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Abstract

The proposed approach evaluates complexity of the cardiovascular control and causality among cardiovascular regulatory
mechanisms from spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiration (RESP). It relies
on construction of a multivariate embedding space, optimization of the embedding dimension and a procedure allowing
the selection of the components most suitable to form the multivariate embedding space. Moreover, it allows the
comparison between linear model-based (MB) and nonlinear model-free (MF) techniques and between MF approaches
exploiting local predictability (LP) and conditional entropy (CE). The framework was applied to study age-related
modifications of complexity and causality in healthy humans in supine resting (REST) and during standing (STAND). We
found that: 1) MF approaches are more efficient than the MB method when nonlinear components are present, while the
reverse situation holds in presence of high dimensional embedding spaces; 2) the CE method is the least powerful in
detecting age-related trends; 3) the association of HP complexity on age suggests an impairment of cardiac regulation and
response to STAND; 4) the relation of SAP complexity on age indicates a gradual increase of sympathetic activity and a
reduced responsiveness of vasomotor control to STAND; 5) the association from SAP to HP on age during STAND reveals a
progressive inefficiency of baroreflex; 6) the reduced connection from HP to SAP with age might be linked to the
progressive exploitation of Frank-Starling mechanism at REST and to the progressive increase of peripheral resistances
during STAND; 7) at REST the diminished association from RESP to HP with age suggests a vagal withdrawal and a gradual
uncoupling between respiratory activity and heart; 8) the weakened connection from RESP to SAP with age might be
related to the progressive increase of left ventricular thickness and vascular stiffness and to the gradual decrease of
respiratory sinus arrhythmia.
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Introduction

The spontaneous fluctuations of heart period (HP) about its

mean value observable in five minutes’ recordings are the

apparent manifestation of the short-term cardiovascular control

[1,2]. Short-term cardiovascular regulation is carried out by a set

of interacting neural and non neural components simultaneously

operating over a range of frequencies from 0.04 to 0.5 Hz in

humans [3]. Since these regulatory mechanisms work according to

similar but not coincident temporal scales and they are coordi-

nated by the autonomic nervous system but maintain a certain

degree of autonomy to accomplish specific local tasks (e.g. the

maintenance of the peripheral vasomotion at the district level in

presence of vasoconstriction), the dynamics of HP changes cannot

be fully described by a finite number of strictly periodic, fully

predictable, oscillations. Complexity analysis quantifies the depar-

ture of a given signal from a fully predictable course [4–11]: the

smaller the predictability, the higher the complexity. The

improvement of predictability of an assigned effect signal when a

presumed cause is introduced in the multivariate data set has been

suggested to be a measure of the strength of the causal relation

from the cause to the effect [12]: the larger the predictability

improvement, the strong the intensity of the cause-effect link.

It is well known that aging influences the complexity of the

cardiovascular control, as assessed from the analysis of HP

variability, by reducing the number of temporal scales involved

into the regulatory process, especially in the high frequency band
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(i.e. above 0.15 Hz) [4–9]. This information is clinically relevant

because it was suggested that complexity analysis of HP variability

can provide noninvasive indexes for monitoring the aging process

and the susceptibility of individuals to injury and illness [10].

Nonetheless, two main issues deserve elucidation. The first issue is

related to the traditional approach to assess the influence of age on

the cardiovascular control: it is almost exclusively based on the

analysis of HP variability. However, recently it has been pointed

out that complexity analysis of systolic arterial pressure (SAP)

variability can provide additional information [11]. We hypoth-

esize that tracking the course of complexity of SAP variability and

respiration (RESP) with age can provide information closely

related to senescence of vascular and respiratory systems, thus

complementing the traditional view exploring solely the senes-

cence of cardiac control according to the analysis of HP variability.

