Skip to main content
. Author manuscript; available in PMC: 2017 Aug 1.
Published in final edited form as: Stat Methods Med Res. 2013 Jul 30;25(4):1692–1706. doi: 10.1177/0962280213497434
fit0 <- coxph(Surv(futime, status) ∼ x1 + x2 + x3, data=data0)
p <- log(predict(fit0, newdata=data1, type=“expected”))
lp <- predict(fit0, newdata=data1, type=“lp”)
logbase <- p − lp
fit1 <- glm(y ∼ offset(p), family=poisson, data=data1)
fit2 <- glm(y ∼ lp + offset(logbase), family=poisson, data=data1)
group <- cut(lp, c(-Inf, quantile(p,(1:9)/10, Inf))
fit3 <- glm(y ∼ −1+ group + offset(p), family=poisson, data=data1)