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Summary
In cancer diagnosis studies, high-throughput gene profiling has been extensively conducted,
searching for genes whose expressions may serve as markers. Data generated from such studies
have the “large d, small n” feature, with the number of genes profiled much larger than the sample
size. Penalization has been extensively adopted for simultaneous estimation and marker selection.
Because of small sample sizes, markers identified from the analysis of single datasets can be
unsatisfactory. A cost-effective remedy is to conduct integrative analysis of multiple
heterogeneous datasets. In this article, we investigate composite penalization methods for
estimation and marker selection in integrative analysis. The proposed methods use the minimax
concave penalty (MCP) as the outer penalty. Under the homogeneity model, the ridge penalty is
adopted as the inner penalty. Under the heterogeneity model, the Lasso penalty and MCP are
adopted as the inner penalty. Effective computational algorithms based on coordinate descent are
developed. Numerical studies, including simulation and analysis of practical cancer datasets, show
satisfactory performance of the proposed methods.
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1. Introduction
In cancer research, high-throughput gene expression profiling studies have been extensively
conducted, searching for markers that may assist diagnosis, prognosis prediction and
treatment selection. In this article, we focus on diagnosis studies, where the response
variables are categorical, for example, presence or absence of cancer or different stages of
cancer. Data generated in high-throughput studies have the “large d, small n” characteristic,
with the number of genes profiled d much larger than the sample size n. In addition, it is
expected that in whole-genome studies, only a subset of the profiled genes are associated
with the response variables. Thus, analysis of cancer high-throughput data demands
regularized estimation as well as variable selection.

Among the available approaches, penalization has attracted extensive attention. The most
popular penalization approach is Lasso, which, unfortunately, is not selection consistent in
general (Zhang & Huang, 2008). Penalization approaches that may have better selection
properties include adaptive Lasso, elastic net, bridge, smoothly clipped absolute deviation
(SCAD), minimax concave penalty (MCP) and others. See Bühlmann & van de Geer (2011),
Zhang (2010), Huang et al. (2011a) and references therein for more discussions. In recent
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studies, the “group” counterparts of these penalties have been developed. Here, a group is
usually composed of multiple genes with coordinated biological functions or correlated
expressions.

In practical data analysis, markers identified from the analysis of single datasets may be
unsatisfactory. For example, they may suffer a lack of reproducibility and have
unsatisfactory prediction performance. Multiple factors may contribute to the unsatisfactory
performance, among which the most important one is the small sample sizes of individual
studies. Recent studies suggest that pooling and analyzing data from multiple studies may
increase sample size and so improve properties of the identified markers (Guerra &
Goldsterin, 2009). Multi-dataset methods include meta-analysis and integrative analysis
methods. Integrative analysis methods pool and analyze raw data from multiple studies and
can be more informative than meta-analysis methods, which analyze multiple studies
separately and then pool summary statistics (lists of identified genes, p-values, effect sizes,
etc).

Among the available integrative analysis studies, the following are the most relevant to the
present study. Ma et al. (2011a) investigate the integrative analysis of multiple cancer
diagnosis studies. A composite penalty, where the outer penalty is bridge and the inner
penalty is ridge, is adopted for marker selection. Huang et al. (2011c) also analyze cancer
diagnosis studies but adopt a sparse boosting approach for marker selection. This approach
needs to iteratively maximize a non-differentiable objective function and thus may incur
high computational cost. Ma et al. (2011b) analyze cancer prognosis studies with censored
survival outcomes. The proposed penalty is a composite of MCP (outer) and ridge (inner). In
the aforementioned studies, it is reinforced that the same set of markers are identified in all
studies, that is, the homogeneity model described in Section 2.1. Ma et al. (2009) analyze
diagnosis studies on multiple types of cancers. A gradient thresholding approach is proposed
for marker selection. This approach allows different sets of markers in different studies, that
is, the heterogeneity model described in Section 2.2.