The second issue is linked to the possibility provided by causality

tools [12–16] in interpreting changes of complexity of a designated

variable in terms of modifications of the strength of the relation

between the variable and its determinants [17]. For example, it is

well-known that SAP variability and RESP contribute to HP

oscillations respectively through the cardiac baroreflex [18–20]

and the coupling between respiratory activity and vagal outflow

[18,21–23]. In a more complete universe of knowledge including

SAP and RESP variability in addition to the HP one, causality

analysis might explain the variation of the complexity of HP

variability observed, for example, during STAND [24] as the

result of the variation of the strength of the causal relation from

SAP to HP and/or from RESP to HP. We hypothesize that

complementing traditional univariate complexity analysis with the

assessment of the strength of the causal relations via causality

analysis might provide a more insightful description of the

evolution of the cardiovascular control with age by linking the

observed change of complexity to physiological mechanisms and

their impairment.

According to these hypotheses the aim of this study is to assess

the influence of aging on the complexity of HP, SAP and RESP

variabilities and on the strength of the causal relations among

them. The study exploits a multivariate compact framework

devised to favor the interpretation of changes of complexity in

terms of modifications of the strength of the physiological links.

The main features of this approach are the construction of a

multivariate embedding space accounting for the interactions

among HP, SAP and RESP variabilities, the optimization of the

number of samples necessary to describe cardiovascular variability

interactions (i.e. the embedding dimension), the estimation of the

interaction delays between different variability series and between

samples of the same series, the evaluation of the performance of

two alternative classes of methods for the assessment of complexity

and causality, i.e. the linear model-based (MB) and nonlinear

model-free (MF) class, and the comparison between the two

techniques most frequently utilized in the MF class, i.e. local

predictability (LP) and conditional entropy (CE). The effect of

senescence was assessed at baseline in supine resting condition

(REST) and during sympathetic activation induced by changing

posture from REST to active standing (STAND) in a cohort of 100

healthy subjects from 21 to 70 years subdivided into five bins of

age each including 20 subjects.

Methods

General Definitions
Given M series y1={y1(n), n=1,…,N}, …, yM={yM(n),

n=1,…,N} where N is the series length and n is the progressive

counter, the series are first normalized to have zero mean and unit

variance. We define V={y1,…,yi,…,yj,…,yM} as the universe of

the knowledge about the system under study. After labeling as

Yj
i(n) = [yj(n-tj

i),…,yj(n-pi)] with 1#i,j#M, the embedding vector

formed by pj
i= pi-tj

i+1 components of yj, where tj
i and pi represent

the minimal and the maximal delay of influence of yj on yi, the

multivariate embedding vector accounting for all signals present in

V is Zi(n) = [Y1
i(n),…,Yi

i(n),…,Yj
i(n),…,YM

i(n)] and has dimension

qi~M:(piz1){
XM

m~1

tm
i ð1Þ

where 1#ti
i#pi and 0#tm

i#pi with m?i. The possibility that

tm
i=0 is introduced to account for instantaneous (i.e., non-

delayed) effects from ym to yi. All the multivariate embedding

vectors form a set Zi={Zi(n), n= pi+1,…,N}. These definitions can

be easily extended to the universe V after the exclusion of yj, i.e.

V\yj={y1,…,yi,…,yM}. In this case the multivariate embedding

vector obtained from Zi(n) after excluding Yj
i(n) is Zi(n)\Yj

i(-

i(n)\Yj
i(n) = [Y1

i(n),…,Yi
i(n),…,YM

i(n)] and the set of all
Zi(n)\Yj

i(n) is indicated as Zi\Yj
i.

