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Abstract
Because of the versatility and specificity of monoclonal antibodies, they are candidates for
multipurpose prevention technologies when formulated as topical (gels, films, rings) or injectable
drugs and as vaccines. This review focuses on antibody-based proof of concept studies for the
human immunodeficiency virus, herpes simplex virus and sperm. Opportunities and challenges in
antibody evasion/resistance, manufacturing, regulatory, and pharmacoeconomics are discussed.
This article is based on a presentation at the “Product Development Workshop 2013: HIV and
Multipurpose Prevention Technologies,” held in Arlington, Virginia on February 21-22, 2013. It
forms part of a special supplement to Antiviral Research.
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1. Introduction
Women worldwide frequently confront two concurrent reproductive health challenges: the
need for both contraception and protection from sexually transmitted infections (Harrison et
al., 2013). Multipurpose prevention technologies (MPTs) are intended to simultaneously
address these multiple sexual and reproductive health needs. Conceptually, women could be
protected against multiple risks, even if their intention was to address just one perceived
health need. MPT products may help alleviate the heavy health and economic toll of
unintended pregnancy and sexually transmitted infections (STIs) if women have the option
to understand, purchase, store, and use fewer products to maintain sexual and reproductive
health.

First generation candidates for MPTs consist primarily of combinations of commercially
available hormonal contraceptives and antiretroviral drugs (ARVs). Future generations of
MPT candidates are likely to include proteins/peptide-based molecules as drugs (Dereuddre-
Bosquet et al, 2012; Kouokam et al, 2011, Lagenaur et al., 2011; Lagenaur et al., 2010), and
vaccines (Diekman et al., 1999; Walker and Burton, 2010). Monoclonal antibodies (Abs) are
protein-based MPT candidates that are specific for their target, but can be multipurpose
when combined to target the array of sexually transmitted pathogens and sperm. In vivo
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proof-of-concept studies for the human immunodeficiency virus (HIV), herpes simplex virus
(HSV) and sperm are reviewed and serve as the starting point for antibody-based MPTs as
topical (gels, films, rings) or injectable drugs, and as vaccines. In addition, challenges in Ab
evasion/resistance, manufacturing, regulatory, and pharmacoeconomics are discussed.

2. Topical Antibodies
Antibodies against HIV, HSV, and sperm have demonstrated efficacy in vivo when
delivered topically. The mechanism(s) by which antibodies afford protection against HIV
and HSV have been attributed to both classic neutralization (by steric hindrance) and
antibody dependent cellular cytotoxicity (ADCC). Anti-sperm Abs that cause agglutination
and mucus trapping may be factors in human infertility (WHO, 1992; Diekman et al., 2000).
Antibodies to surface antigens on sperm (and other seminal cells) trap by agglutination and
making them “mucophilic”, i.e. the antibodies form adhesive interactions with the mucus gel
that stops all forward motility (the “shaking phenomenon”) that appears to be associated
with the Fc regions of antibodies (Olmsted 2001). A similar mechanism occurs with
mucosal pathogens (Phalipon 2002), i.e. a sufficient number of low-affinity cross-linkages
trap the pathogen in the mucus gel, thereby reducing the flux of pathogens that reach target
cells.

At present, antibody-based proof-of-concept and mechanisms for active and passive
immunization is inconclusive for many other prevalent STIs, e.g. N. gonorrhoeae (Cole and
Jerse, 2009; Zhu et al., 2011) and Chlamydia trachomatis (Rank and Whittum-Hudson,
2010).

2.1. HIV Abs
Many of the new monoclonal antibodies against HIV (PGT121-PGT128) are almost 10-fold
more potent than the recently described PG9, PG16 and VRC01, and 100-fold more potent
that the original prototype HIV neutralizing antibodies (b12, 2G12, 4E10) (Walker et al.,
2011; Hiatt et al., 2013). Analysis of the anti-HIV broadly neutralizing monoclonal
antibodies (bnAbs) now available suggests that certain combinations of potent antibodies
have superior coverage of the enormous diversity of global circulating viruses and should be
sought in active or passive immunization regimes.

Unformulated b12 provides dose-dependent protection when given to macaques vaginally as
a single bolus before vaginal challenge with a single high dose of SHIV-162 P4 (Veazey et
al., 2003). Similarly, unformulated b12 (5mg) when applied vaginally provided sterilizing
immunity in seven of seven animals (Burton et al., 2011); weakly neutralizing or
nonneutralizing antibodies showed limited or no protection. Rectal delivery of unformulated
HGN194 (dimeric IgA1; 1.25 mg) protected 5 of 6 rhesus macaques against intrarectal
challenge with SHIV (Watkins et al., 2013).

