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Abstract
Mass transport by diffusion within composite materials may depend not only on internal
microstructural geometry, but also on the chemical interactions between the transported substance
and the material of the microstructure. Retrospectively, there is a gap in methods and theory to
connect material microstructure properties with macroscale continuum diffusion characteristics.
Here we present a new hierarchical multiscale model for diffusion within composite materials that
couples material microstructural geometry and interactions between diffusing particles and the
material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE)
method, is employed to construct a continuum diffusion model based on a novel numerical
homogenization procedure. The procedure is general and robust for evaluating constitutive
material parameters of the continuum model. These parameters include the traditional bulk
diffusion coefficients and, additionally, the distances from the solid surface accounting for surface
interaction effects. We implemented our models to glucose diffusion through the following two
geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous
structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel
network was performed, followed by a model validation using our experimental results. The
microstructural model, numerical homogenization and continuum model offer a new platform for
modeling and predicting mass diffusion through complex biological environment and within
composite materials that are used in a wide range of applications, like drug delivery and
nanoporous catalysts.
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1. Introduction
Transport phenomena involving diffusion are commonly encountered in nature [1,2], in
various technological processes [3,4] and biological systems [5,6], and thus have been
thoroughly studied. Most of the research has focused on the macro-scale, where fundamental
laws, such as Fick's or Darcy's law, describe movement of a given substance through a
medium. Motion of solute particles through pores formed by complex microstructure may be
affected not only by the solid pore boundaries, which dictate particle trajectories, but also by
the physico-chemical interactions between the particles and solid surface occurring at the
molecular level. The interactions between the diffusing substance and the surface become
important and can profoundly affect overall diffusion when the spatial dimensions bounding
diffusion are comparable to the diffusing particles or molecules [7,8]. Under these
circumstances Fick's law alone cannot accurately describe diffusion and the surface
interaction at the molecular level must be taken into account. Further in this study, we term
Fickian diffusion as diffusion without surface interaction. The molecular dynamics (MD)
technique enables the examination of diffusion with surface effects, where interactions at the
atomistic and molecular level can be evaluated. Although MD is a widely employed and is
extremely powerful tool, due to the exorbitantly large number of interactions needed to be
considered, it can become impractical for even a small domain (on the order of
micrometers). As technological breakthroughs, such as quantum computing, increase the
computational power, it may one day become possible to perform large-scale MD
simulations for practical applications. Until then, a computationally feasible method is
needed to bridge the nano- and macroscale descriptions in order to model real-world
complex diffusion processes.

In this study we present several new concepts. We first introduce a multiscale hierarchical
model for diffusion at the microstructural level (further termed as ‘microstructural model’),
within a small reference volume (RV). The implemented method is effective, robust, and
generalizable to a variety of problems where diffusion governs transport. The method
presented here can be easily expanded to include multiple molecule types (e.g. proteins,
drugs), multiple surfaces (e.g. cells with different ligands/receptors, polymer fibers) and
various media (different solvents). Further, we formulate a ‘continuum’ model which
employs the results obtained by the microstructural model for diffusion within the RV. Our
method relies on the fundamental condition of the equivalency of mass release kinetics
between the continuum and microstructural models for a given region of space and over a
prescribed concentration range. In formulating the continuum model, we introduce
constitutive parameters, which include (traditional) equivalent ‘bulk’ diffusion coefficients
(characterizing free, or Fickian, diffusion within the solvent), and also equivalent distances
from an imaginary surface (describing surface effects within the microstructure [7]).
Constitutive parameters, depending only on the structural geometry and the material
properties of the diffusing constituents, are evaluated for three orthogonal coordinate
directions – enabling modeling of general 3D diffusion conditions and anisotropy.

In order to construct the continuum model we introduce a novel numerical homogenization
procedure. Previous homogenization procedures have limitations due to special assumptions
made regarding microstructure (e.g. periodicity), as well as relying on various asymptotic
expansions of analytic forms [9–13]. They have been extensively implemented in modeling
diffusion within various porous media, [14–18], or in biological media [19–29]; however,
these procedures are not readily generalizable. Our method is not only general (and
overcomes the limitations of other homogenization procedures) but also includes
concentration-dependent and new material parameters within a wide range of concentrations
over which diffusion occurs. We demonstrate how to construct a model of diffusion through
a composite material bounded by internal surfaces of arbitrary shape (e.g. representing tissue
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fibers or the microstructure of an agarose gel), where the interactions between the
molecules, medium, and internal surfaces considerably retard the diffusion kinetics
compared to Fickian diffusion.

