deficient

Gunn rats and Vitamin-C deficient ODS rats a cura-
tive metabolic effect was observed after heterotopic
transplantation of healthy hepatoctyes [13, 14].
However, though successfully establishing a model
providing a combination of in vitro tissue generation
and consecutive transplantation of liver cells, hepato-
cytes still showed only limited growth during culture
period. Therefore, the use of highly proliferative cells
could be an attractive alternative for improving these
approaches. Up to now the formation of an artificial
biliary system still remains a challenge in conven-
tional tissue engineering approaches. Therefore, cells
for hepatic tissue engineering should ideally be capa-
ble to differentiate at least bipotentially towards hep-
atocytic and biliary cells. In conclusion, the use of
highly proliferative stem cells with a bipotential dif-
ferentiation capacity towards liver cells or biliary
cells would be very attractive for cell based alterna-
tive treatment approaches for liver diseases, provid-
ing (i) expansion of donor or patients cells for trans-
plantation during in vitro phase, (ii) genetic correction
or immunologic modification of clonally growing
patient cells, and (iii) formation of a functional liver
tissue including a biliary system.

Identification and characterization of
fetal liver (stem) cells 

Different types of hepatic progenitors were identi-
fied during fetal liver development. In fetal mouse
livers hepatic progenitors were isolated using fluo-
rescence activated cell sorting (FACS) that exhibit-
ed typical features of hepatic stem cells: They
showed clonogeneic potential in vitro, and had a
bipotential differentiation capacity towards liver or
biliary cells [15, 16]. The phenotypic marker
expression of these cells (c-kit-, CD49f+, CD29+,
CD45-, TER119-) resembled that of more immature
stem cells, lacking markers of the hepatocytic cell
compartments of the fetal liver [17]. Another cell
type identified in fetal rat livers was the "fetal liver
epithelial progenitor cell" (FLEC) [18, 19]. Similar
cells from the mouse also showed bipotential dif-
ferentiation and a highly proliferative activity after
transplantation into adult livers [20]. The marker
expression of these cells showed typical features of
immature hepatic cells (CK-19, AFP), however
expression of stem cell markers remained
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unknown. In the past the marker expression of dif-
ferent hepatic cell-compartments has been studied
thoroughly in the adult liver. In a recent study, we
identified different hepatic cell compartments
already present during fetal liver development by
immunocytochemical analysis: Co-existing in fetal
liver cell isolates we found (i) hepatic cells express-
ing CK-18, and (ii) hepatic cells simultaneously
expressing CK-18 and Thy1 [21]. These cells
resembled by their phenotypical marker expression
stem cells of the adult liver (Oval cells), which
showed typically co-expression of hepatocytic and
biliary differentiation markers with markers well
known from hematopoitic stem cells. [22–25]. Oval
cells of the adult liver have a bipotential differenti-
ation capacity towards hepatocytes or bile duct
epithelial cells [26]; they are highly proliferative
under certain conditions, and are clonogenic [27,
28]. Oval cells are involved in liver regeneration
only under certain conditions, e.g. after combined
liver damages or after activation by specific liver
injury models [29, 30]. Cells co-expressing
hematopoietic stem cell marker Thy1 and hepatic
lineage marker CK-18 may represent early equiva-
lents to the hepatic oval cell in the adult. 

Growth expansion and differentiation of
fetal liver cells towards mature hepatocytes 

In a previous study, we isolated fetal liver cells by
three steps (Fig. 1): (i) Collagenase/DNAse digestion
and Percoll-purification, (ii) MACS-depletion of
OX43/OX44 positive hematopoietic cells, and (iii)
separation of Thy1-positive or Thy1-negative cells

