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Abstract

The volume, diversity and velocity of biomedical data are exponentially increasing providing

petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands

of computational algorithms are developed and reported in the literature along with thousands of

software tools and services. Users demand intuitive, quick and platform-agnostic access to data,

software tools, and infrastructure from millions of hardware devices. This explosion of
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information, scientific techniques, computational models, and technological advances leads to

enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of

findings.

The Pipeline workflow environment provides a crowd-based distributed solution for consistent

management of these heterogeneous resources. The Pipeline allows multiple (local) clients and

(remote) servers to connect, exchange protocols, control the execution, monitor the states of

different tools or hardware, and share complete protocols as portable XML workflows. In this

paper, we demonstrate several advanced computational neuroimaging and genetics case-studies,

and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the

context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic

(SNP) data.
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Introduction

Process understanding is frequently the core research question in many biomedical, health

and environmental applications. As we rarely know the exact process characteristics, we

collect data (observations) which is used as proxy of the underlying physiological, physical

or environmental phenomena. As such, the observed information (data) becomes the pivotal

aspect of the scientific inquiry. The data variability, complexity and heterogeneity directly

affect the scientific inference, accuracy of the results and reproducibility of findings.

Three data characteristics make contemporary biomedical data different, challenging and

powerful. These are the data volume (size), typically in the petabyte range (1PB = 1015

bytes), data heterogeneity, including (un)formatted, ASCII/Binary, (un)structured, and the

data velocity, or data derivative, which captures the change, transfer, and discovery of raw

and derived data [1-3].

Table 1 illustrates the Kryder's law for exponential increase of the volume of data [4]. Using

two decades of data, this law predicts that the density of information on hard drives, areal

density, increases by a factor of 1,000 every 10-11 years. This storage rate increase is driven

by the rapid expansion of data volume and velocity and translates into doubling of data size

each 12-13 months. Both Moore's and Kryder's laws indicate similar exponential increase

(of computational power and data storage, respectively) over time [5].

There are thousands of software tools for acquisition, processing, storage/databasing,

service, migration, mining, analysis, visualization, annotation, and data-driven process

understanding. For example, the field of biomedical imaging includes hundreds of different

types of image processing algorithms and filters. For each type of process, there may be

dozens of concrete software products (instance implementations). More specifically, the

Neuroimaging Informatics Tools and Resources Clearing House (NITRC) [16] lists over 500
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openly shared neuroimaging software tools. For each openly shared tool, there may be

dozens proprietary or less commonly used analogues. Similarly, in genomics and

bioinformatics there are over 200 data and cloud computing service providers, and hundreds

of public, private and non-profit organizations that provide thousands of stand-alone tools

[17]. Resource organization, classification, discovery, traversal and utilization of these

software products require flexible human and machine interfaces [18].

Another computational challenge is the proliferation of millions of hardware devices.

According to Cisco [19], by the end of 2012, the number of mobile-connected devices will

exceed the number of people on Earth and there will be over 10 billion mobile-connected

devices in 2016; i.e., there will be more than 1.3 mobile devices per capita worldwide. These

include phones, tablets, laptops, handheld gaming consoles, e-readers, in-car entertainment

systems, digital cameras, and “machine-to-machine modules.” There is a clear need for

bridges between these mobile devices and for efficient connections to distributed databases,

clients, servers, compute-nodes, web-services, variety of interfaces.

Methods

The LONI Pipeline environment (http://Pipeline.loni.ucla.edu) [20, 21] is a graphical

workflow middleware providing an interface to computational libraries, informatics

resources, computational expertise and cloud services (e.g., cloud data storage, cloud

computing services). The Pipeline facilitates the design, validation, execution, monitoring

and sharing of advanced heterogeneous computational protocols as graphical workflows. It

also mediates the tool discovery and interoperability and provides distributed computing

infrastructure for en masse data processing. The Pipeline's user-friendly interface enables

access to disparate data, services, hardware infrastructure, computational expertise and cloud

computing services [20].