2. Basic hierarchical model
We here formulate the hierarchical diffusion model which is further used for introducing our
homogenization procedure. Diffusion of particles or molecules through a porous medium
represents motion of particles or molecules through fluid and is governed by the
concentration gradient. Particle trajectories are affected by the pore and particle size and the
overall diffusive properties can be considered dependent on porosity. This is realistic
diffusion characterization for the case when the physico-chemical interactions between
diffusing particles and solid surfaces of the microstructure can be neglected. However, in
many cases, and particularly in diffusion of particles and molecules within biological media,
the particle–surface interactions are very pronounced and strongly affect particle motion in
the vicinity of the microstructural surfaces, modulating the diffusion process. These
interaction effects are illustrated in Fig. 1a and b for diffusion within a nanochannel with a
height h comparable to the particle size. Quantification of the surface interaction effects is
performed using molecular dynamics (MD). This interaction is expressed as dependence of
the effective diffusion coefficient on the distance from the solid surface and on the
concentration, i.e. as D(h,c), further used within finite element (FE) models. The
methodology of coupling MD–FE models is described next.

2.1. MD simulations
Molecular dynamics (MD) has been used for several decades [30]. It is based on statistical
mechanics, where motion of particles or molecules is described according to the Newtonian
mechanics:

(1)

where mi,  and Fi aremass, acceleration and resulting force (including interaction forces
fromthe neighboring particles and external forces), respectively. The interaction forces
include bonded (repulsive-attractive, bending and torsion) and nonbonded (electrostatic, van
der Waals) terms. The force field (FF) represents a functional form of behavior of chemical
structures and is evaluated from potential energy function, E = Einter + Einter, of CHARMM
FF [31] used in our MD models:

(2)

(3)

Material parameters of the intramolecular potential Eintra are given by the force constants
Kb;Kθ and Kϕ, equilibrium values of bonds and angles b0 and θ0, and equilibrium torsion
constants – dihedral multiplicity n and dihedral phase δ. Intermolecular potential sums are
electrostatic and van der Waals (VDW) terms, where εij is VDW potential depth, Rmin is
atom radius, and qi; qj are partial atomic charge. These parameters of FF are introduced to
represent certain chemical classes of compounds in order to reproduce experimental
physico-chemical properties.
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MD simulations for calculating diffusivities in nanochannels were carried out [32,33] using
NAMD 2.6 [34] with a TIP3P water model [35] and NVT (fixed number of particles N,
volume V and temperature T) ensemble. CHARMM compatible amorphous silica force field
[36] was employed to model the silica nanochannel, which is modeled by charged
hydrophilic amorphous silica phase to match the silica properties after the fabrication
process. Glucose diffusion coefficients were calculated from 30 ns trajectories by using the
mean square displacement r2:

(4)

where the factor d = 1–3 depends on the dimensionality of the space, and t is time. The
diffusivity along the surface normal (y-direction) was evaluated, from the surface up to the
middle of the nanochannel. The time window t for r2 was chosen as 20 ps, which is small
enough to catch local displacements within 0.5 nm thick slabs. Values of r2 wereh collected
to bins according to the center of mass of glucose molecules and their initial position.
Glucose molecules could leave the bin in which r2 is computed in order to avoid restricted
ensemble. The diffusivity results include dependence on distance from the wall and glucose
concentrations (Fig. 2a).

The MD calculated diffusivity is normalized with respect to the “bulk” value Dbulk
corresponding to diffusivity far from the surface, where influence of the surface is
negligible. Hence, we have

(5)

where

(6)

is the scaling function which depends on the distance from the wall surface h and
concentration c. The calculated scaling functions for different concentrations are shown in
Fig. 2b. Experimental investigations showed that D(≡ Dbulk for glucose depends on
concentration, although data are quite different (see [7] and references given therein). For
examples shown here we have chosen the glucose D according to the largest data set that
spans over a wide range of concentrations, from 0 to 3.36 M [37].

The presented calculation of the effective diffusion coefficient and scaling function for the
simple geometry of nanochannel can be extended to any microstructural construct. Namely,
using MD we can determine diffusion coefficients Dξξ, Dηη, Dϛϛ (or scaling functions sξ, sη,
sϛ) in the local system ξ, η, ϛ (Fig. 1c), where ξ is in the direction normal to the surface, and
η, Ϛ lie in the tangential plane:

(7)

where Dbulk can depend on concentration, i.e. Dbulk = Dbulk (c). Therefore, there are two
domains in a microstructure: the domain with surface effects with the so-called hindered
diffusion, and the bulk diffusion domain as shown in Fig. 1c. Diffusion tensor in the global
coordinate system can be obtained by the tensorial transformation,

(8)
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where DξηϚ is the diagonal tensor with components given in (7), while T is transformation
matrix containing cosines of angles between local and global coordinate systems [38]. In the
case of isotropic diffusion, the three scaling functions are equivalent sξ = sη = sϚ s(h, c) and
the diffusion tensor is

(9)

where I is the identity tensor.