In this article, we investigate the integrative analysis of multiple cancer diagnosis studies
with binary response variables. We propose using composite penalization for marker
selection. With multiple models, multiple composite penalties are proposed. This study may
advance from the existing ones along the following aspects. First, it provides a more
systematic study of both the homogeneity and heterogeneity models, whereas published
studies focus on a single model. Second, under the homogeneity model, the MCP outer
penalty may have better computational properties (for example lower computational cost)
over the bridge. In addition, the composite penalization approach may have lower
computational cost than the sparse boosting. Third, for the heterogeneity model, this study is
the first to investigate penalized marker selection. Penalization can be preferred over
gradient thresholding, which may be inconsistent even under simple settings (Zhang, 2007).

The rest of the article is organized as follows. The data and model settings are described in
Section 2. Marker selection using composite penalization is described in Section 3. Multiple
approaches are proposed to tailor multiple models. Numerical studies, including simulation
in Section 4 and data analysis in Section 5, are conducted to investigate practical
performance of the proposed approaches. The article concludes with discussion in Section 6.
Multi-dataset analysis is inevitably more complicated than single-dataset analysis. In this
article, we focus on methodological development and refer to published studies for
discussions on the basic strategy of integrative analysis, datasets selection, model
interpretation and practical applications.

Liu et al. Page 2

Scand Stat Theory Appl. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Integrative Analysis of Multiple Cancer Diagnosis Studies
Assume that there are M independent studies, and there are nm iid observations in study m(=

1,…, M). The total sample size is . In study m, denote ym as the response
variable. Consider diagnosis studies where the response variables are the binary indicators of
the presence of cancer. Denote xm as the length-d covariates (gene expressions in this study)
for a single observation. For simplicity of notation, assume that the same covariates are
measured in all M studies. For better comparability, assume that each component of xm has
been standardized to have zero mean and unit variance. No further constraint is imposed on
the correlation structure of covariates. Assume the model ym ~ φ (xm′βm), where φ is the

known link function, and βm is the length-d vector of regression coefficients. Denote  as

the jth component of βm. Then  is the length-M vector of regression
coefficients, representing the effects of gene j in M studies. Published studies suggest that it
is reasonable to assume the same link function in different studies. However, because of the
heterogeneity across studies, for a covariate, its strengths of association with response
variables, which are measured with regression coefficients, may be different in different
studies.

In study m(= 1,…, M) with nm subjects, denote Ym as the length-nm vector of response
variables and Xm as the nm×d covariate design matrix. Then the M models can be combined
into a single model Y ~ φ (Xβ), where Y = (Y 1′,…, YM′)′, X = diag(X1, …, XM) and β = (β1′,
…,βM′) ′. With binary responses, assume logistic regression models. Denote R(β) as the
unnormalized log-likelihood function for the unified model. It is easy to see that R(β) is
simply the sum of M individual log-likelihood functions constructed from the M studies
separately. Consider the following two models.

2.1 Homogeneity model

Under this model for any j(= 1,…, d), . That is, the M datasets have
the same set of cancer-associated covariates, i.e., the same sparsity structure. The
homogeneity model has been studied in Huang et al. (2011c), Ma et al. (2011a, 2011b) and
others. It is a sensible model when multiple datasets have been generated under comparable
protocols (the same outcome variable, similar patient selection criteria, similar profiling
protocols, etc). In gene expression profiling studies, data characteristics can be summarized
with the MIAME criterion (Minimum Information About a Microarray Experiment;
www.mged.org/Workgroups/MIAME/miame.html; Oliver, 2003), and it is feasible to select
datasets with similar MIAME descriptions. With those selected datasets, it is reasonable to
expect them to have the same set of cancer markers.

2.2 Heterogeneity model
Under the heterogeneity model, a covariate can be associated with the response variables in
some studies but not others. It is easy to see that the heterogeneity model includes the
homogeneity model as a special case. There are multiple scenarios under which the
heterogeneity model is meaningful. The first is where different studies are on different types
of cancers (Ma et al., 2009). Despite significant differences, different types of cancers share
the same characteristics of uncontrolled growth and metastasis. In addition, a large number
of studies have shown that some cancers, for example breast cancer and ovarian cancer, are
“tightly connected”. Thus it is reasonable to expect multiple cancers to have overlapping but
different genomic basis. The second scenario is the analysis of different subtypes of the
same cancer. Different subtypes may have different risks of occurrence and progression
patterns, and it is not sensible to reinforce the same genomic basis. The third scenario is
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where subjects in different studies have different clinical risk factors, environmental
exposures or treatment regimens. For genes not intervened with those additional covariates,
their importance is consistent across multiple studies. However, for other genes, after
accounting for the additional covariates, they may be important in some studies but not
others.