When formulated as a gel, VRC01 protected seven of nine RAG-hu humanized mice and a
multi-Ab gel (b12, 2F5, 4E10, 2G12) provided 100% protection (Veselinovic et al., 2012).
MabGel, a multi-Ab gel (4E10, 2F5, 2G12), was shown to be partially protective in a
macaque vaginal challenge model (Depo-Provera treated; SHIV162P3; 3-10 AID50) (Moog
et al., 2013). In a phase 1 trial of MabGel, the product was shown to be safe (Morris et al.,
2010; Charles Lacey 2012, personal communication). Unformulated 2G12 (manufactured in
Nicotiana) that was vaginally delivered has completed a phase 1 trial in women and was
found to be safe (Julian Ma 2012, personal communication).
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2.2. HSV Abs
Unformulated HSV8, a fully human anti-HSV gD Ab which neutralizes a diverse range of
low passage clinical isolates of HSV-1 and HSV-2 (De Logu et al, 1998), provided 100%
protection at 100 μg/ml in a mouse/HSV model (Zeitlin et al., 1996; Zeitlin et al., 1997).
Complete protection against vaginal challenge with an unformulated anti-HSV gB Ab
(produced in soy plants and mammalian cells) required approximately 1 mg/ml (Zeitlin et
al., 1998). Controlled release of anti-HSV antibodies from EVA-based vaginal rings
demonstrated one week of protection in the HSV/mouse model (Sherwood et al., 1996),
providing evidence that sustained release of antibodies from an intravaginal device could
provide long-term protection.

2.3. Sperm Abs
Agglutination of rabbit sperm with unformulated IgM Ab has been shown to provide
contraceptive activity in a rabbit model (Castle et al., 1997); this study mimics the
agglutination mechanism that is associated with immune infertility in humans (WHO, 1992).
A Nicotiana manufactured IgG1 against a unique (found only in the human male
reproductive tract) glycoform of CD52, i.e. SAGA-1 (Diekman et al., 1999; Diekman et al.,
2000), has been shown to co-agglutinate 100% of human sperm and other seminal cells (e.g.
white blood cells) in less than thirty seconds at 100 μg/ml (Whaley et al., 2011; Whaley et
al., 2012).

3. Injectable Antibody
Systemically delivered Abs have demonstrated efficacy in HIV prevention (Mascola et al.,
1999) and therapy (Klein 2012). When 4E10 was delivered intravenously (50 mg/kg on days
-1 and +1; day +1 serum concentration = 388-911 ug/ml), the Ab provided complete
protection (no viremia) from rectal transmission in macaques (n=6) challenged with SHIV
Ba-L (Hessell et al, 2010). Serum concentrations of 25-60 μg/ml of b12 protected against 5
to 28 low dose vaginal SHIV challenges in macaques (Hessell et al., 2009). An injected IgA
version of b12 prevented mucosal transmission of HIV in humanized mice (Hur et al., 2012)
Systemic delivery of human polyclonal anti-gC1 serum and a murine monoclonal (B1C1)
antibody was shown to extend survival time of mice systemically challenged with an
HSV-1/Ab mixture (Adamiak et al., 2010). An anti-HSV gB Ab (2c) that was systemically
delivered, prevented mucocutaneous disease in a vaginal challenge model; the antibody
protected against HSV-1-induced encephalitis independent from complement activation,
antibody dependent cellular cytotoxicity, and cellular immunity (Krawczyk et al., 2011).

The half-life of HSV and HIV IgG1s (∼21 days) may be well matched to the monthly
schedule of injectable contraceptives, e.g. Cyclofem and Lunelle (25 mg
medroxyprogesterone acetate and 5 mg estradiol cypionate), and could be coadministered.
Alternatively, since the systemic half-life of Abs can be increased to 3 months by increasing
FcRn binding via point mutations to the Fc region (Zalevsky et al., 2010; Dall'Acqua et al.,
2006), HSV/HIV Abs could be co-administered with the 3 month injectable contraceptive,
Depo-Provera.

Formulating Abs at high concentrations enables delivery by subcutaneous injection which
has several benefits, including improved patient convenience, better compliance, reduced
pharmacy preparation times, and optimization of medical resources (Ismael et al., 2012).
Five highly concentrated Abs (>100 mg/ml) are commercially available; three share very
similar lyophilized formulations containing L-histidine as a buffer, sucrose as a cryo-
preservative, and a surfactant (Warne, 2010). Self-administration of antibodies and
hormonal contraceptives could be achieved by using delivery systems like Uniject (a
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prefilled, disposable plastic bubble with needle, administered subcutaneously by squeezing
the bubble) for Depo-SubQ Provera 104, or the HumiraPen for anti-TNF Ab.