2.2. Finite element model
Finite element modeling of various problems in science and engineering has been well
established [38–40]. We here consider unsteady diffusion where the diffusion coefficient
depends on both concentration and spatial position of a point within the model. The
fundamental constitutive relation is represented by the Fick's law,

(10)

where J is the mass flux, and summation on the repeated index is implied (j = 1–3).

FE solution procedures for nonlinear diffusion problems have been well established and
successfully used in various applications [38–40]. The basic mass balance equation, which
also includes Fick's law in Eq. (10), is

(11)

where c(xi, t is concentration, and q(xi, t) is a source term. By using a standard Galerkin
procedure, this nonlinear differential equation is further transformed into the incremental-
iterative system of linear balance equations for a finite element [38]

(12)

where C is the vector of nodal concentrations; the left upper indices n and n + 1 denote
values at the start and end of the time step n of size Δt; the indices i and i – 1 correspond to
the current and previous equilibrium iteration, respectively; QS and QS and QV are surface
and volumetric nodal fluxes for the element; and components of the matrices M and K are

(13)

(14)

Here NI and NJ are the interpolation functions, and  are components of the
diffusion tensor corresponding to the last known concentration n+1c(i–1) at a point within
the finite element, evaluated according to (7) and (8). Assembly of Eq. (12) and solution
procedures are performed in a usual manner that is well described in the computational
mechanics literature (e.g. [39]).
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In our models we have incorporated concentration and interface effects, according to Eqs.
(7) and (8). Implementation of the expression (7) is illustrated in Fig. 3. Note that linear
interpolation between scaling curves is used.

The described hierarchical model has been verified by comparison of diffusion experiments
in nanochannels [41]. Good agreement between computed and experimental results for mass
release was found [7]. The effects of the surface interaction are shown in Section 4.1.

3. Numerical homogenization
Modeling of diffusion within a complex microstructure, with detailed evaluation of the field
of diffusion tensor, requires significant effort in generating internal microstructural
geometry and calculation of the scaling functions. This microstructural model is practically
not applicable to compute diffusion in large domains, as for example, micron size domains
in case of diffusion within biological tissues. Hence, a macroscale model with equivalent
diffusion parameters is necessary for practical applications. We here introduce a new
concept of numerical homogenization which relies on the described microstructural model,
and also includes surface interaction between diffusing particles or molecules and solid
surfaces during transport through fluid within pores of microstructure.

The basis for our homogenization procedure relies on the condition that mass release curves
for the detailed microstructural and continuum models are the same (within a numerical
tolerance). Namely, we select a small reference volume (RV) at a material point and
calculate mass release curves for three coordinate directions; and then seek for equivalent
diffusion parameters of the continuum to obtain the same mass release curves (see Fig. 4). If
the equivalent parameters are determined under this condition, then the mass fluxes for the
microstructural and continuum models

(15)

are the same (graphical representation shown in Fig. 4) for any time during the diffusion
process; here i = 1–3 stands for x, y, z. Therefore, diffusion characteristics will be the same
for both models and the governing equation (11), which represents the mass balance
equation:

(16)

will yield the same solutions. Note that the microstructural model assumes MD calculation
of the scaling functions for diffusing particles in microstructure and very fine FE mesh for
discretization.

We introduce two sets of equivalent parameters:

a. equivalent diffusion coefficients D ̄i

b. equivalent distances h̄i from solid surfaces

for the three coordinate directions. The first set accounts for bulk diffusion within
microstructure, and has been commonly used in the past in the homogenization procedures
[16,42]. The new parameters h̄i take into account surface interactions within the
microstructure.

Practical evaluation of the equivalent parameters consists of the following steps:
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1. Find mass release curves for the microstructural model with neglecting surface
interaction effects within microstructure (Fickian diffusion);

2. Determine equivalent diffusion coefficients D̄i using these mass release curves;

3. Evaluate scaling functions for the microstructure and determine mass release
curves for the microstructural model using these scaling functions and the bulk
diffusion coefficient Dbulk;

4. Find equivalent distances h̄i by employing mass release curves from step 3 and
diffusion coefficients l̄i from step 2.

These computational steps are illustrated in Fig. 5 for the case of linear dependence Dbulk
(c). In calculating D̄i we assume that the dependence D ̄i (c) is linear with the same slope

(Fig. 5a) and search for the value  such that the mass release curves of the microstructural

and continuum models are the same; the initial value of  is . On the other hand,

when searching for h̄i we need to estimate the initial value . We briefly describe a way
how we did this estimation. We discretize the RV space into a finite element mesh which is
used for subsequent calculations. It is assumed that the microstructure consists of several
material sets, and for each material set we calculate the scaling function for a representative
concentration because diffusing particle may have different interaction with a different
material (Fig. 5b). For illustration, a fibrous solid is assumed for the solid material set “s”.
We calculate for each point within the diffusion domain (e.g. point P in Fig. 5c) the distance
hs from the closest solid surface, using the appropriate local coordinate system (ξ, η, Ϛ in the
figure). Then, we extrapolate the distance hs to the FE nodes, by employing isoparametric

functions [38,39], to obtain nodal values  (Fig. 5d). Further, we perform a weighting of
these values according to the ratio of the total volume Vs of the set s with respect to the total

volume of the solid phase . Hence, the initial value  (for direction xi) can be written
as

(17)

where

(18)

is the equivalent distance for the set s, and N is the number of nodes.