by MACS using Thy1 mAb [31]. RT-PCR analysis
and immunocytochemical staining showed liver spe-
cific gene expression in double sorted Thy1-positive
cells: In this compartment, we observed a constant
CK18-RNA expression, a decreasing albumin-RNA
expression, and an increasing of AFP-RNA expres-
sion in the late fetal period. Thus, Thy1-positive cells
showed patterns of dedifferentiation towards the end
of the fetal period, while Thy1-negative cells devel-
oped towards mature hepatocytes. After isolation of
this cell type, in vitro experiments revealed a stem-
cell like growth potential of these cells. In a further
study we investigated the growth and differentiation
potential of isolated Thy1 positive or Thy1 negative
cells in-vitro [32]. Thy1 positive cells from early
fetal liver showed enormous growth (recovery >
1600 %) which was significantly higher than the
growth potential of Thy1 negative cells from early
fetal liver. Although the growth of Thy1 positive
cells was declining with maturation of the fetal liver,
it was significantly higher in comparison to the
growth of Thy1 negative cells at all times. Thus,
Thy1 positive cells can be extensively expanded in-
vitro. Immunocytochemistry and RT-PCR analysis
showed that both Thy1 positive cells and Thy1 neg-
ative cells expressed the liver specific genes
Cytokeratin 18 (CK18), alpha-feto protein (AFP),
and albumin during the culture period [Fig. 2 A/B].
Additionally, in an ongoing study we found, that
highly proliferative fetal cells can be expanded seri-
ally by passage [Fig. 3]. The use of hepatic stem cells
may become important for the improvement of tissue
engineering approaches and cell-based therapeutic
strategies for liver diseases. For such approaches
hepatic stem cells may provide several advantages
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Fig. 1 Method for isolation of fetal hep-
atic progenitor cells from developing rat
liver. Fetal rat liver were harvested from
rat fetusses at embryonal /fetal day (ED)
16, 18, or 20. The liver tissue was digested
and liver cells were isolated using an
EGTA / collagenase digestion. By
Magnetic cell sorting (MACS), OX-43
and OX-44 -positive hematopoietic cells
of the fetal liver were removed and hepat-
ic cells of the fetal liver were specifically
enriched. In a second MACS-step the
stem-cell marker Thy-1 positive cells were
selected from the hepatic fetal liver cells.



over hepatocytes: (i) Stem cells could be easily
expanded, e.g. during a culture period, and (ii) trans-
duction of stem cells may result in the expansion of
"cured" daughter cells [29]. However, the role of
fetal liver stem cells for new therapeutic applications
has still to be defined; Besides the safety risks, ethi-
cal and legal aspects for the use of undifferentiated
cells have to be evaluated with care [33].

Use of adult liver stem cells for liver
regeneration 

The existence of liver stem cells in the bone mar-
row was first demonstrated by Petersen et al., who
showed that bone marrow cells transplanted into
lethally irradiated mice engrafted in the recipients
liver, and differentiated into liver stem cells (Oval
cells) or mature liver cells (hepatocytes) [34].
These in vivo results were confirmed by mouse
experiments [35], and in patients who received a
bone marrow transplantation or peripheral blood
stem cell transplantation for hematological disor-
ders [36–38]. Furthermore, Lagasse et al. found
liver specific gene-expression and function in
FACS-sorted mouse hematopoietic stem cells
(KTLS-cells: c-kithigh, thy1+/-, linneg, sca-1+) after
transplantation into FAH-deficient mice [39].
Recent data in the same animal model indicated
that cells observed in the recipients liver after stem

cell transplantation bearing donor markers and
liver specific markers were rather a product of cell
fusion than of a real "transdifferentiation" [40,
41]. However, variable data concerning cellular
fusion versus transdifferentiation as the source of
liver-like differentiated cells derived from bone
marrow were found in other animal models:
Engraftment of human albumin producing cells in
livers of NOD/SCID recipient mice was observed
after xenogeneic transplantation of human
hematopoietic or umbilical cord blood stem cells;
however, fusion events were not ruled out [42]. In
contrast to this, two studies in a similar setting
found liver specific differentiation of the trans-
planted cells occurring without any evidence for
cell fusion events after transplantation of human
sorted CD34+ or unsorted mononuclear cord
blood cells into NOD/SCID mice [43, 44].

Differentiation of adult bone marrow
derived MSC towards liver progenitor cells 

First in vitro data suggested the differentiation
potential of several types of bone marrow cells /
stem cells towards hepatocytic cells under the
appropriate culture conditions. Oh et al. found an
expression of the liver specific genes AFP and
albumin in cultures of unsorted rat bone marrow
cells after 21 days. The liver specific gene expres-
sion was induced by the hepatocyte growth factor
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Fig. 2 Immuncytochemical analysis of cytospins from cultures of Thy-1 positive hepatic cells from ED 18 livers
showed numerous cells positive for the liver epithelial cell specific Cytokeratin 18 (CK-18; A) and the immature
liver cell marker alpha-feto-protein (AFP; B).
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HGF, and was mediated by the expression of its
receptor c-met [45]. The expression of liver spe-
cific genes (albumin, cytokeratins) in cultured
human CD34-positive hematopoietic stem cells or
mononuclear cord blood cells was also demon-
strated to be induced by HGF in culture [46, 47].
Furthermore, Schwartz et al. isolated CD45 and
Glycophorin A depleted multipotent adult progen-
itor cells (MAPC) from rat, mouse, or human
plastic-adherent bone marrow cells that expressed
liver specific markers after 14 days in culture
with FGF and HGF, e.g. albumin and CK-18 [48].
From cultures of mature hepatocytes it is known,
that important stimuli for an adequate cellular dif-
ferentiation in vitro are (i) the addition of growth
hormones and cytokines to the culture medium
[49, 50], (ii) coating culture dishes with extracel-