Linear MB Approach for the Assessment of Complexity
This technique computes complexity as the degree of unpre-

dictability of yi in V according to a MB approach [25]. The

multivariate linear regression model was exploited to describe the

interactions of yi with all the signals present in V [25]. More

specifically,

yi(n)~Ai
:ZT

i (n)zei(n) ð2Þ

where Ai is the qix1 vector containing the coefficients of the

model, Ai= [A1
i,…,Ai

i,…,Aj
i,…,AM

i] with Aj
i= [aj(tj

i),…,aj(pi)], pi is

the order of the model, the symbol T is the transpose operator, and

ei is the white noise with zero mean and variance li
2. Equation (2)

describes yi(n) as a linear combination of yj(n-k) with tj
i#k#pi and

1#j#M weighted by the constant coefficient aj(k) plus ei(n)
representing the part of yi(n) that cannot be predicted in V. We

follow the criterion leading to the minimization of li
2 in V to

identify Ai [25]. Given the estimate of Ai, ÂAi, the prediction of yi(n)

is

ŷyi(n)~ÂAi
:ZT

i (n) ð3Þ

Defined the prediction error, ei(n), as the difference between yi(n)

and its prediction, ŷyi(n), a measure of the unpredictability of yi in

V is the mean square prediction error indicated as l̂l2i DV in the

following. l̂l2i DV is computed as a function of the model order, pi,

according to a procedure leading to add one sample for each signal

present in V at every increment of pi (i.e. M samples at a time).

Since at every increment of pi the in-sample ability of the model in

fitting the data improves, l̂l2i DV progressively decreases with pi, thus

making practically useless the monitoring of l̂l2i DV with pi to decide

the optimal model order [25]. Therefore, instead of tracking l̂l2i DV
it is a common practice to monitor a figure of merit, here the

Akaike figure of merit [26]. The Akaike figure of merit adds a term

gradually increasing with pi to a function depending on l̂l2i DV, thus
forcing the creation of a minimum. The model order at the

minimum of the Akaike figure of merit will be indicated as pi
o.

l̂l2i DV at pi
o is taken as a normalized complexity index (NCI) of yi in
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V based on the MB approach, and labeled as NCIMB
i DV. Unless

necessary to stress the universe of knowledge, NCIi
MB will be

adopted instead of NCIMB
i DV and, in this case, we will assume that

the universe of knowledge is V. Since all the series are normalized

to have unit variance, NCIi
MB ranges between 0 and 1, where 0

indicates null complexity of yi and its full predictability and 1

indicates maximal complexity of yi and its full unpredictability.

Linear MB Approach for the Assessment of Causality
Causality from yj to yi based on MB approach is evaluated

according to the causality ratio (CR)

CRj?i
MB~

NCIMB
i DV{NCIMB

i DV\yj

NCIMB
i DV\yj

ð4Þ

where NCIMB
i DV and NCIMB

i DV\yj represent NCIi
MB assessed

respectively in V and V\yj. CRjRi
MB quantifies the strength of the

causal relation from yj to yi as the unpredictability decrement of yi

due to the inclusion of yj in V\yj. NCIMB
i DV\yj was computed by

estimating the coefficients of the polynomials in V\yj while

maintaining pi
o optimized in V. CRjRi

MB,0 indicates that yj
carries unique information about the future evolution of yi that

cannot be derived from any signal in V\yj, and, according to the

concept of Granger causality [12], it can be stated that yj Granger-

causes yi in V.

Nonlinear MF Approach for the Assessment of
Complexity Based On LP
This technique computes complexity as the degree of unpre-

dictability of yi in V [11]. The method hypothesizes that there is a

function f(.) linking Zi(n) to yi(n). yi(n) is usually indicated as the

image of Zi(n) through f(.) and, vice versa, Zi(n) is said to be the

vector associated to yi(n) through f(.). The k-nearest-neighbor

approach provides a local approximation of f(.) under smooth

conditions and without making any specific assumption on the

dynamical relationship linking Zi(n) to yi(n) [27], thus allowing the

prediction of yi(n), ŷyi(n), according to a MF approach. More

specifically, ŷyi(n) is computed in V as a combination over a subset

of values of yi whose associated embedding vectors belong to the

set of the k points closest to the embedding vector, Zi(n), associated

to the value to be predicted, yi(n). Usually, the set of the closest

points does not include vectors with time indexes close to n to

reduce the correlation among the selected values of yi solely due to

the temporal closeness of the associated embedding vectors [28].