The mass release curves are generated by assuming that the entering surface is attached to a
“reservoir” of volume Vin with initial concentration c0, and that concentration at the opposite
side is equal to zero; lateral surfaces are impermeable, ensuring one-directional diffusion
conditions. The diffusion is calculated until concentration in RV and the inlet reservoir
becomes close to zero, so that the mass release curve approaches a straight line parallel to
the time-axis.

It is important to show that, for a given solvent and diffusing particles, equivalent diffusion
parameters – equivalent diffusion coefficients and equivalent distances from surface –
depend only on the geometry of the microstructure and its material characteristics. Then, it
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can be stated that these are material parameters. We demonstrate the material character of
the equivalent diffusion parameters in example in Section 4.4.

Finally, regarding the practical application of this multiscale model, we emphasize that RVs
can be specified at various points of continuum and the equivalent diffusion parameters can
be interpolated to capture variability of material properties within the macro-domain. Also, a
sub-structuring concept may be applied to include some of RVs into the simultaneous
calculations over time steps. The balance equations for RV coupled with continuum over
common boundary nodes can be written as

(19)

where the indices a and b indicate internal and boundary nodes of RV matrices and nodal
vectors, respectively.

4. Verification and application of multiscale models
In this section we first give a short overview of applicability and limitations of the
introduced diffusion models, and then present numerical results to illustrate the main
characteristics of the presented methodology which include both micro-structural and
multiscale models. Also, the emphasis is on the surface interaction effects within
microstructure on diffusion characteristics, which can be dominant and which have not been
addressed in existing diffusion models. The examples include verification of the introduced
methodology.

4.1. Notes about applicability of computational models
We here give general remarks about the complexity of the introduced models, their
applicability and further generalizations.

It can be noted from the above model descriptions that the models are straightforward
regarding computational methodology: (a) with a given microstructure geometry, physico-
chemical properties of solvent, diffusing particles and micro-structural solid material, it is
possible to compute scaling functions and evaluate mass release curves for the
microstructural model; (b) it is then straightforward to numerically determine continuum
diffusion parameters for all necessary microstructural models within the diffusion domain;
and (c) solution of diffusion problem with given boundary and initial conditions, using the
field of equivalent diffusive material parameters, reduces to a “standard” incremental-
iterative steps. However, in some diffusion processes, such as those occurring within
biological media (e.g. tissues or inter-cellular spaces) there is enormous complexity of the
internal microstructure through which molecules or small particles are diffusing, as well as
the inherent biological variability. Then, evaluation of scaling functions, as well as mass
release curves of the microstructural models, represents a challenge and can be considered
as limitations to practical medical applications. The obtained solutions include variability
which is present in any biological process.

Regarding computational efficiency, it can be stated that a significant computational effort is
required for MD calculations of effective diffusion coefficients for each microstructural
material, and consequently scaling functions. Computation of mass release curves and
equivalent diffusion parameters is very efficient since the FE models correspond to small
regions, although the FE mesh must be very fine to properly capture the microstructural
geometry; number of nodes (with concentration as one-degree of freedom) is measured by
tens of thousands, and number of steps for mass release curves is on the order of thousands.
For example shown in Fig. 11, we used a cube mesh 40 × 40 × 40 with 64,000 elements and
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68,921 nodes. We run 40 time steps with different step duration for each of the cases with or
without scaling functions. Evaluation of mass release curves and continuum parameters for
each coordinate direction required 10 h of CPU using an Intel® Core™ i7-2600k processor.
Size of continuum FE models depend on the size of the diffusion domain, but it can be
handled easily with today's computers since the nodes are with one-degree of freedom.

Generally, the introduced models can serve as the basic models even for complex media, as
is the case with micro-environments within living organisms. They can be further enhanced
by introducing other processes occurring simultaneously with diffusion, such as, for
example, matrix degradation. Even without further generalizations, the current models can
be implemented to study transport of drugs in tissue, coupled with convective transport
within capillary systems, in order to achieve more efficient therapies for tumor growth. We
foresee that the described methodology can readily be applied in drug delivery, catalysis and
other areas, where mass exchange is tightly coupled with microstructure of media.