lular matrix (ECM) molecules [51, 5], and (iii) the
co-culture with other cell types [52, 53]. In stem
cell cultures, Miyazaki et al. showed an induction
of the liver specific genes albumin, tryptophan-
2,3-dioxygenase and tyrosine aminotransferase of
rat bone marrow cells indicating a maturation
towards hepatocytes, when cultured in a hepato-
cyte growth medium supplemented with HGF and
epidermal growth factor EGF [54]. Avital et al.
demonstrated, that β2m-negative thy1-positive
stem cells residing in rat bone marrow expressed
the liver marker albumin. In co-cultures of these
cells with hepatocytes (separated by a PTFE-
membrane) these cells were shown to adopt
metabolic activity after 7 days in culture [55]. An
important influence of hepatocytes on the differ-
entiation of stem cell enriched bone marrow was
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Fig. 3 Cell recovery curves of two
examples of cultured hepatocytic
fetal liver cells from ED 17 livers
showed an enormous growth poten-
tial of the cells and an expansion of
the cells enduring over several pas-
sages (P1, P2 , and P3).

Fig. 4 Rat mesenchymal stem cells (MSC)
from bone marrow were cocultured with adult
hepatocytes for induction of liver specific differ-
entiation. Clonally green-fluorescing protein
(GFP) positive MSC were co-cultured with adult
rat hepatocytes (Hepatocytes; GFP-negative) in
a growth hormone supplemented culture medi-
um and on a fibronectin-matrix. Cells from
cocultures were isolated and sorted using fluo-
rescence-activated cell sorting (FACS) to obtain
GFP-positive or GFP-negative cells for PCR-
analysis from the co-cultures. 



also highlighted by Okumoto et al. MACS-
enriched bone marrow stem cells cultured in the
presence of HGF and fetal bovine serum (FBS)
alone expressed the markers hepatic nuclear fac-
tor 1 (HNF1-α) and CK-8 only after 7 days in cul-
ture. In cocultures with hepatocytes seperated by
a semipermeable membrane the stem cells addi-
tionally expressed the liver specific markers AFP
and albumin [56]. This suggested, that co-cul-
tured hepatocytes have a stimulatory effect for the
differentiation of stem cells towards liver cells,
which was mediated by soluble factors. In a
recent study by our group, GFP+ clones of rMSC
from passage > 9 were used for the differentiation
analysis towards liver cells. For liver specific dif-
ferentiation, cells were cultured in co-cultures
with liver cells. For gene-expression analysis,
cells from co-cultures were separated in GFP-pos-
itive or GFP-negative cells by Fluorescence acti-
vated cell sorting before RT-PCR analysis (Fig. 4)
[57]. We found that rMSC possess a differentia-
tion potential towards hepatocytic cells in vitro:
Expression of the liver specific genes e.g. albu-
min and CK-19 was demonstrated in GFP+ cells
of the cocultures in vitro (Fig. 5 A–C). This sug-
gested a further differentiation of rat MSC to
mature hepatocytic cells, with a mixed phenotype
between hepatic and biliary cells (Fig. 6) [58].
For other multipotential stem cell types from bone
marrow also a hepatocytic differentiation poten-

tial was shown by in vitro data: Sorted hematopoi-
etic stem cells [55, 46], multipotential adult pro-
genitor cells [48], or side population cells in the
liver derived from bone marrow [59] were found
to express liver specific genes, when cultured in
the presence of growth factors. Our and other
studies provide growing evidence that MSC pos-
sessed a differentiation potential towards hepato-
cytic cells, or at least liver stem like cells [60–62].
Additionally, we could show that for induction of
liver specific gene expression co-culture of hepa-
tocytes played a pivotal role.

Finding the right stem cell candidate 

Bone-marrow derived liver stem cells, especially
MSC are promising candidates for new cell-based
approaches for the treatment of liver diseases [63]:
(a) these cells can be easily harvested from adult
bone marrow and expanded tremendiously in
vitro; (b) transduction of MSC may result in the
expansion of "cured" daughter cells; (c) the use of
adult stem cells is favourable over other stem
cells, such as embryonic stem cells or fetal stem
cells, regarding ethical issues. The differentiation
of such cells towards liver cells by co-cultures
may permit the generation of artificial liver tissue
for tissue engineering of the liver, or liver cell
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Fig. 5 One example from sorting of
GFP+ and GFP- cells of cocultures at wk
1 is shown. (A) Viable cells were gated as
P1. (B) P1 cells were gated in GFP- or
GFP+ (P2). (C) For highest purification
of GFP+ cells, P2 was analyzed and only
GFP+ cells were sorted in the sample tube
for PCR-analysis (light grey peak).



transplantation [64]. Thus, the potential of MSC to
differentiate towards functional liver cells should
be of high interest for new cell-based therapies. 