Alternative infrastructures to the Pipeline environment that also facilitate visual informatics

and computational genomics include Taverna [22], Kepler [23], Triana [24], Galaxy [25],

AVS [26], VisTrails [27], Bioclipse [28], KNIME [29], NyPipe [30], PSOM [31] and others.

The choice of a workflow environment depends on the specific research domain, scientific

application and computational need. The Pipeline environment provides some advantages

over the alternative architectures. These include distributed client-server architecture, an

array of scheduler grid plug-ins, external lightweight data manager, easy incorporation of

new software tools and libraries, and dynamic workflow design, validation, execution,

monitoring and dissemination of complete end-to-end computational solutions [32].

The main types of computational tools available in the Pipeline library include software for

neuroimaging and genetics data processing and visualization. For each of these types there

are 3 categories of resources – data, atomic modules, and workflows. These resources can be

explored via the Pipeline Navigator (http://pipeline.loni.ucla.edu/explore/library-navigator/)

and can be tested via the guest-access Pipeline Web-Start server (http://

pipeline.loni.ucla.edu/PWS). Many interesting end-to-end computational workflow solutions

(pipelines) are documented online (http://pipeline.loni.ucla.edu/explore/pipeline-

workflows/). There are also many video tutorials, screencasts, and training materials (http://
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pipeline.loni.ucla.edu/learn/basic-videos/), which illustrate the basic and advanced features

of the pipeline client-server architecture, and the protocols for workflow design, execution

and management.

Neuroimaging Processing Tools

There are several hundred atomic neuroimage processing tools, from a variety of software

suites available in the LONI pipeline library, Figure 1.A. These tools may be used for

analysis of structural brain images (e.g., AFNI [33], ROBEX [34], MDT Atlasing [35, 36],

BrainParser [37], SVPASEG [38, 39], AIR [40], FSL [41], BrainSuite [42], SSMA [43, 44],

ANTS [45], ITK [46], MINC [47]), functional brain data (e.g., FLIRT [48], AFNI [33],

WAIR [49], Matlab [50]), diffusion data (e.g., DTK [51], DIRAC [52], MiND [53]),

statistical analyses (e.g., R [54], GAMMA [55], SOCR [56, 57], SPM [58, 59]), shape and

surface modeling (e.g., sulcal analysis [60], local and global shape analyses [32], shape

mapping DHM [61], FreeSurfer surface extraction, and cortical thickness [62, 63]).

Informatics and Genomics Computational Library

The breadth of genomics tools available as pipeline modules and workflows is illustrated by

the variety of sequence alignment solutions [20], Figure 1.B. Some different categories of

informatics and genomics computing software tools available in the Pipeline library include:

sequence alignment (Mosaik [64], MAQ [65], PERM [66], BWA/BWA-SW [67, 68],

Bowtie [69], Novoalign [70], SOAPv2 [71], BLAST [72]), indexing (mrFAST/mrsFAST

[73]), genome-wide association studies (GWASS [74], PLINK [75]), basic and advanced

quality control (SAMTools [76], GATK [77]), CNV calling (CNV/CNVR [78, 79]),

annotation (Artemis [80]), de novo assembly (Trinity [81], Velvet [82]), molecular biology

(EMBOSS [83]), population genetics (GENEPOP [84]), and many others.

Backend Pipeline Servers

Pipeline web-start server (PWS) uses Java Web-Start technology enabling guest users to test

the LONI Pipeline application from a web browser without the installation of either a

pipeline client or a server. The PWS server provides access to all of the functions and

features included in the downloadable version. PWS is accessible via an anonymous guest

login or user-authentication to connect to remote Pipeline servers, e.g., http://ucla.in/

GRSc8a. Several alternative Pipeline servers provide secure access-controlled connections

to independent computational infrastructures. Examples include LONI Genomics Server

(Genomics.loni.ucla.edu, 1TB RAM/40-core), Cranium Server (Cranium.loni.ucla.edu,

16GB RAM/core, 1,200 cores) and Medulla Server (Medulla.loni.ucla.edu, 24GB RAM/

core, 4,300 slots). The Distributed Pipeline Server infrastructure (http://

pipeline.loni.ucla.edu/DPS) facilities the deployment of independent disparate Pipeline

services on available hardware resources, including Amazon EC2 (http://

pipeline.loni.ucla.edu/products-services/pipeline-server-on-ec2/).