4.2. Validation of the microstructural model
In this example we compute diffusion in a porous material, with microstructure composed of
nanospheres as in Figs. 7a and 10c, using our microstructural model. These diffusion
conditions correspond to those described in [16]. Calculation was performed by neglecting
surface effects (Fickian diffusion) and for various porosities. Our results for the ratio of the
effective diffusion coefficient D̄ to the bulk value D0, D̄/D0, show very good agreement with
values obtained by analytical homogenization procedure in [16]. Dependence D̄/D0 on
porosity ϕ was earlier obtained according to a self-consistent analytical method [42], and
can be expressed in a simple form:

(20)

Results of this simple formula are displayed by dashed line in Fig. 6; deviation from our
solution and in [42] becomes apparent for smaller porosities.

4.3. Effects of surface interactions in diffusion of glucose molecules (microstructural
model)

We investigate diffusion characteristics of glucose molecules in water surrounded by a
simple microstructure consisting of packed silica nanospheres for the cases when the spheres
are separated by a small distance (Fig. 7a). The scaling functions correspond to glucose
molecules and are shown in Fig. 7b [7]. Based on previous results [7,8], where good
agreement between the numerical and experimental results was achieved, we here assume
that the bulk diffusion coefficient linearly varies between 690 μm2/s for c = 0 and 267 μm2/s
for c = 2.75 M. In order to model diffusion in the x-direction within the selected cubic RV,
we assume that one side of the RV (“inlet” in Fig. 7a) is attached to a reservoir with initial
concentration c0, while the opposite side (“outlet”) is attached to a large-volume reservoir
with a concentration c = 0..

Fig. 7c shows mass release curves for diffusion through the RV, for three different
porosities, obtained for three values of sphere diameters (3, 6 and 8 nm). The minimum
porosity corresponds to the special case when two neighboring spheres are touching. We
assume that the scaling functions are the same for the normal and tangential directions,
hence diffusion is isotropic in the entire domain. Mass release is hindered by surface
interactions and these effects become more pronounced with decreasing porosities due to an
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increase in the internal surface area (which results in a corresponding increase in the volume
affected by surface interaction).

4.4. Demonstration that the equivalent diffusion parameters are material parameters
For a given solvent and diffusing particles we show that material parameters of the
continuum model (equivalent diffusion coefficients and equivalent distances from surface)
only depend on the geometry of the microstructure and its material characteristics. We take a
reference volume (RV) containing solid silica nanospheres (as shown in Fig. 7a), with
sphere diameters of 7 nm and porosity of 64%. For this model we change the boundary
conditions to achieve various mass release curves.

Fig. 8 shows three mass release curves that differ significantly, obtained by changing inlet
reservoir volume Vin for one order of magnitude (from 1.57 10 −9 to 7.85 10 −8 [μL]).
Equivalent diffusion coefficient D̄ and equivalent distance h̄ are given in Table 1; they are
practically the same for these mass release curves.

Another way to change mass release curves is to change initial concentration c0. We have
changed c0 from 0.01 to 2.75 Molar, while keeping Vin unchanged. Mass release curves are
shown in Fig. 9, while the calculated D̄ and h̄ are given in Table 2. Again, we see that the
equivalent diffusion coefficient D̄ and distance from surface h̄ remain essentially unchanged.

Finally, we have doubled dimensions of the RV and calculated D̄ and h̄. Table 3
demonstrates that these material parameters are independent of th RV size.

Data: 1. Model 1: cube side a1 = 0:04 [μm], volume , number of
spheres in RV is N1 = 5 * 5* 5 125. 2. Model 2: = cube a2 = 2a1 = 0:08 [μm], volume

, number of spheres is N2 = 8N1 = 10 * 10 * 10 = 1000.

4.5. Application of the multiscale continuum model
Here, we present several examples with simple and complex microstructures, which give
insight into the multiscale continuum model formulation and the model applicability.

4.5.1. Microstructure with spheres and variable porosity—Fig. 10 shows mass
release curves for the microstructural and continuum models, with a spherical solid internal
structure and data as in Fig. 7a. Initial curves, for estimated (initial) parameters and the final
curves (which overlap with the micro-structural solutions) are shown in Fig. 10a for porosity
0.64 (with and without surface effects). Agreement between micro-structural and continuum
mass release curves in the presence of surface effects is depicted in Fig. 10b. We also
examine cases where the microstructure consists of intersecting silica nanospheres
(microstructure for 9% porosity is shown in Fig. 10c), and again we obtain continuum
constitutive parameters such that mass release curves for the microstructural and continuum
models are essentially identical (Fig. 10d). For this case of 9% porosity, the time needed for
complete removal of the initial mass is now around 2.5 × 103 s which is three orders-of-
magnitude greater than for larger porosities (Fig. 10b). The equivalent distance h̄ increases
from 0.52 nm to 2.05 nm, with an increase of porosity from 9% to 87%, respectively.