3. Penalized Estimation and Marker Selection
In integrative analysis, the model and regression coefficients have two dimensions. The first
is the gene dimension as in many other studies. The second is the study dimension which is
unique to integrative analysis. To accommodate the two dimensions, composite penalties are
needed for marker selection. We adopt the MCP for outer penalty and different inner
penalties under the homogeneity and heterogeneity models.

3.1 MCP
The MCP is proposed in Zhang (2010). It belongs to the family of quadratic spline penalties.
In single-dataset analysis, it has been shown to have satisfactory variable selection
properties. The penalty is defined as

(1)

where λ is a penalty parameter, γ is a regularization parameter that controls the concavity of
ρ, and x+ = xI(x ≥ 0). The MCP can be easily understood by considering its derivative, which
is

where sgn(t) = −1,0, or 1 if t< 0, = 0, or >0, respectively. As |t| increases from zero, MCP
begins by applying the same rate of penalization as Lasso, but continuously relaxes
penalization until |t| >γλ, a condition under which the rate of penalization drops to zero. It
provides a continuum of penalties where the Lasso penalty corresponds to γ = ∞ and the
hard-thresholding penalty corresponds to γ → 1+. Compared with other penalties that also
enjoy selection consistency, MCP may be preferred because of its computational simplicity
(Mazumder et al., 2011). The MCP approach has been developed for single-dataset analysis.
With multiple datasets, we consider the following MCP-based composite penalties.

3.2 Homogeneity model
Under the homogeneity model, consider the estimate

(2)

Here ρ(· λ,γ) is defined in expression (1). Mj is the size of group j. When the M studies have

matched gene sets,  is the l2 norm of βj, which is the square

root of a ridge penalty, with the convention that  if gene j is not measured in study m.
Because of its specific form, the penalty defined above is also referred to as 2-norm group
MCP, or 2-norm gMCP hereafter (Huang et al., 2011a, 2011b; Ma et al., 2011b).
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Formulation (2) has been motivated by the following considerations. In our study, genes are
the basic functional units. Thus the overall penalty is the sum of d individual penalties, with
one for each gene. For gene selection, we propose using MCP. For a specific gene, its
effects in the M studies are represented by a “group” of M regression coefficients. Under the
homogeneity model, all the M studies should identify the same set of genes. Thus, within a
group, the ridge penalty is adopted, which encourages shrinkage but does not conduct
selection. Mj is introduced to more easily accommodate partially matched gene sets.

3.3 Heterogeneity model
Under the heterogeneity model, we first consider the estimate

(3)

Here  is the Lasso penalty (l1 norm of βj). Because of its specific form, the
penalty defined in (3) is referred to as 1-norm gMCP (Huang et al., 2011a).

Under the heterogeneity model, gene selection is still needed, which is achieved using the
MCP outer penalty. In addition, for a selected gene, it is necessary to identify the studies in
which it is associated with responses. Thus, the second level of selection is needed, which is
accomplished with the Lasso penalty in (3). This strategy shares a similar spirit with the
group bridge approach in Huang et al. (2009). The difference is that in Huang et al. (2009),
there is only one dataset, and a group is composed of multiple genes. In contrast in this
study, there are multiple datasets, and a group corresponds to only one gene.

The Lasso penalty is adopted in formulation (3) because of its computational simplicity. In
single-dataset analysis, it has been shown that MCP has better selection properties than
Lasso (Zhang, 2010; Zhang & Huang, 2008). Motivated by such a result, we consider

(4)

We refer to the penalty defined in the above formulation as the composite MCP. Breheney
& Huang (2009) suggest that although a and b can be chosen separately, it is sensible to set
them connected in a manner to ensure that the group level penalty attains its maximum if
and only if all of its components are at the maximum.