3. Antibody-based Multipurpose Vaccines
Neutralizing antibodies serve as a correlate of protection for most successful antiviral
vaccines, and broadly neutralizing antibodies are the basis of rational HIV vaccine design
(Walker and Burton, 2010). The parallel paths of HIV Abs as drugs and Ab-based vaccines
stem from the relatively recent discovery of many potent bnAbs in serum samples from
HIV-positive individuals. Passive immunization trials are expected to provide proof-of-
concept that purified forms of these potent bnAbs protect against HIV in sero-negative
individuals. Ab-based vaccines, e.g. anti-idiotype Abs (Mader and Kunert, 2012) and
recombinant immune complexes (Chargelegue et al., 2005), can be designed to stimulate
systemic and mucosal antibody production. Immunization with fusion proteins like
HIVgp120-FcRn (Lu et al., 2011) and HSVgD-FcRn (Ye 2011) have been shown to protect
mice against vaginal challenge; these antibody-based vaccinogens can utilize FcRn
(neonatal receptor) binding to enhance serum residence time and mucosal uptake. Ab-based
subunit vaccines may provide additional advantages by utilizing Ab platforms in
manufacturing, purification and formulations.

A hybrid vaccine/Ab strategy has been developed with the use of systemic Adeno-associated
virus (AAV)-vectored antibodies (Balazs 2011). In this study, a single intramuscular
injection of an AAV-vector containing an anti-HIV antibody gene resulted in long-lasting
and high expression of the antibody, and protected humanized mice against intravenous HIV
challenge. Using similar technology, anti-HIV antibody fragments were produced in
cervico-vaginal epithelial stem cells and were protective in vitro (Abdel-Motal, 2011).

4. Challenges and Opportunities for Antibody-based MPTs
4.1. Antibody Evasion and Resistance

Infectious agents can circumvent B and T cell immune responses by a variety of means,
including accumulation of point mutations on immunodominant regions of surface proteins,
glycosylation of functionally pivotal residues (the glycan shield), association with host
serum components (e.g., lipoproteins) in order to mask them from the immune system, cell-
to-cell transmission, molecular mimicry between viral proteins and host self-antigens, and
interference by non-neutralizing Abs. The pressure for selection of escape mutants is likely
higher in a therapeutic context -- where viremic conditions may exist -- than in prevention;
Ab-based MPTs that use antibodies against two or more conserved regions of each pathogen
are likely to minimize emergence of resistance.

4.1.1. HIV—Founder HIV and antibody gene sequencing reveal concomitant virus
evolution and antibody maturation (Liao et al., 2013), suggesting that antibody evasion is
transitory. The antibody response to transmitted/ founder virus drives viral escape, such that
virus mutants become resistant to neutralization by autologous plasma. This antibody–virus
race leads to evolved variants of the transmitted/founder virus that induce antibodies with
considerable neutralization breadth.

Although HIV-1 escapes from antibody monotherapy, multi-Ab combinations of potent and
broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral
load to levels below detection in mice (Klein et al., 2012). Antibodies differ from other
therapeutic modalities for HIV in several important respects: (1) they can neutralize the
pathogen directly; (2) they have the potential to clear the virus and infected cells through
engagement of innate effector responses; (3) immune complexes produced by the passively
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transferred antibodies may stimulate enhanced immunity to HIV-1; and (4) antibodies have
far longer half-lives (IgG1 = 21 days) than currently used antiretroviral drugs. The prolonged
control of infection in mice with a penta-mix (3BC176, PG15 45-46G54W, PGT128,
10-1074) was primarily attributed to the long serum half-life of the injected antibodies. The
efficacy of antibody-based therapy may be further enhanced with modifications that extend
half-life several fold (Hinton et al., 2006).

Mounting evidence from in vitro, animal, and clinical studies indicates that infected cells
(‘Trojan Horse’ leukocytes) may be important vectors of HIV-1 mucosal transmission
(Anderson 2010; Anderson et al., 2010). One of the broadly neutralizing HIV mAbs, 4E10,
has been shown to have activity against cell-associated HIV in vitro (Sagar 2012). Now that
a macaque model for cell-associated SIV/HIV vaginal transmission has been developed
(Anderson 2010; Salle et al., 2010), 10E8 (Huang et al., 2012), 4E10, and HC4 (Ab to CD52
glycoform; male reproductive tract unique that co-agglutinates seminal cells) can be
evaluated for efficacy in NHP studies. In addition, Abs to antigens found on both cell
vectors and free virus (e.g.CD 25, CD26, CD36, CD44, HLA-Class I and II, HLA-RD,
ICAM-1) could be evaluated.