4.5.2. Diffusion of glucose molecules through complex microstructure—We
consider diffusion of glucose molecules in water through a complex microstructure
composed of fibers and spheres, which could represent a section of a biological tissue. The
microstructure of this example is shown in Fig. 11c. For the selected internal geometry, the
porosity is calculated to be 65%. The bulk diffusion coefficient (Dbulk = 690 μm2/s) is
assumed to be independent of concentration and the scaling functions are taken as in Fig. 7b.
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The spatial distribution of the x-direction diffusion coefficient Dx at the first time step (t =
0.4 s) and at the RV boundary is shown in Fig. 11a, with the values ranging from zero
(within and on the boundary of the solids) to 690 μm2/s. Fig. 11b displays the spatial
distribution of the mass flux in the x-direction Jx, having the same character of variation as
Dx, while Fig. 11c shows distributions of Jx over several parallel planes. Mass release curves
for the three coordinate directions (for both Fickian and with surface-influenced diffusion)
are shown in Fig. 11d, and they are the same for the microstructural and continuum models.
Values for the equivalent diffusion coefficients and equivalent distances are given in the
figure legend. Based on these material parameters and the mass release curves, it is apparent
that the continuum medium is anisotropic and that surface interactions significantly affect
diffusion kinetics.

4.5.3. Diffusion of rhodamine 6G (R6G) molecules through an agarose
polymer gel—Here, we first present detailed analysis of the microstructural model, and
then compare the predictions of the equivalent continuum model with the experimentally
obtained results. For the first task, we use the internal structure of the gel obtained by
imaging [43], shown in Fig. 12a with discretized agarose fibers and porosity of 97%. As
expected, the calculated diffusion in the x and y directions are roughly equivalent, since the
size of the RV (0.934 × 0.934 μm) is large enough so that the overall characteristics are the
same in the two directions. The bulk diffusion coefficient is Dbulk = 286 μm2/s, while the
scaling function, calculated using MD procedure, is displayed in the inset of Fig. 12b. To
demonstrate that scaling functions may account for molecular size (zero diffusion in domain
inside the radius of the molecule), two more scaling functions were created by off-setting the
scaling function of R6G. Both microstructural and continuum models are used, giving the
same total mass release. The release kinetics is slower for bigger molecules, since the
scaling functions also incorporate the purely geometrical effects (size) of the diffusing
molecules. The equivalent diffusion coefficients and equivalent distances from surface are
given in the caption of Fig. 12.

In order to gain further insight into the diffusion within this polymer gel, we examine the
mass flux and concentration distributions (Fig. 12c). Here, we consider the diffusion of
molecules whose radius is 5 nm. The upper left panel shows the distribution of mass fluxes
in the direction of diffusion at the end of the first time step, time t = 0.5 s. The field displays
the variation of the flux due to the distribution of agarose fibers, with zero-values within the
fibers and at the fiber surfaces. Diagrams of concentration and mass flux along the
coordinate axes are shown in the lower-left and upper-right panels. Based on continuum
solutions, the concentration decreases approximately linearly along line A–B, and remains
constant along line C–D; flux-x is roughly constant along A–B, and flux-y is equal to zero
along C–D. On the other hand, microstructural solutions have variations, with zero-values at
the points corresponding to fibers. Finally, the right lower panel shows the solution for the
concentration field obtained by the microstructural model at time t = 0.5 s; on average,
concentration decreases along the x-axis, with zero-values at the fiber points. Taken
together, the continuum model incorporates the microstructural flux fluctuations in order to
achieve an equivalence of mass fluxes between the microstructural and continuum models
through a given RV.

4.5.4. Verification example—For the multiscale model verification, we have
experimentally measured R6G diffusion, where R6G was released from reservoirs into a
sink through a 1% and 3% agarose hydrogel membrane. Mass release curves are calculated
using the equivalent continuum model, based on the above microstructural model and the
homogenization procedure. The equivalent diffusion coefficient and the equivalent distance
from surface are given in the caption of Fig. 12 for R6G molecule with diameter of 0.3 nm.
Fig. 13 shows experimental and computational curves normalized by the maximum released
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mass M∞, as M(t)/M∞. We use M1 since our model does not include absorption which is
also present in this mass transport. Simulated mass release curves in case of no surface
interactions are practically the same for 1% and 3% due to the small difference in porosity,
and show faster release than in case when surface effects are included. These effects are
more pronounced for the 3% agarose hydrogel. However, our model captures both the
porosity and surface effects within the microstructure, and shows good agreement with the
experimental results, thus confirming the validity of our approach.