Development of tissue engineering and
regeneration approach for liver diseases 

For any clinical application of hepatocyte trans-
plantation, a safe mode of supportive orthotopic
cell transplantation into the liver would be desir-

able that avoids the observed side effects of intra-
portal injection. In a recent study we aimed to
evaluate fibrin glue as a novel matrix for culture
and orthotopic extravascular transplantation of
hepatocytes. Fibrin glue is developed for tissue
repair and hemostasis. It is a well established tool
in general surgery and minimises blood loss dur-
ing major procedures such as partial liver resec-
tion [65–67]. Fibrin gel has been used in experi-
mental settings as a matrix for culture and trans-
plantation of several cell types, e.g. cartilage,

583

J. Cell. Mol. Med. Vol 10, No 3, 2006

Fig. 6 R e v e r s e - t r a n s c r i p t i o n
polymerase chain reaction (RT-
PCR) of the GFP+ MSC-derived
cells showed a gene expression of
the hepatocyte specific marker
albumin (ALB) and the biliary cell
specific marker Cytokeratin-19
(CK-19) after two weeks in the co-
cultures. Cocultured GFP- hepato-
cytes also expressed both markers
in the cocultures, hepatocyte-con-
trols expressed ALB, whereas cul-
tures of rMSC alone did not show
hepatic genes ALB or CK-19.

Fig. 7 Injectable liver: Rat
hepatocytes were harvested
from adult rat livers by two
step collagenase digestion.
Isolated cells were marked
with the fluorescence dye
pkh-26 and were injected
within an in-situ setting gel
matrix based on fibrinogen
and thrombin (two compo-
nent fibrin-glue) directly in
the recipient´s liver
parenchyma.



bone and urothelial cells [68–70]. Fibrin gel
allows as a two-component in situ setting matrix
the minimal invasive application of different cell

types of tissues. We could show an efficient
engraftment of donor derived hepatocytes and
non-parenchymal liver cells in the recipients liver
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Fig. 8 HE-staining of the explanted recipient livers 7 days after cell injection showed a fibrin-clot in degrada-
tion with engrafted cells at the site of transplantation (A). Under fluorescenc-light, the transplanted cells were
easily identified by their positivity for the pkh-26 dye labelling (B; yellow cells). Immunocytochemistry of a
serial section for the hepatocyte specific cytokeratin 18 (CK-18) showed viable engrafted CK-18 positive hep-
atocyte within the fibrin-matrix (C; detail D: arrows mark positive cells).  



by fibrin-matrix based transplantation recently
(Fig. 7) [71]. A week after transplantation, the fib-
rin clot apparently was degraded. CK-18 positive
donor hepatocytes were well engrafted within the
parenchyma. The histological data provided evi-
dence, that there is an active integration of the
transplanted cells in the recipient liver parenchy-
ma, with a high proportion of non-parenchymal
liver cells (Fig. 8). The fibrin matrix was consec-
utively resorbed by donor cells within days. We
suggest that "injectable liver" using a fibrin
matrix as carrier for liver cells represents a safe
way for application of a sufficient cell mass
orthotopically into a favorable environment.
Furthermore, it appears to support engraftment
and specific differentiation of viable hepatocytes
(Fig. 8). Thus, the results are encouraging that
fibrin glue is a suitable matrix for orthotopic
transplantation of hepatocytes and stem cell can-
didates. This "injectable liver" -approach may
represent an improved carrier for cell-based ther-
apeutic approaches for liver diseases. 

Conclusion

The use of stem cells for liver directed cell-based
therapeutic approaches should be very attractive.
However, the mechanism for generation of liver
cells by stem cells remains still controversial, and
in vivo results showed a very low repopulation of
the liver by stem cells. Therefore, the develop-
ment of appropriate methods of cell transplanta-
tion is mandatory in order to improve successful
repopulation and tissue engineering approaches
for liver therapy by stem cells. Furthermore, stud-
ies have to show which stem cells (e.g. adult bone
marrow derived, fetal organ derived) are superior
to use for the formation of functional liver tissue
for tissue / organ repair.
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