4.1.2. HSV—HSV antibodies play a role in mother to child transmission as the severity of
HSV infection in the fetus and newborn are greatly reduced when antibodies pass
transplacentally (FcRn mediated). A possible explanation for the difficulty in developing an
effective HSV-2 vaccine is that the virus has evolved mechanisms to escape immunity.
Many herpes viruses encode antibody evasion molecules that interfere with activities
mediated by antibody and complement, suggesting their importance in host defense against
herpes infections (Hook and Friedman, 2007). HSV evasion of neutralizing Ab by altering
complement and ADCC functions may not be relevant to protection by cervicovaginal
antibody (acting by either neutralization or mucus trapping) in a mucosal environment with
little complement present. However, for injectable HSV Ab it could play a role, i.e. HSV
expressed Fc receptors could create a coat of outward facing host IgG that block neutralizing
gD Abs. Active (Awasthi et al., 2011) and passive (Adamiak et al., 2010) immunization
studies suggest that HSV gC Abs may mitigate this evasion strategy.

4.1.3. Sperm—Sperm are “non-self” to both the male and female immune systems, and it
is not surprising that sperm, like STI pathogens, use antibody evasion mechanisms (Cone
and Whaley, 1994). Semen contains factors that inhibit cell-mediated immunity, natural
killer cell and macrophage function. The female reproductive tract also secretes factors that
inhibit complement-mediated damage. Targeting surface coating antigens, e.g. the surface
glycolipid CD52 added to sperm in the epididymis, is one potential approach for
immunocontraception (Cone and Whaley, 1994; Diekman et al., 1999; Diekman et al.,
2000).

4.2. Antibody Dependent Enhancement
The use of antibodies as therapeutic or prophylactic agents for viruses raises the potential for
exacerbation of disease by increasing the cellular uptake of viruses resulting in higher
viremia, a phenomenon termed antibody-dependent enhancement (ADE). The neonatal Fc
receptor (FcRn) enhances transcytosis of IgG-bound HIV across intact epithelial
monolayers. Appropriate selection (e.g. dimeric IgA) and dosing of Abs is a strategy likely
to avoid the potential for ADE on mucosal surfaces. Additionally, modifications to IgG Fc
regions that disrupt antibody interaction with Fcγ receptors have been shown to be effective
strategies in preventing ADE-mediated lethal disease in a mouse model (Beltramello et al,
2010).
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4.3. Manufacturing and Pharmacoeconomics
Antibodies have become a commercial blockbuster drug platform, with the biggest portion
of sales growth in the pharmaceutical industry, but most have indications for oncology and
immunological diseases, such as rheumatoid arthritis (RA). There is one commonly used
licensed product for prevention of respiratory syncytial virus (RSV) in premature babies,
another recently FDA approved for inhalational anthrax disease, and a handful of Ab
products undergoing clinical evaluation for infectious disease indications, including
methicillin-resistant Staphylococcus aureus and Clostridium difficile (CB-UPMC, 2013). In
spite of the lack of commercial attention to infectious disease Abs, there are a number of
reasons to believe they may be more desirable in the future: (a) declining clinical
effectiveness of antibiotics; (b) a large number of immunocompromised people; (c)
microbiome disruption by antibiotics; and (d) an increased availability of diagnostic tests
that may make mAbs more feasible to administer (CB-UPMC 2013).

Cost can be a major determinant of access and acceptability for drugs and vaccines, e.g. the
cost of the HPV vaccine is considered a factor in U.S. acceptability (Stupiansky et al., 2010;
Liau et al., 2012). As a biologic, Abs cost more to manufacture than small-molecule drugs;
FDA-licensed Abs are currently among the most expensive drugs. Many factors contribute
to the cost of a particular Ab, but the most important factor influencing their price appears to
be the market, i.e. the therapeutic market will bear a high cost for Abs, so they carry a big
price tag (CB-UPMC, 2013). With the incredible opportunities of Ab-based drugs and
vaccines in global health, there is now significant pressure to dramatically lower the costs.

Antibody manufacturing in mammalian cells has made tremendous strides over the last three
decades in lowering the cost of antibody manufacturing and increasing the scale. For
example, using existing and conventional unit operations for very large scale Ab
manufacturing and purification costs are frequently reported to be < $300/g Ab (Kelly
2007). However, the shear size of the unmet need for Ab-based products in global health
may be beyond the current worldwide manufacturing capability of animal cell based
production (Farid, 2007).