3.4 Computation
Existing algorithms are not directly applicable to solve the minimizations in (2), (3) and (4).
Below we describe computational algorithms for (2) and (4). Formulation (3) can be solved
in a similar manner. We first consider a linear regression problem with E(Y|X) = Xβ, which
has a least squares objective function. Here Y, X and β have similar definitions as in Section
2. The logistic model can then be transformed into a sequence of least squares problems.

3.4.1 Least squares with 2-norm gMCP—Consider the homogeneity model, where the
estimate is defined as
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(5)

We adopt a coordinate descent approach (Friedman et al., 2010), which minimizes the
objective function with respect to one group of coefficients at a time and cycles through all
groups. It transforms a complicated minimization problem to a series of simple ones. With
fixed tuning parameters, the coordinate descent algorithm proceeds as follows:

1.
Initialize s = 0 and the vector of residuals  is an initial
estimate of βj. A convenient choice for the initial estimate is zero (component
wise). Xj is the component of X that corresponds to βj.

2. For j = 1,…, d:

Given the group parameter vectors βk (k ≠ j) fixed at their current estimates ,
minimize the objective function (5) with respect to βj. Here only terms involving βj
matter. Some algebra shows that this problem is equivalent to minimizing

(6)

where C(β̃) is a constant free of  and . It can be shown
that the minimizer of expression (6) is

(7)

Update 

3. Update s ← s + 1;

4. Repeat Steps 2 and 3 until convergence.

This algorithm starts with a null model. In each iteration, it cycles through all d genes. For
each gene, as equation (7) only involves simple computations, the update can be
accomplished easily. There are multiple choices for the convergence criterion. In our
numerical study, we use the l2 norm of the difference between two consecutive estimates
smaller than 0.01 as the convergence criterion, which has reasonable performance. In
practice, other convergence criteria can be adopted, depending on data characteristics. In
objective function (5), the first term is continuously differentiable and regular in the sense of
Tseng (2001). The second term, the penalty, is separable. Thus, the coordinate descent
algorithm converges to a coordinatewise minimum of the first term, which is also a
stationary point (Tseng, 2001).

3.4.2 Least squares with composite MCP—Even with the simple least squares
objective function, composite MCP does not have a convenient form for updating individual
groups. We adopt a local coordinate descent approach (LCD; Breheny & Huang, 2011) to
compute
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(8)

Consider update with the jth group. By taking the first order Taylor expansion

approximation about β̃j (the current estimate), the penalty as a function of  is

approximately proportional to  where

Thus for update with each , we have an explicit solution:

(9)

where  is the kth row of , r is the current residual,  is the current estimate, and S(z,λ)
= sgn(z)(|z| − λ)+ is the soft-thresholding operator. Then the LCD can be carried out in a
similar manner as the regular coordinate descent.

3.4.3 Computation with logistic regression—In study m(= 1 … M), consider

{ }, the nm iid copies of . Under the

logistic regression model, . Note
that unlike with linear regression, the intercept term  is necessary. The log-likelihood
function is

(10)

Under the logistic regression models, there is no simple, closed-form solution for update
with a single group. To tackle this problem, we resort to a majorization minimization (MM)
approach (Ortega & Rheinboldt, 2000). Note that the negative log-likelihood function is

convex. With the MM approach, when the current estimate is ( , β̃ m), we majorize the
negative log-likelihood function by a quadratic loss given by

where  and  are evaluated

at the current estimate ( , β̃m), and C ( , β̃m)is free of ( , βm). Note that the above
approximation can be conducted for all M studies separately. The approximated objective
function has a least squares form.
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With fixed tuning parameters, our computational algorithm consists of a sequence of nested
loops:

Outer loop: Update the majorized quadratic function  using the

current estimate ( , β̃m).

Inner loop: Run the algorithm developed for the penalized least squares problem with

the objective function .

When the true models are identifiable, under mild regularity conditions, the overall
decreasing trend of the objective function and hence convergence of this algorithm can be
derived from the convergence of the coordinate descent algorithm following Vaida (2005).