5. Summary and conclusions
We have formulated a microstructural hierarchical diffusion model for a general
microstructural geometry, which includes interactions between the diffusing particles and
the solid boundaries. In this model, the interaction effects are incorporated through scaling
functions obtained from MD, which represent the ratios between the real and bulk diffusion
coefficients. The scaling functions, expressed in terms of distance from the solid surfaces
and concentration, are calculated in the local coordinate system of the solid surface.
Therefore, two domains of diffusion are distinguished: the bulk diffusion domain (with
Fickian diffusion) and the domain near surfaces, with non-Fickian hindered diffusion. In
both domains, diffusion is calculated by using the FE method. The surface effects become
apparent when comparing the slower mass release kinetics (with surface interactions) with
purely Fickian mass release (without surface effects).

This microstructural model is then employed within a novel numerical homogenization
procedure to establish the equivalent continuum diffusion model. The procedure is general
since it is applicable to an internal structural geometry of any complexity, and can include
different solid material sets with different material properties. The procedure relies on the
condition that mass release curves of the two models must be equal. Constitutive diffusion
parameters of the continuum model are determined for the three coordinate directions and
include the traditional bulk diffusion coefficients, and also equivalent distances from the
solid surfaces to account for surface interaction effects on diffusion. Furthermore, these
constitutive parameters can depend on the local concentration. Our approach, consisting of a
microstructural model and numerical homogenization procedure, is general and robust, and
offers new possibilities in modeling diffusion through complex materials, including
molecular transport in biological systems (e.g. intercellular spaces and tissues). The
presented methodology has been experimentally validated and can serve as a tunable
platform for constructing intricate multiscale hierarchical diffusion models with additional
complexity and effects, such as multiple molecule types (e.g. different proteins/ligands),
multiple surfaces (e.g. various cell types with different receptors), and various media (e.g.
different solvents). These multiscale models provide a basis for a deeper, more accurate
representation of fundamental transport processes occurring throughout nature.
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Fig. 1.
Diffusion within confined space. (a) Schematic of trajectories of molecules during diffusion
within a nanochannel; (b) Bulk domain and domain of diffusion affected by interaction with
surface in case of nanochannel of (nano) height h; (c) Bulk domain and surface influence
domain in case of diffusion within a porous medium.
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Fig. 2.
Diffusion scaling function of glucose calculated from MD as in [7]. (a) Glucose diffusion
coefficient as a function of distance from silica surface for different glucose concnetrations.
(b) Diffusion scaling functions, with the segment of zero diffusivity corresponding to
statistical molecular radius.
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Fig. 3.
Determination of diffusion coefficient Dηη at a spatial point P using dependence on
concentration and surface effects. The “bulk” value is first determined from the curve Dbulk
(c); then, the scaling function is evaluated from a family of curves, with linear interpolation
between curves s(c,h) (between points A and B in the figure).
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Fig. 4.
Illustration of the basic concept of numerical homogenization. A small reference volume
(RV) is selected at point P of the medium and mass release curves mi(t) are evaluated by
modeling diffusion in the coordinate directions x, y, z (i = 1–3). The microstructural model
for diffusion within the RV contains a detailed description of the microstructure and the
spatial field of the diffusion tensor is calculated using MD.
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Fig. 5.

Details used in estimation of initial values. (a) Initial value  and final value
D̄0; (b) Scaling function for material set s; (c) Fibrous material set s with local and global
coordinate systems; (d) Position of material point P within a finite element with distance hs