To combine the k selected values of yi, the weighted mean, where

the weights are the inverse of the distance from Zi(n) to each

neighbor vector is a natural choice (i.e. zero-order predictor) [29].

The distance between vectors is calculated according to a

predefined norm (here we use the maximum norm, i.e. the

absolute value of the maximal difference between corresponding

components) [30]. After calculating the prediction of yi, ŷyi, the
square correlation coefficient between yi and ŷyi, ri

2, can be assessed

[31]. ri
2 is bounded between 0 and 1, respectively indicating null

and perfect predictability of yi. Predictability depends on the

construction of the multivariate embedding space. Here we exploit

a strategy growing up progressively the embedding space by

adding one lagged component at a time selected according to a

given criterion [14,32]. Let us refer to as candidate the lagged

component being possibly selected as a new coordinate of the

embedding space. Initially (i.e. when qi=0), the set of candidates

tested to predict yi(n) is {y1(n-t1
i),…,y1(n-pi),…,yi(n-ti

i),…,yi(n-

pi),…,yj(n-tj
i),…,yj(n-pi),…,yM(n-tM

i),…,yM(n-pi)}. All candidates are

tested by assessing ri
2 and the new component is selected as the one

maximizing ri
2. Then, the selected component is retained, qi is

increased by 1 and the set of candidates is reduced by excluding

samples of a signal with time indexes more recent or equal to any

component of the same signal already exploited to form the

multivariate embedding space, thus avoiding duplicate selections

and speeding up reconstruction. The process continues until the

set of candidates is empty. ri
2 varies with qi and, provided that V is

helpful to predict yi, its course is the result of two opposite

tendencies: i) a larger number of components increases the ability

of Zi to predict yi by allowing a more accurate unfolding of the

trajectories in the multivariate embedding space and reducing the

ambiguities in mapping Zi to future samples, thus leading to an

increase of ri
2 with qi; ii) in presence of noise and time series of

limited length, vectors in Zi progressively take apart with qi in the

multivariate embedding space and, consequently, the ability of the

k closest points to predict yi worsens, thus leading to a decrease of

ri
2 with qi. Therefore, ri

2 exhibits a maximum over qi,or a

minimum if the functional 1-ri
2 is considered [31]. Conversely, if yi

cannot be predicted in V, ri
2 remains close to 0 regardless of qi.

The largest value of ri
2 over qi, max(ri

2), is complemented to 1 (i.e.

1-max(ri
2)) to obtain the NCI of yi based on LP in V labeled as

NCILPi DV. Unless necessary to stress the universe of knowledge,

from now on NCIi
LP will be adopted instead of NCILPi DV and, in

this case, we will assume that the universe of knowledge is V.

NCIi
LP ranges from 0, indicating null complexity and perfect

predictability of yi, to 1, representing maximal complexity and full

unpredictability of yi. qi at NCIi
LP, qi

LPo, represents the optimal

number of components of Zi(n) leading to the best prediction of

yi(n). qi
LPo is bounded between 0 and qi given in (1).

Nonlinear MF Approach for the Assessment of Causality
Based on LP
Causality from yj to yi based on LP is evaluated according to the

CR

CRj?i
LP~

NCILPi DV{NCILPi DV\yj
NCILPi DV\yj

ð5Þ

where NCILPi DV and NCILPi DV\yj represent NCIi
LP assessed

respectively in V and V\yj. CRjRi
LP quantifies the strength of the

causal relation from yj to yi as the decrement of uncorrelation

between yi and ŷyi due to the inclusion of yj in V\yj. In the

assessment of CRjRi
LP, NCILPi DV\yj was computed by excluding

the components of yj from the optimal embedding vector leading

to the calculation of NCILPi DV. With this expedient, if the optimal

embedding vector does not contain any component of yj,

CRjRi
LP = 0, indicating the absence of causality from yj from yi.