Big Data

Modern protocols for imaging and genetics data collection generate enormous amounts of

data. Table 2 illustrates some of the data-management, storage and processing challenges
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associated with common neuroimaging and genetics analysis protocols. Figure 2 shows an

example of the multi-channel imaging brain data typically acquired in traumatic brain injury

studies.

Applications and Results

To demonstrate the Pipeline management of heterogeneous neuroimaging, genetics,

phenotypic and clinical data, and the diversity of computational data processing tools

available through the Pipeline library, we have chosen three complementary applications.

These include studies of imaging-based genome-wide association, hippocampal

morphometry, persistent pain and irritable bowel syndrome. Each of these three applications

demonstrates exemplary solutions to the resource-scalability and processing-efficiency

challenges related to the data complexity (size, heterogeneity and velocity), software tools

interoperability and diversity of hardware devices. Specifically, these case-studies

demonstrate (1) how seemingly incongruent imaging, phenotypic and clinical data can be

jointly processed and analyzed in an integrated computational workflow protocol; (2) how

pipeline workflows can wrap independent software tools to make them interoperate; and (3)

how these data and computational resources (tools and services) can be accessed via

different client devices (e.g., desktop or laptop computers or mobile devices running

different operating systems and browser configurations).

ADNI Imaging-Genetics GWAS Study

The Alzheimer's disease data used in this article were obtained from the Alzheimer's Disease

Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). ADNI is the result of efforts

of many co-investigators from a broad range of academic institutions and private

corporations, and subjects have been recruited from over 50 sites across the U.S. and

Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed

by ADNI-GO and ADNI-2.For up-to-date information, see www.adni-info.org.

The Alzheimer's Disease Neuroimaging Initiative (ADNI) [94-96] data was screened and

from 589 study participants, 188 qualified for an Alzheimer's Disease (AD) diagnosis at

baseline, 401 had mild cognitive impairment (MCI). Among them, 9 were early-onset (EO)

AD (Male: 4, Female: 5) and 27 were early-onset MCI (Male: 15, Female: 12). Subjects

(ages 55 to 65) were divided into two groups: EO-AD and EO-MCI. Individual ADNI

genotype and imaging data were downloaded and merged to form a single dataset containing

genome-wide information for 36 individuals. Genetic analysis, including quality control,

were performed using PLINK version 1.09. All the genetic processing was done via the

LONI Pipeline environment. The 20 most significant single nucleotide polymorphisms

(SNPs) were chosen by Manhattan plot and were associated with specific neuroimaging

biomarkers. The structural ADNI data (1.5T MRI) was parcellated using BrainParser, and

the 15 most important neuroimaging markers were extracted by the Global Shape Analysis

(GSA) Pipeline workflow.

The goal of this application is to demonstrate the use of the pipeline environment for

genome-wide association study (GWAS) using early-onset ADNI data including cognitive

impairment measures, neuroimaging and genetics biomarkers. After standard SNP quality
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control [97, 98], the raw SNP data (630K SNPs) was reduced to 360K SNPs. A new pipeline

workflow was designed to integrate the global shape analysis, tensor-based morphometry

and SOCR multivariate regression analyses. The results of the automated pipeline

workflows included significant correlations between SNPs and various neuroimaging

biomarkers in the EO subjects and discriminated between EO-AD and EO-MCI cohorts,

Figure 3. A connectomics diagram can be used to illustrate the strength of the associations

between the 15 derived neuroimaging biomarkers and the top 20 SNP genetic markers. In

this case-study, the small sample-size (N=36) has a negative effect on the (statistical) power

to detect significant associations between the biomedical imaging markers (e.g., regional

volume and shape metrics) and the genetic traits (SNPs/chromosomes). However, the same

computational pipeline workflows can be used to analyze similarly larger cohorts (e.g.,

N>700), where sufficient power may be available to detect interactions between imaging

and genetics effects (after Bonferonni correction for multiple testing). The imaging, genetics

and clinical data used in this example were directly imported into the Pipeline workflow

environment from the ADNI database using the Pipeline's IDAGet module. This pipeline

workflow protocol can be designed on one client, and execution may be initiated on a user-

specified pipeline server from another pipeline client, and the workflow progress, and final

result inspection, may be monitored or examined on a different client device.