from surface and nodal value  at a node J.
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Fig. 6.
Ratio of the effective diffusion coefficient D̄ with respect to the bulk value D0; in terms of
porosity. Our microstructural structure consists of spheres displaced as in Figs. 7a and 10c.
Surface interaction is neglected, hence Fickian diffusion is assumed. Two analytical
solutions are shown, according to Refs. [16,42].
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Fig. 7.
Diffusion through a porous medium consisting of packed silica nanospheres, microstructural
model. (a) Internal structure of the medium; diffusion occurs from the inlet surface (attached
to a reservoir with a prescribed volume and initial concentration c0) to the outlet with
concentration c = 0. Porosity is 0.78; (b) Scaling functions used in the analysis, according to
[7], for diffusion through water of glucose molecules and silica surfaces; (c) Mass release
curves for Fickian diffusion (no surface effects) and diffusion with surface effects, for three
different porosities; minimum porosity 0.48 corresponds to the case when the spheres are
just touching. Surface effects are more pronounced for smaller porosities due to a relatively
larger internal surface.
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Fig. 8.
Mass release curves for volumes of the inlet reservoir from Table 1: 7.85 10 −8, 1.57 10 −8,
7.85 10 −9 and 1.57 10 −9 [μL].
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Fig. 9.
Mass release curves obtained for inlet reservoir volume Vin = 7:850 · 10 −9μL and four
initial concentrations of the inlet reservoir c0 (Molar): 2.75, 1.75, 0.75 and 0.01.
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Fig. 10.
Mass release curves for microstructural and continuum models. (a) Diffusion conditions are
as described in the caption of Fig. 7. Fickian and surface-affected diffusions are included.
Initial continuum mass release curves are calculated using estimated constitutive parameters
for the equivalent diffusion coefficient and equivalent distance from surface, and matching
of the final continuum solutions (after several iterations from the initial, estimated values)
with the microstructural results is achieved; (b) Microstructural and final continuum mass
release curves, with surface effects included, for three porosities, for the case when the silica
nanospheres are separated as in Fig. 7a; (c) Microstructure consisting of intersecting silica
nanospheres; porosity is 9%; (d) Mass release curves for model with intersecting spheres
and for three small porosities (9%, 15%, 21%); the time scale is three orders-of-magnitude
greater than in Fig. 10b.
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Fig. 11.
Diffusion through a medium with the complex microstructure. (a) Distribution of the x-
direction diffusion coefficient Dx on the RV surface at time t = 0.4 s; values span from Dx =
0 (at the solid surfaces and within the solid) to Dx = 678 μm2s.Finite element mesh is shown,
porosity is 65%; (b) Distribution of the x-direction flux Jx, displaying a similar character as
Dx; (c) Distribution of Jx over several parallel planes. The local coordinate system ξ, η, Ϛ is
shown for a point at the fiber surface. (d) Mass release curves for x, y, z directions, solutions
obtained using microstructural and continuum models. Scaling functions for all solid
constituents are taken to be the same (shown in Fig. 7b). Equivalent diffusion coefficients
are (μm2/s): D̄x = 148.2, D̄y = 201.4, D̄z = 164:6, and the equivalent distances are (nm): h̄z =
0.53. Although the smallest diffusion coefficient is in the x-direction (hence, mass release
kinetics should be the slowest), the slowest mass release is in z-direction since the
equivalent distance h̄z < h̄x.
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Fig. 12.
Diffusion within an agarose polymeric solution. (a) Internal microstructure obtained by
TEM imaging [43] with discretized fibers. The bulk diffusion coefficient is considered
independent of concentration, Dbulk = 286 μm2/s. The equivalent diffusion coefficients (in
μm2/s) are: 274, 261, 250 and equivalent distances from surface (in nm) are: 1.12, 3.49, and
6.06 for particle diameters 0.3, 5 and 10 nm, respectively. (b) Mass release curves for three
particle diameters 0.3 (rhodamine 6G), 5 and 10 nm. Solutions are the same for
microstructural and continuum models. The inset shows the scaling functions for the three
particles (displaced to the right for increasing particle radius). (c) Results shown in this
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figure are for particle size of 5 nm. Upper left panel: Mass flux-x distribution at time t = 0.5
s; dark contours within the field show zero-flux at fiber points. Upper right panel:
Distribution of mass flux and concentration in the x-direction, microstructural (solid line)
and continuum (dashed line) solutions along line A–B; zero-values of flux and concentration
correspond to fibers. Continuum model solutions show approximately constant flux-x and
linear decrease of concentration along A–B line. Lower left panel: Distribution of y-
direction mass flux and concentration, microstructural (full line) and continuum (dashed
line) solution along line C–D; zero-values of flux and concentration correspond to fibers.
Continuum model shows constant concentration along B–C line, while mass flux is equal to
zero, since there is no diffusion through lateral (y-direction) boundaries of the RV. Lower
right panel: Distribution of concentration at time t = 0.5 s, microstructural model;
concentration decreases along the x-axis, while zero-values correspond to fibers.
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Fig. 13.
Diffusion of rhodamine 6G from reservoir into a sink through a 3 mm thick 1% and 3%
agarose hydrogel. Computed (dashed curves – without surface effects, solid curves – surface
effects included) and experiment (symbols) data are normalized by maximum released mass
M.∞.
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Table 1

Material parameters D̄ and h̄ for four reservoir volumes Vin, with the same initial concentration c0 = 2.75 M/L.

Vin [μL] D̄ [μm2/s] h̄ [nm]

1 7.850 · 10–8 381.010 0.89676

2 1.570 · 10–8 381.010 0.89676

3 7.850 · 10–9 381.010 0.90579

4 1.570 · 10–9 381.010 0.89676
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Table 2

Material parameters D̄ and h̄ for four initial inlet concentrations c0, and constant reservoir volume Vin = 7.850

× 10–9 μL.

c0 [M/L] D̄ [μm2/s] h̄ [nm]

1 2.75 381.010 0.90579

2 1.75 381.010 0.89133

3 0.75 381.010 0.88764

4 0.01 381.010 0.88455
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Table 3

Material parameters D̄ and h̄ for two sizes of the RV (c0 = 2.75 M/L).

a [μm] D̄ [μm2/s] h̄ [μm]

1 0.04 381.010 0.90579

2 0.08 381.837 0.90128
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