3.5 Tuning parameter selection
The MCP (1) involves two tuning parameters λ and γ. The effect of λ is similar to that with
other penalization approaches, with larger values leading to sparser estimates. Generally
speaking, smaller values of γ are better at retaining the unbiasedness of MCP for large
coefficients. However, they also have the risk of generating objective functions that have a
nonconvex region, which may introduce difficulty to optimization and yield solutions that
are discontinuous with respect to λ. Loosely speaking, it is advisable to choose a γ value that
is “big enough” to avoid this problem but “not too big”. Following published studies, we
have experimented with a few values for γ, particularly including 1.8, 3, 6 and 10. In our
simulation and data analysis, γ = 6 leads to the best performance. We search for optimal λ
values using V-fold cross validation (V=5 in numerical study; Hastie et al. 2009). As shown
in Breheney & Huang (2011, Figure 2), when λ is too small, the cross validation criterion
may not be locally convex. In such a region, the criterion may not be reliable, and the
estimates are discontinuous and noisy. To avoid such a problem, we select λ where the
criterion first goes up.

4. Simulation Study
Simulation is conducted to better gauge performance of the proposed approaches. Here we
investigate solution paths and compare selection performance of the proposed approaches
with alternatives.

4.1 Simulation settings
We simulate four datasets, each with 50, 100 or 200 subjects. For each subject, we simulate
the expressions of 1,000 genes. The gene expressions are jointly normally distributed, with
marginal means equal to zero and variances equal to one. We consider two correlation
structures. The first is the autoregressive correlation, where expressions of genes j and k
have correlation coefficient ρ|j–k|. We consider two scenarios with ρ = 0.2 and 0.7,
corresponding to weak and strong correlations, respectively. The second is the banded
correlation. Here two scenarios are considered. Under the first scenario, genes j and k have
correlation coefficient 0.33 if |j – k| = 1 and 0 otherwise. Under the second scenario, genes j
and k have correlation coefficient 0.6 if |j – k| = 1, 0.33 if |j – k| = 2, and 0 otherwise. Under
the homogeneity model, all four studies share the same ten cancer-associated genes. Under
the heterogeneity model, studies 1 and 2 share the same ten cancer-associated genes, and
studies 3 and 4 share the same ten cancer-associated genes. The two sets have five
overlapping genes. Thus, under both models, across the four datasets, there are a total of
forty true positives. The nonzero regression coefficients are scattered between 0.3 and 1.9.
We generate binary response variables from the logistic regression models and Bernoulli
distributions.
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4.2 Solution paths
We investigate solution paths, which are estimates as a function of λ with γ or a=6. We
simulate four datasets under the homogeneity and heterogeneity models and compute
estimates using the algorithms described in Sections 3.4.1–3.4.3. The sample size per study
is 50. The correlation structure is autoregressive with ρ= 0.7. Under the homogeneity model,
Figures 1 and 2 (Appendix) provide the solution paths for an important and a noisy gene,
respectively. Under the heterogeneity model, Figures 3–5 (Appendix) provide the solution
paths for a gene associated with responses in all studies, a gene associated with responses in
some but not all studies, and a gene not associated with responses, respectively. As the
homogeneity model is a special case of the heterogeneity model, all three proposed penalties
are applicable. For the heterogeneity model, conceptually, the 2-norm gMCP approach may
not be appropriate as it does not conduct within-group selection. However, to more clearly
see the difference, we also analyze the heterogeneity model with 2-norm gMCP. In addition,
as a benchmark, we analyze each dataset separately using MCP. The solution paths clearly
show the “all in or all out” nature of 2-norm gMCP. The sparsity structures are always
consistent across studies. With the three alternative approaches, however, when λ is large
enough, the sparsity structures are not consistent. The 1-norm gMCP and composite MCP
approaches conduct within-group selection and may be more appropriate for the
heterogeneity model. Their solution paths are similar for the two simulated datasets.

4.3 Results
Simulation suggests that the proposed approaches are computationally feasible. When the
sample size per study is 200, analysis of one replicate on a regular desktop PC takes about
ten minutes for all three proposed penalties.