Conversely, CRjRi
LP,0 indicates that yj carries unique informa-

tion about the future evolution of yi that cannot be derived from

any signal in V\yj, and, according to the concept of Granger

causality [12], it can be stated that yj Granger-causes yi in V.

Nonlinear MF Approach for the Assessment of
Complexity Based on CE
The technique computes complexity as the amount of

information carried by yi that cannot be derived from any of the

series present in V through the calculation of the CE [33]. A k-
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nearest-neighbor approach can be exploited to compute the CE of

yi in V [34]. CE is computed as the average value of the Shannon

entropy of the conditional distribution of yi(n) given Zi(n). The

distribution of yi(n) given Zi(n) is built by considering the subset of

values of yi whose associated embedding vectors belong to the set

of the k points closest to Zi(n). The Shannon entropy of the

distribution of yi(n) given Zi(n) is calculated as the negative natural

logarithm of the average probability that two samples of the

distribution of yi(n) given Zi(n) are at distance closer than e [34]. In
this study the tolerance e was set to 10% of the difference between

the 84th and the 16th percentile of yi and the distance was

computed, as in the LP approach, using the maximum norm. CE

is bounded between 0 and the Shannon entropy of yi indicating

respectively the minimal and the maximal amount of information

contained in yi. CE is smaller than the Shannon entropy of yi when

the set of conditioning vectors, Zi, is helpful to reduce the

uncertainty associated to yi. CE depends on the construction of the

multivariate embedding space. Here we exploit a strategy to

construct and optimize the embedding space analogous to the one

exploited by the LP approach. Only the optimization criterion is

different. Indeed, the new component is selected among the set of

candidates as the one producing the maximal decrement of the

uncertainty of yi (i.e. the minimum of CE) compared to the

maximal level of uncertainty of yi quantified by the Shannon

entropy of yi [14]. CE varies with qi and, provided that V is helpful

to reduce the uncertainty of yi, the course of CE is the result of two

opposite tendencies: i) a larger number of components increases

the ability of Zi to reduce the uncertainty of yi because longer

conditioning patterns have better possibilities in fixing future

samples, thus leading to a decrease of CE with qi; ii) in presence of

noise and time series of limited length, vectors in Zi progressively

take apart with qi in the multivariate embedding space and,

consequently, the ability of the k closest points to limit uncertainty

vanishes, thus leading to the increase of CE with qi. Therefore, CE

exhibits a minimum over qi. Conversely, if the information carried

by yi cannot be reduced in V, CE remains close to the Shannon

entropy of yi regardless of qi. The minimum of the CE over qi is

normalized by the Shannon entropy of yi to obtain a NCI of yi

based on CE in V, labeled as NCICEi DV. Unless necessary to stress

the universe of knowledge, from now on NCIi
CE will be adopted

instead of NCICEi DV and, in this case, we assume that the universe

of knowledge is V. NCIi
CE ranges from 0, indicating null

information and complexity of yi, to 1, representing maximal

information and complexity of yi. qi at NCIi
CE, qi

CEo, represents

the optimal number of components of Zi(n) leading to the maximal

reduction of uncertainty of yi. qi
CEo is bounded between 0 and qi

given in (1).

Nonlinear MF Approach for the Assessment of Causality
Based on CE
Causality from yj to yi based on CE is computed according to the

CR

CRj?i
CE~

NCICEi DV{NCICEi DV\yj
NCICEi DV\yj

ð6Þ

where NCICEi DV and NCICEi DV\yj represent NCIi
CE assessed

respectively in V and V\yj. CRjRi
CE quantifies the strength of the

causal link from yj to yi as the decrement of information carried by

yi attributable solely to the inclusion of yj in V\yj. We use the same

expedient exploited in the calculation of CRjRi
LP resulting in

CRjRi
CE = 0 when no components of yj are present in the optimal

embedding vector leading to the computation of NCICEi DV.
Conversely, CRjRi

CE,0 indicates that yj is capable to reduce

the uncertainty of yi to a level that cannot be achieved by

exploiting any signal in V\yj and, according to the concept of

transfer entropy [35], it can be stated that yj causes yi in V.

