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Letter to the Editor

Transposable elements are a significant part of plant and 
animal genomes and greatly contribute to genome dynamics. 
Recently, we analyzed 18,377 LTR retrotransposons in 21 plant 
species and found that they often contain sequences with the 
potential to adopt four-stranded DNA structures—DNA qua-
druplexes.1 Using circular dichroism and gel electrophoresis, we 
confirmed the ability of such sequences to form DNA quadru-
plexes. We showed that some motifs formed parallel-stranded 
quadruplexes while others adopted anti-parallel-stranded struc-
tures. Quadruplex-forming sequences were mostly localized 
in long-terminal repeats of LTR retrotransposons and found 
at specific distances from the TE promoter—upstream of pro-
moter in minus strand and downstream of promoter in plus 
strand. Quadruplex-forming sequences were better preserved 
in presumably active evolutionary younger retrotransposons, 

suggesting a role of four-stranded structures in the life-cycle of 
retrotransposons.

DNA quadruplexes can have an effect on many molecular 
processes in the cell including replication, transcription, chro-
matin remodeling or recombination (for review see Bochman 
et al.2). In transposable elements, the formation of a quadruplex 
upstream of their endogenous promoter in minus strand can 
open the DNA double helix and help transcription to proceed, 
while formation of a quadruplex downstream of the promoter 
in plus strand can inhibit or stop elongation of growing RNA 
strands.3

Quadruplex DNA can affect the whole genome as it represents 
a barrier for DNA replication. However, many cellular proteins 
like helicases can bind and unwind quadruplex DNA and allow 
replication to go through.2 The function of one such helicase 
(FANCJ) has clearly been demonstrated in mutants lacking the 
helicase protein. As a result, replication of quadruplex-containing 
regions was delayed.4-6 Another protein, ATRX, belonging to a 
family of SWI/SNF chromatin modulators, binds quadruplexes 
and attracts H3.3 histone to nucleosomes, leading to changes of 
chromatin structure.7,8 A silent state of the chromatin may then 
accumulate inside TEs or could spread from TEs to neighboring 
genomic regions. The quadruplexes flanking the TE promoter 
on both sides could serve as marks for changes in chromatin sta-
tus, by interacting with ATRX and other chromatin/associated 
proteins. Interestingly, another protein, heterochromatin protein 
1 (HP1) interacts with ATRX as well as with trimethylated Lys 
4 and 9 in histone H3.9 This has a signaling role in chromatin 
remodelling, possibly by marking boundaries between open and 
closed chromatin or regions that are trancriptionally silent or 
active.10 Moreover, DNA elements with a less-stable duplex are 
present in the vicinity of the quadruplexes (promoters in LTRs 
and polyA sequences in LINE-1) which could help quadruplex 
formation.

LTR-borne quadruplexes therefore seem to be functioning 
as a link between the duplicative/dispersive activity of LTR 
retrotransposons and the epigenetic state of discrete genomic 
regions. Similar function has recently been proposed for LINE-1 
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Transposable elements (TEs) are ubiquitous genome inhab-
itants in eukaryotes. Increasing evidence shows that TEs are 
involved in regulatory networks of eukaryotic cells and con-
tribute to genome evolution. Recently, we reported that many 
plant long-terminal repeat (LTR) retrotransposons contain DNA 
quadruplex-forming sequences at precise positions inside 
their LTRs and that quadruplexes are better preserved in evo-
lutionary younger elements. As quadruplexes can modulate 
molecular processes, quadruplexes found at specific distances 
upstream and downstream from the endogenous TE promoter 
can affect transcription of the element. Moreover, quadru-
plexes found in solo LTRs, as well as in 3′ ends of 5′-truncated 
copies of LINE-1 elements, can affect expression of neighbor-
ing genes. Here, we propose that this way retrotransposons 
can serve as vehicles for spread of DNA quadruplexes. Qua-
druplexes can thus fulfill a dual regulatory role—to influence 
both the retrotransposons carrying them and the neighboring 
host genes, e.g., by direct effect on transcription or by modify-
ing the local chromatin state. Additionally, four-stranded DNA 
structures may serve as hotspots for recombination-based 
genome rearrangements.
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elements in human, where the 3′UTR quadruplexes may serve as 
markers for recruitment into perinuclear heterochromatin.11 The 
association of LINE-1 elements with regional genome silencing 
was first proposed by Lyon12; LINE-1 elements act as “boost-
ers” promoting expansion of heterochromatin during spread of 
the X chromosome-inactivation signal.13 Quadruplexes are also 
sites of preferential recombination14 which can lead to formation 
of chimeric TEs. They can also facilitate ectopic recombination 
of TE-related parts of the genome. Taken together, the mainte-
nance of quadruplexes inside TEs and their spread in genome 
can influence the biology of TEs and contribute to whole-
genome changes including silencing or reshuffling of genomic 
regions.