Manufacturing of whole antibodies in Nicotiana benthamiana may meet the demands of
large, cost-sensitive markets (Whaley et al., 2012; Whaley et al., 2011). The transient
expression system relies on the co-infection and co-replication of two different, non-
competing plant viral vectors, tobacco mosaic virus (TMV) and potato X virus (PVX)
(Giritch 2006). Agrobacterium tumefaciens-mediated transfer-DNA (T-DNA) is used as the
delivery system to introduce the components necessary to assemble the TMV and PVX-
based plant viral vector expression systems in planta. With the development of transgenic
strains of N. benthamiana with fucosyl- and xylosyl-transferase knocked out by RNAi
(Strasser 2008; Strasser 2009), Abs are produced with a highly homogenous mammalian
glycoform (GnGn). An important aspect of this versatile and adaptable manufacturing
platform is that it has been shown to be a linearly scalable system. In addition, the
Nicotiana-based technology is portable (i.e. minimal capital cost requirements) and could be
used to manufacture in countries with unmet need, assuming a local biopharmaceutical
industry. Production of Ab-expression in transgenic Nicotiana may further lower costs. The
quality of cost estimates are likely to improve over time now that GMP manufacturing of
Nicotiana-based Abs is becoming routine (e.g. Kentucky BioProcessing LLC, Owensboro
KY; Icon Genetics, Halle, Germany).

Several types of antibody fragments can be produced in microbial cells (mainly bacteria or
yeast).
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Manufacturing of antibody fragments has been conducted with Lactobacillus, Bacillus,
Streptomyces, and Staphylococcus. The use of Lactobacilli as vectors for antibody fragments
is being pursued (Lagenaur et al., 2010), as is AAV-vectored antibodies delivered
systemically (Balazs 2011) or to cervico-vaginal epithelial cells (Abdel-Motal, 2011). Cost
estimates for vectored antibodies are not currently available.

4.4. Regulatory Strategy for Ab-based MPTs
Most of the current pediatric vaccines are multipurpose vaccines (MMR, DTaP), including
recent approvals that provide simultaneous prevention of multiple diseases (diphtheria,
pertussis, typhoid, polio, hepatitis B, Hemopholius influenza, mumps, measles, rubella). All
of these vaccines were approved as single vaccines and then evaluated as multipurpose
vaccines. The FDA has provided Guidance for Industry for the evaluation of combination
vaccines for preventable diseases (FDA 1997) including a vaccine that prevents multiple
diseases. Regulatory considerations for developers of combination vaccines have been
reviewed (Vose, 1999).

Today, there are over 30 FDA-approved monoclonal antibody products, with >200 in
clinical development. In some instances, Abs do not carry as much regulatory risk as other
drugs because the FDA has recent and historical experience with evaluating mAb products
and Abs are essentially naturally occurring human molecules (CB-UPMC, 2013). Because
many infectious disease indications require administration of multiple Abs, the FDA has
allowed multi-Ab drugs to be clinically tested as a single product. A Phase 1 clinical trial
has been performed with a three Ab cocktail for botulinum toxin being developed by Xoma
(Nyak et al., 2013) and Phase 2 trials have been performed by Symphogen involving a 25
mAb and a two mAb cocktail (Stasi, 2010), and by Crucell with a two Ab cocktail for rabies
(Bakker et al., 2008). New and cost efficient cell banking and manufacturing concepts for
multi-mAb products have been described (Frandsen et al., 2011) and it has been
demonstrated that a complex mAb composition containing 25 antibodies can be
manufactured in a highly consistent manner in a scaled-up production process. The FDA has
provided draft Guidance for Industry on the co-development of two or more unmarketed
investigational drugs for use in combination, i.e. multidisease products (FDA, 2010).

5. Summary and Conclusions
There is significant safety and efficacy data on antibodies to support continued development
of antibody-based concepts for MPTs. Formulation of injectable Abs is well established, but
formulations for MPT films and rings is now emerging. Regulators are familiar with
reviewing antibody based products, but are less familiar with multi-Ab products for
simultaneous protection from STIs, but they have extensive experience with combination
vaccines administered to children. Acceptability and access of Ab-based MPTs are
dependent in part on pharmacoeconomics that are currently undetermined, but the cost of
traditional cell culture manufacturing continues to drop, and the intent of Nicotiana-based
and other novel manufacturing technologies is to significantly lower the cost of antibody-
based products for prevention.
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Highlights

• Antibodies are specific and versatile candidates for multipurpose prevention
technologies.

• Low cost and scaleable manufacturing is required to complement Ab versatility.

• Antibodies can be formulated as topicals (gel, film, device), injectables, and
vaccines
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