Genetic Associations with Hippocampal Function and Shape

A recent study investigated the genetics effects (single-nucleotide polymorphisms, SNP,

associated with FKBP5 gene regulation, rs1360780) related to attention, behavioral, and

hippocampal morphometrics [99]. The FKBP5 gene regulates glucocorticoid receptor

sensitivity and is associated with hypothalamic-pituitary-adrenal axis functioning and stress-

related psychiatric disorders [100]. In this cross-sectional study using fMRI/MRI, African

American cohort of adults (N = 103) separated into 2 groups by genotype: Group 1 included

carriers of the rs1360780 T allele, associated with increased risk for posttraumatic stress

disorder; Group 2 included non-carriers. The study used the local shape analysis pipeline

workflow to identify attention bias toward threat (F1,90=5.19, p=0.02), and revealed

alterations in the hippocampal shape for TT/TC compared with the CC genotype groups.

Figure 4 shows part of the computational protocol implemented as a pipeline workflow and

the exemplary result from this morphometric analysis.

Persistent Pain and Irritable Bowel Syndrome (IBS)

A UCLA IRB approved study recruited 328 female normal controls (NC) and IBS subjects.

A diagnosis of IBS was made using the ROME III symptom criteria [101, 102] based on the

assessment by one of 4 gastroenterologists experienced in the diagnosis of functional bowel

disease and the exclusion of organic disease. A subject's medical history and physical

examination were obtained by a gastroenterologist. IBS patients with all types of

predominant bowel habit were included. Subjects with a history of any chronic functional

symptom or syndrome, or symptoms suggestive of disordered mood or affect, by history or

by questionnaire, were excluded. In addition, potential subjects are excluded if by either

history or questionnaire they a) have a serious medical condition or are taking medications

which may interfere with interpretation of the brain imaging or physiological measures

(other than IBS); b) have an ongoing major psychiatric diagnosis or psychotropic medication
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use over the past 6 months (subjects are not excluded for lifetime incidence of psychiatric

disorder, or for intake of low dose tricyclic antidepressant for non-psychiatric indication); c)

have a positive symptom score on the Hospital Anxiety and Depression Scale consistent

with depression or anxiety d) do excessive physical exercise (i.e., marathon runners).

Brain images were obtained from all 328 subjects (107 IBS, 221 NC) using 1.5 and 3T MRI

scanners [103]. We collected phenotyping data on catastrophizing (Coping Strategies

Questionnaire) [104], early life trauma (Early Trauma Inventory) [105], state anxiety and

depression (Hospital Anxiety and Depression Scale) [106], health status (12-Item Short-

Form Health Survey) [107], trait anxiety scores (State Trait Anxiety Inventory) [108] and

IBS symptom severity and duration (Bowel Symptoms Questionnaire) [109].

As a first step for shape-based neuroimage analysis, we reconstruct surface representation of

anatomical structures of interest. Then, we analyze both cortical and subcortical structures.

The cortical surfaces, including both white matter and pial surfaces, are reconstructed from

T1-weighted MR images using FreeSurfer [110]. For sub-cortical structures, we applied the

LONI BrainParser [37] to automatically segment the T1-weighted MR image into fifty-six

regions. Using masks generated by BrainParser, accurate surface representations of the

segmented regions are reconstructed with a novel algorithm we developed recently. This

tool can remove segmentation artifacts without volume shrinkage and guarantees all surfaces

guaranteed have the correct topology. All surfaces are represented as triangular meshes with

spherical topology. The global shape analysis (GSA) pipeline workflow was used to identify

regional differences between the NC and IBS subjects using the 56 regions of interest

(ROIs) on 6 different volumetric and shape metrics (average mean curvature, surface area,

volume, shape index, curvedness, and fractal dimension). Figure 5 shows the 3 steps in this

analysis (data inputs, pipeline workflow and results of regional group differences).