Experimental Protocol and Data Analysis

Ethics Statement
The study was performed according to the Declaration of

Helsinki and it was approved by the Human Research Ethics

Committee of the Federal University of São Carlos (protocol

number 173/2011). A written informed consent was obtained

from all subjects.

Experimental Protocol
We studied 100 nonsmoking healthy humans (54 males, age

from 21 to 70 years, median= 45 years; weight from 43 to 100 Kg,

median = 71 Kg; height from 146 to 197 cm, median= 167 cm;

body mass index (BMI) from 17.4 to 33.4 Kg.m22, med-

ian= 25 Kg.m22). The population was composed by 20 subjects

in each of the following bins: from 21 to 30 years (10 males,

median age = 26 years, median weight = 71 Kg, median

height = 168 cm, median BMI= 23.9 Kg.m22); from 31 to 40

years (11 males, median age = 34 years, median weight = 69 Kg,

median height = 168 cm, median BMI= 24.8 Kg.m22); from 41

to 50 years (10 males, median age = 45 years, median

weight = 70 Kg, median height = 167 cm, median

BMI= 25.4 Kg.m22); from 51 to 60 years (10 males, median

age = 55 years, median weight = 71 Kg, median height = 169 cm,

median BMI= 25.1 Kg.m22); from 61 to 70 years (13 males,

median age = 65 years, median weight = 72 Kg, median

height = 164 cm, median BMI=26.7 Kg.m22). The population

was balanced in terms of gender to limit the influences of this

confounding factor on the analysis [36]. The peak oxygen uptake,

peak _VVO2, was computed during a maximum cardiopulmonary

exercise test performed on a treadmill using a ramp protocol. The

criteria for exercise interruption were based on [37] and the

assessment was made according to [38]. In our population the

median (25th–75th percentile) of the peak _VVO2 in each age bin was

2271 (1574–2894), 2340 (1993–3135), 2384 (1712–3080), 2026

(1363–2484) and 1825 (1436–2025) mL.min21. All the subjects

were apparently healthy, had no history and no clinical evidence

of any disease based on clinical and physical examinations,

laboratory tests, standard electrocardiogram (ECG) and on a

maximum cardiopulmonary exercise test conducted by a physi-

cian. They were not taking any medication known to interfere with

cardiovascular control. Smokers and habitual drinkers were

excluded from this study. All subjects were evaluated in the

afternoon. The experiments were carried out in a climatically

controlled room (22–23uC) with relative air humidity at 40–60%.

Subjects were instructed not to consume caffeinated and alcoholic

beverages as well as not to perform strenuous exercises on the day

before the recording. They were also instructed to ingest a light

meal at least 2 hours prior to the test. On the experimental day,

the subjects were interviewed and examined before the test to

verify whether they were in good health and they had a regular

night sleep. Prior to the recording, the volunteers were made

familiar with the equipment and with the experimental procedure.

During the entire protocol the subjects breathed spontaneously

and they were not allowed to talk.

ECG (modified lead I), continuous plethysmographic arterial

pressure (Finometer PRO, Finapress Medical System, The

Aging and Cardiovascular Regulation in Humans
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Netherlands) and respiratory movements via thoracic belt

(Marazza, Monza, Italy) were digitalized using a commercial

device (BioAmp Power Lab, AD Instruments, Australia). Signals

were sampled at 400 Hz. The arterial pressure was measured from

the middle finger of the left hand being maintained at the level of

heart by fixing the subject’s arm to his thorax. All the experimental

sessions of the protocol included two periods in the same order: 1)

15 minutes at REST; 2) 15 minutes during STAND. Before REST

we allowed 10 minutes for stabilization. The arterial pressure

signal was cross-calibrated in each session using a measure

provided by a sphygmomanometer at the onset of REST. The

auto-calibration procedure of the arterial pressure device was

switched off after the first automatic calibration at the onset of the

session. Analyses were performed after about 2 minutes from the

start of each period.