When employing the proposed approaches and MCP, tuning parameters are selected using
five-fold cross validation. Summary statistics based on 100 replicates, including the number
of genes identified and number of true positives, are shown in Table 1 (homogeneity model)
and 2 (heterogeneity model) respectively. Under the homogeneity model, 2-norm gMCP
significantly outperforms MCP and composite MCP by having more true positives and
fewer false positives. Under some simulation scenarios, 1-norm gMCP may identify a few
more true positives, however, at the price of a large number of false positives. When taking
both the number of true positives and model size into consideration, 2-norm gMCP may be
preferred over alternatives under the homogeneity model. Under the heterogeneity model,
the pattern is not as clear. The relative performance of different approaches may depend on
data settings. For example, when the sample size per study is 200 and under the
autoregressive correlation structure with ρ= 0.2, 2-norm gMCP has the best performance.
Under a few simulation scenarios, 1-norm gMCP has significantly more true positives than
alternatives, again at the price of many more false positives. The composite MCP approach
may have a lower false positive rate, however, it may also identify fewer true positives. The
satisfactory performance of 2-norm gMCP may be “counterintuitive”. It may be related to
the surprisingly satisfactory performance of ridge regression with high-dimensional data
(Park & Hastie, 2008; Zhu & Hastie, 2004). It is also interesting to note that the performance
of composite MCP may not be as good as expected. Similar phenomena have been observed
with MCP in published studies. We suspect that it may be because the cross validation
selected tuning parameters are too large, leading to overly parsimonious models. Without
solid theoretical development, we are unable to provide full justification for the
observations. The simulation results further confirm the complexity of integrative analysis
with high-dimensional data and the need to explore multiple approaches in practical data
analysis.
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5. Analysis of Cancer Diagnosis Studies
5.1 Analysis of liver cancer studies

Gene profiling studies have been conducted on hepatocellular carcinoma, which is among
the leading causes of cancer death in the world. Four microarray studies are described in
Choi et al. (2003). Brief descriptions are provided in Table 3. Studies that generated the four
datasets (referred to Data D1–D4) were conducted in three different hospitals in South
Korea. Although the same protocol was used in all four studies, the researchers were not
able to directly merge the data even after normalization (Choi et al., 2003). 9,984 genes
were profiled in all four studies, among which we selected 3,122 with less than 30%
missingness. We analyze the 1,000 genes with the highest variations. We also remove eight
subjects that have more than 30% gene expression measurements missing. The effective
sample size is 125.

We analyze data using the four approaches. Genes identified and their estimated regression
coefficients are provided in Table 5 (Appendix). With MCP, a total of six genes are
identified in the four datasets, with no gene identified in more than one datasets. 2-norm
gMCP identifies two genes. 1-norm gMCP identifies a total of eighteen genes, among which
one gene is identified in three datasets, and all other genes are identified in one dataset only.
Composite MCP identifies five genes, with no overlap between different gene sets.

Without having access to independent validation studies, we are not able to objectively
evaluate gene identification accuracy. Here we investigate prediction performance. In the
analysis of genomic data, marker selection and prediction are related but, in general, they
represent different aspects. Prediction evaluation can only provide a partial evaluation of
identification results. It is expected that if the identified genes are more meaningful,
prediction using these genes may be more accurate. We adopt a cross-validation based
prediction evaluation (Huang & Ma, 2010). The numbers of false prediction are 52 (MCP),
34 (2-norm gMCP), 30 (1-norm gMCP) and 43 (composite MCP), respectively. The 2-norm
gMCP approach identifies a small number of genes showing consistent effects across
multiple datasets. Its prediction performance is much better than that of MCP and composite
MCP and comparable to that of 1-norm gMCP.

5.2 Analysis of multiple cancer studies
Different types of cancers may share common susceptibility genes (Ma et al., 2009). For
some cancers, for example breast cancer and ovarian cancer, there exist a large number of
epidemiologic evidences that may assist the identification of common susceptibility genes.
For other cancers, there is a lack of such evidence, and finding the common genes will have
to rely on genomic data analysis. As shown in Table 4, we collect data from four studies
conducted by different research groups who investigated cancers of different tissues and
used different profiling platforms. The four datasets have a combined sample size of 475.
The expressions of 3,239 genes were measured on all subjects.