Conclusions

Although there are a number of useful software discovery and navigation frameworks [18,

111, 112], the protocols for tool interoperability continue to present significant biomedical

computing challenges. There are considerable design differences between independent

software suites. Furthermore, the varieties of computer programming languages for

algorithm implementation, the substantial diversity of compilers and optimization strategies,

and the gamut of hardware resources present additional hurdles in biomedical computing.

Mediating these computational issues, coping with the enormous amounts of incongruent

data, and handling a wide spectrum of devices require a paradigm shift of how we manage,

process, interrogate and utilize biomedical and health related data.

The evidence is clear that we are in the front of an enormous storm of exponentially

increasing wave of data, processing power and resource diversity. Multidisciplinary science

efforts, technologies like Hadoop [113], OpenStack [114], Elastic Cloud Computing [115],

Pipeline workflow systems [32, 116] and super high-bandwidth networking [117, 118] will

be critical for riding this storm and uncovering novel biomedical knowledge. Embracing the

science interactome (the multidisciplinary interactions between biomedical, computational

and basic scientific areas, which often lead to new discoveries) will also be essential for
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establishing, maintaining and expanding the cyclical flow from Biomedical Challenges ↔
Scientific Models ↔ Data Analysis ↔ Computational Infrastructure ↔ Sustainable

Education.

In this manuscript, we presented evidence of the rapid increase of the volume, diversity and

velocity of biomedical data (e.g., neuroimaging and genetics [119-121]), and the growth of

computational models, algorithms, software tools, services and electronic devices that

manipulate these data [122-124]. There is evidence that software tool expansion always

occurs within the limits of the available hardware infrastructure [125]. This close connection

between the Moore's law for increase of computational power facilitates the observed

expansion of new and more powerful software tools (e.g., Software as a Service (SaaS)

[126], Platform-as-a-Service (PaaS) [127]). For example, in 1993, Windows NT OS 3

consisted of 5-million lines of code, which 10-years later grew 10-fold to 50-million lines in

Windows, Server OS 2003 [128]. Similarly, from 2000 to 2007, the Linux Debian OS grew

from 59-million to 280-million lines of code [129]. Web and mobile applications, or

webapps, are software systems running on portable devices, which have significantly grown

since 2005 into a multi-billion dollar business [130]. The explosion of webapp software

development can be measured in terms of pure source code, usage of third-party APIs, and

historical data. Studies of lines of code in specific areas indicate that over the past few

decades there is an exponential increase of software development efforts [131, 132]. This

advancement of the software tool capabilities in turn pushes the introduction of more

efficient and omnipotent hardware devices (e.g., Infrastructure as a Service (IaaS) and

Virtual Machines (VMs) [133]).

The Pipeline workflow environment is one of many solutions that provide a distributed and

platform-independent management of heterogeneous resources using dispersed clients and

servers, elaborate exchange protocols, and flexible mechanisms for control, execution,

monitoring and sharing of complete computational protocols. We demonstrated three

advanced end-to-end computational pipeline solutions for neuroimaging, genetics and

computational morphometry. These solutions are implemented as graphical workflow

protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic

(demographic, clinical), and genetic (SNP) data.
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Figure 1.
Examples of classes of tools available in the Pipeline computational library.
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Figure 2.
Traumatic brain injury (TBI) studies demonstrate the diversity of the neuroimaging data in clinical applications. Imaging

modalities included in many TBI studies include: TSE: Turbo-Spin-Echo magnetic resonance imaging (MRI); FLAIR: Fluid

Attenuated Inversion Recovery MRI; GRE: Gradient-Recalled-Echo (MRI); T2 Haste: Half-Fourier Acquisition Single-Shot