Extraction of the Beat-to-beat Variability Series
After detecting the R-wave on the ECG and locating its peak

using parabolic interpolation, HP was approximated as the

temporal distance between two consecutive parabolic apexes.

The maximum of arterial pressure inside of the n-th HP, HP(n),

was taken as the n-th SAP, SAP(n). The signal of the thoracic

movements was down-sampled once per cardiac beat at the

occurrence of the first R-wave peak delimiting HP(n), thus

obtaining the n-th RESP measure, RESP(n). HP(n), SAP(n) and

RESP(n) were expressed in ms, mmHg and arbitrary units (a.u.)

respectively. The occurrences of R-wave and SAP peaks were

carefully checked to avoid erroneous detections or missed beats.

After extracting the series HP= {HP(n), n=1,…,N}, SAP= {-

SAP(n), n=1,…,N} and RESP= {RESP(n), n=1,…,N}, where n is

the progressive cardiac beat counter and N is the total cardiac beat

number, sequences of 256 consecutive measures were randomly

selected inside REST and STAND periods, thus focusing short-

term cardiovascular regulatory mechanisms [3]. If evident

nonstationarities, such as very slow drifting of the mean or sudden

changes of the variance, were present in spite of the linear

detrending, the random selection was carried out again.

Traditional Index Calculation
Traditional time domain parameters such as mean and variance

of HP and SAP were calculated and indicated as mHP, mSAP, s2
HP

and s2
SAP. They were expressed in ms, mmHg, ms2 and mmHg2

respectively. We assessed cardiac baroreflex sensitivity (BRS)

according the baroreflex sequence method [39]. The technique

relies on the search for sequences characterized by the contem-

poraneous increase (positive sequence) or decrease (negative

sequence) of HP and SAP. Both positive and negative sequences

are referred to as baroreflex sequences. They are identified

according to the following prerequisites: 1) the length of the

sequences was four beats (three increases or decreases); 2) the lag

between HP and SAP values was set to 0; 3) the total HP variation

was larger than 5 ms; 4) the total SAP variation was larger than

1 mmHg; v) the correlation coefficient in the plane [SAP(n),HP(n)]

was larger than 0.85. When a baroreflex sequence matched with

the above mentioned prerequisites the slope of the regression line

in the plane [SAP(n),HP(n)] was calculated and averaged over all

baroreflex sequences. This average was indicated hereafter as BRS

and expressed as ms.mmHg21. The total number of baroreflex

sequences was also retained and divided by the number of

meaningful SAP ramps where a SAP ramp was identified as a

sequence of three consecutive SAP increases or decreases leading

to a total SAP variation larger than 1 mmHg and a correlation

coefficient in the plane [n,SAP(n)] larger than 0.85. This index was

referred to as cardiac baroreflex effectiveness index (BEI) [40] and

expressed as dimensionless units. This index can be considered an

index of causality from SAP to HP because it gives the proportion

of SAP ramps capable of evoking a meaningful cardiac baroreflex

response.

Complexity and Causality Indexes Calculation
NCI was calculated from HP, SAP and RESP series (i.e. NCIHP,

NCISAP and NCIRESP) according to MB, LP and CE approaches.