We analyze using the four different approaches. Genes identified and their regression
coefficients are shown in Table 6 (Appendix). MCP identifies one gene in each study with
no overlap across studies. 2-norm gMCP identifies three genes. 1-norm gMCP identifies six
genes in total, with two genes identified in two studies and the rest identified in only one
study. Composite MCP identifies five genes with no overlap across studies. When applying
the cross validation based prediction evaluation, the numbers of false predictions are 14
(MCP), 4 (2-norm gMCP), 2 (1-norm gMCP), and 6 (composite MCP), respectively. The
patterns demonstrated in Table 6 are similar to those observed with the liver cancer data.
The 1-norm gMCP approach has the best prediction performance. It is of interest to note the
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satisfactory prediction performance of 2-norm gMCP and composite MCP, with different
sets of identified genes. In the literature, it has been noted that with practical gene
expression data, different sets of genes may have similar prediction performance. In this set
of analysis, the three proposed penalties have comparable performance, with no one
significantly dominating the other two.

6. Discussion
In cancer genomic data analysis, multiple studies have established the advantages of
integrative analysis over meta-analysis and analysis of single datasets. In this article, for
cancer diagnosis studies, we consider both the homogeneity and heterogeneity models,
propose MCP-based composite penalties for marker selection, and develop effective
computational algorithms. Simulation studies and data analysis show satisfactory
performance of the proposed approaches.

In the analysis of single datasets, multiple penalization approaches have been shown to have
satisfactory performance, including bridge, SCAD, adaptive Lasso and others. MCP is
adopted in this study because of its computational simplicity and satisfactory empirical
performance. It is possible to follow a similar strategy and develop composite penalties
based on, for example, SCAD. A more systematic development is beyond the scope of this
article. In this study, we have focused on methodological development. As shown in Huang
et al. (2011a, 2011b), theoretical studies of MCP-based composite penalties can be
extremely challenging, even for simple linear regression with a single dataset. The present
data and model settings are more complicated than that in Huang et al. (2011a, 2011b)
because of the heterogeneity across multiple datasets and adoption of generalized linear
models. As a limitation of this study, we are not able to establish the theoretical properties
and postpone such effort to future studies. The four datasets analyzed in Section 5.2 have
also been analyzed in Ma et al. (2009), which includes three additional datasets. In general,
adding more datasets increases sample size and power of analysis. However, all datasets
analyzed in Ma et al. (2009) come from early experiments where the gene annotations were
less satisfactory. For this specific example, adding more datasets reduces the number of
genes measured in all datasets. Thus, to keep a reasonable number of genes measured in all
datasets, we choose to focus on analyzing the four datasets.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Solution paths under the homogeneity model for a simulated dataset for a gene associated
with responses.
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Figure 2.
Solution paths under the homogeneity model for a simulated dataset for a gene not
associated with responses.
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Figure 3.
Solution paths under the heterogeneity model for a simulated dataset for a gene associated
with responses in all four studies.
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Figure 4.
Solution paths under the heterogeneity model for a simulated dataset for a gene associated
with responses in studies 1 and 2.
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Figure 5.
Solution paths under the heterogeneity model for a simulated dataset for a gene not
associated with responses in all four studies.
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Table 3

Liver cancer studies. Tumor: the number of tumor samples. Normal: the number of normal samples. Numbers
in the “()” are the number of subjects used in analysis. Version 2 chips have different spot locations from
Version 1 chips.

Data set D1 D2 D3 D4

Experimenter Hospital A Hospital B Hospital C Hospital C

Tumor 16 (14) 23 29 12 (10)

Normal 16 (14) 23 5 9 (7)

Chip type cDNA(Version 1) cDNA(Version 1) cDNA(Version 1) cDNA(Version 2)

(Cy5:Cy3) Sample:normal liver Sample:placenta Sample:placenta Sample:sample
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Table 4

Multiple cancer studies. Normal: the number of normal samples. Tumor: the number of tumor samples.

Tissue Reference Platform Normal Tumor

Kidney Boer et al. (2001) membrane 81 81

Liver Chen et al. (2002) cDNA 76 76

Prostate Singh et al. (2002) U95A 50 52

Stomach Chen et al. (2003) cDNA 29 29
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