Turbo Spin-Echo MRI; MP RAGE: Magnetization-Prepared Rapid Acquisition with Gradient Echo (MRI); T2: T2-weighted

MRI; SWI: Susceptibility Weighted Imaging (MRI); CT: Computed Tomography; FDG: Fludeoxyglucose Positron Emission

Tomography (PET); FDG Maps: Statistical maps of Fludeoxyglucose; FDDNP: 2-(1-{6-[(2-[F-18]fluoroethyl)

(methyl)amino]-2-naphthyl}ethylidene)malononitrile PET imaging.
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Figure 3.
Early Onset (EO) ADNI Imaging-Genetics GWAS Study using the pipeline environment.
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Figure 4.
Example of using the pipeline environment to complete a neuroimaging genetics study of FKBP5 gene (rs1360780) association

with attention, measured through behavioral response (dot probe task) and hippocampal morphometrics. The superior and

inferior vies of the hippocampal surface map illustrate the vertex locations, on the mean left hippocampus, where FKBP5

carriers (group 1) and non-carriers (group 2) showed significant shape differences.
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Figure 5.
Analyzing IBS/NC regional differences: (Left) raw sMRI data, (Middle) GSA workflow including data processing, surface

reconstruction, 3D parcellation, and statistical analysis, (Right) Statistically significant ROI between-differences rendered as 3D

scenes (left cuneus is green, and right angular gyrus is gray; the red cingulate gyrus and the blue insula are shown for orientation

only).
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Table 2

Storage and processing of Big neuroimaging and genetics data.

Types of Studies (Number of Subjects)

Neuroimaging
Depending on acquisition & analysis protocols

C. Genetics
Depending on Coverage(X)

A. Storage B. Processing Storage Processing

N=1 Raw data: 10GB (e.g., 512 directional
diffusion data)

Derived: 100GB

100+ GB RAM
70+ hrs CPU

320GB (at 80X) 2+ TB RAM
100+ hrs CPU

D. Cohort Studies (N~100) 100GB – 1TB 1TB RAM
100's hrs CPU

3+ TB 2+ TB RAM
100's hrs CPU

Multi-site population wide studies
(N>1,000)

1-10 TB 1+ TB RAM
1000's hrs CPU

30+ TB 2+ TB RAM
1000's hrs CPU

Longitudinal (Time ≥ 2) > 5TB > 2 TB RAM
> 5,000 hrs CPU

--- ---

Legend:

A. Relative to the mouse brain, the field of view of human brain imaging data is several orders of magnitude larger [85]. Diffusion imaging of
mouse brain may reach 1.9 GB (7 × 512 × 256 × 256 points with real and imaginary parts, represented as 4 bits float numbers) [86], and
correspondingly diffusion spectral or high-angular resolution images may exceed 10GB per human subject and session [8]. The Global Shape
Analysis pipeline workflow [32] includes about 100 processing steps and depending on the server load and the number of subjects provided as
input may take 7 days to complete on the LONI Pipeline Medulla cluster (4TB RAM, 3,000 slots).

B. Many computationally intensive neuroimaging processing tools require significant hardware resources including storage, memory and CPU
cycles [21].

C. In 2011, many alternative commercial DNA sequencing platforms generated whole genome sequences of size 100-600GB [87], which require
days of computations on powerful grid systems. For example, our experience shows that Trinity whole-genome de novo assembly [88, 89] takes
over 14 days of calculations on the LONI Pipeline Genomics server (1.4TB RAM, 40-core).

D. The infrastructure needs of cohort-based and multi-institutional studies increase linearly with the increase of the number of cases that require
processing. Thus, a brain study of 1,000 subjects (e.g., Chinese Probabilistic Brain Atlas [90], vGWAS [91]) or a computational genetics study of
1,000 whole-genome sequences (e.g., prostate cancer [92], autism spectrum disorder [93]) may require Terabytes of storage and extensive
infrastructure for data management, processing and interrogation. Longitudinal neuroimaging studies add another layer of complexity, as these
typically require baseline as well as several (1+) follow up scans, which increases proportionately the volume of the imaging data.
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