It is unclear whether DNA quadruplexes represent barriers 
to replication or transcription that are overcome by enzymes 
that have evolved to deal with these structures. On the contrary, 
these enzymes may exist to enable the formation and spread of 
quadruplexes. It is also becoming clear that quadruplexes are 
not only obstacles to DNA and/or RNA processing, they can 
serve as both negative and positive modulators of many cellular 
processes.

To investigate, how common quadru-
plexes are in various types of plant and 
animal TEs, we extended our analysis of 
LTR retrotransposons of 21 plant species1 
(Fig.  1A) to non-LTR retrotransposons 
in humans. While LTR retrotransposons 
are most common in plants, non-LTR 
retrotransposons are most abundant 
in humans. We found that potential 
quadruplex-forming sequences (PQS) 
are strongly accumulated at the 3′ end 
of human long interspersed nuclear ele-
ments—LINE-1 elements (Fig.  1B). 
We also found that quadruplexes are 
preserved in solo LTRs—LTRs that 
remained in the genome after deletion of 
the rest of the retrotransposon by ectopic 
recombination. For example, in HERV-K 
family, where solo LTRs were identi-
fied,15 we found quadruplexes in 13% 
of full-length HERV-K elements and in 
10% of solo LTRs. In plants, we showed 
that LTR retrotransposon quadruplexes 
are present up to twice as often as pre-
dicted by a second-order Markov model.1 
In repeat masker data from the human 
UCSC Genome Browser,16 we counted 
12% of LINE-1 elements with at least 
one quadruplex sequence (86,477 PQS 
altogether) or about 23% of all 376,000 
PQS that can be detected in the human 
genome.17 Since LINE-1 elements form 
about 17% of the human genome, they 
carry more than the average share of the 
human PQS.

From our previous and current data, we cannot exclude that 
quadruplexes are gathered inside TEs because transposable ele-
ments are genomic regions where abundant secondary structures 
are less harmful for the genome and the host cell. However, the 
localization of quadruplexes in specific regions of TEs, as well as 
their better preservation inside younger elements more indicates 
the regulatory role of quadruplexes than their accumulation due 
to purifying selection.

Here, we propose a model of quadruplex spread by retrotrans-
posons involving the possible role of quadruplexes in genome 
organization (Fig. 2). In our view, quadruplex-forming sequences 
appeared and were maintained inside long-terminal repeat of 
LTR retrotransposons and 3′UTR regions of LINE-1 non-LTR 
retrotransposons due to their contribution to the elements life 
cycle and their positive effect on the host. Solo LTRs, that are 
more abundant than full-length elements in many plant species 
like maize18 and barley,19 therefore represent an important store 
of quadruplexes with high regulatory potential. For example, the 
HERV-K family in humans contains one order of magnitude 
more solo LTRs than full-length elements.15,20 Similarly, 3′UTRs 
regions of 5′end-truncated LINE-1 elements that make up the 

Figure 1. Distribution of potential DNA quadruplex sequences (PQS) along (A) full-length plant LTR 
retrotransposons and (B) human LINE-1 elements. PQS in plus strand (PQS+) are shown in salmon, 
PQS in minus strand (PQS−) are shown in light blue. Main features of the transposable elements are 
shown in the middle: LTRs (blue), ORFs (green). The LTRs and GAG/POL ORFs are only shown symboli-
cally as the data covered a large range of TE families with different architectures. The inset shows 
PQS density at 30× magnification of y-axis to better see minus strand PQS.
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majority of LINE-1 elements, are also a rich store of quadru-
plexes. Both solo LTRs and truncated LINE-1 elements are short 
and quadruplexes carried by these elements are delivered close to 
neighboring genes.

In conclusion, we propose that DNA quadruplexes are mainly 
spread in eukaryotic genomes by retrotransposons and play a 
dual regulatory role, affecting the retrotransposon life-cycle as 
well as the activity of neighboring genes, replication of DNA, 
chromatin status and can be involved in recombination-based 
genome rearrangements.
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Figure 2. A model of DNA quadruplex spreading by retrotransposition and the assumed biological functions of DNA quadruplexes in gene regulation 
and genome organization: (A) negative and positive effect on transcription via interfering with RNA extension or separating DNA strands, respectively, 
(B) inhibitory effect on DNA replication that can be overcome by binding of FANCJ-type helicases, (C) serving as hotspots for recombination and (D) the 
role in chromatin remodeling by attracting ATRX-like proteins that are associated with heterochromatin or heterochromatin boundaries.
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