CR was computed from any pair of series (i.e. from SAP and

RESP to HP, CRSAPRHP and CRRESPRHP, from HP and RESP to

SAP, CRHPRSAP and CRRESPRSAP, from HP and SAP to RESP,

CRHPRRESP and CRSAPRRESP) according to MB, LP and CE

approaches. In the MB approach the optimal model order was

chosen as the one minimizing the Akaike figure of merit in the

range from 1 to 8. In the case of LP and CE techniques the set of

initial candidates was formed by 8 components for each series. The

delays tSAP
HP and tRESP

HP were set to 0 to allow the description of

the fast vagal reflex (within the same cardiac beat) capable to

modify HP in response to changes of SAP and RESP [41,42]. The

delay tRESP
SAP was set to 0 to account for the potential rapid effect

of RESP on SAP due to the immediate transfer of an alteration of

intrathoracic pressure on SAP value [1]. The delay tHP
SAP was set

to 1 due to the measurement conventions preventing that the

modification of HP(n) can affect SAP(n) [18]. According to [43]

actions of HP and SAP on RESP were slower (i.e. they cannot

occur in the same beat), thus leading to tHP
RESP = 1 and

tSAP
RESP = 1. The number of nearest neighbors, k, was set to 30

for both LP and CE approaches [31,34].

Statistical Analysis
Two way repeated measures analysis of variance (one factor

repetition, Holm-Sidak test for multiple comparisons) was utilized

to test the significance of the differences between the optimal

model order assessed according to the MB approach and the

number of components utilized to build the optimal multivariate

embedding space according to LP and CE methods within the

experimental condition (i.e. REST or STAND) while varying the

method (i.e. MB, LP and CE) and within the method while varying

the experimental condition. The null hypothesis of Normal

distribution of all series and of all parameters extracted from

them was tested according to Kolmogorov-Smirnov test. Linear

regression analysis of mHP, s
2
HP, mSAP, s2

SAP, BRS and BEI on

age was carried out. If Normality test over mHP, s
2
HP, mSAP, s2

SAP,

BRS and BEI passed Pearson product moment correlation

coefficient was calculated. Otherwise, Spearman rank order

correlation coefficient was computed. The same procedure was

carried out to check the dependence of NCI and CR on age.

Statistical analysis was carried out using a commercial statistical

program (Sigmastat, SPSS, ver.3.0.1). A p,0.05 was always

considered as significant.

Methodological Results

Comparison of the MB, LP and CE Approaches
Figure 1 shows the grouped bar-graphs of the optimal model

order, po, according to the minimum of the Akaike figure of merit

derived from the MB approach (white bar) and the number of

components utilized to build the optimal embedding space, qo,

according to the smallest unpredictability obtained from the LP

technique (gray bar), and to minimal amount of information

derived from the CE method (black bar). Values of po and qo are

plotted as mean plus standard deviation over the entire cohort of

subjects regardless of age and as a function of the experimental

condition (i.e. REST and STAND). po and qo were assessed while
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varying the designated effect series, i.e. HP, SAP and RESP in

Figs. 1a,b,c respectively. Independently of the assigned effect series

methods provided significantly different values of po and qo within

the same experimental condition (i.e. REST or STAND). These

differences indicated that the optimal description of the interac-

tions among variability series was achieved using the largest and

the smallest number of components by the MB and CE

approaches respectively, while the LP technique was in between

them. It is worth noting that no difference between experimental

conditions within the same method was observable except in the

case of qHP
CEo (Fig. 1a): qHP

CEo during STAND was significantly

smaller than qHP
CEo at REST.

Experimental Results

Linear Regression Analysis of Traditional Parameters on
Age
Correlation analysis was carried out to assess the association of

traditional parameters derived from HP and SAP variability on

age at REST. While mHP and BEI was unrelated to age, s2
HP,

mSAP, s2
SAP and BRS were found significantly correlated with age.

The correlation coefficient was negative in the case of s2
HP and

BRS, thus indicating that s2
HP and BRS progressively decreased

with age, and it was positive in the case of mSAP and s2
SAP, thus

evidencing that mSAP and s2
SAP increased with age. Remarkably,

the probability of the type I error assessed over s2
HP, s

2
SAP and

BRS were at least three orders of magnitude smaller than that

relevant to mSAP.
Correlation analysis was carried out to assess the association of

traditional parameters obtained from HP and SAP variability on

age during STAND as well. At difference with REST mHP and BEI

was significantly linearly correlated with age, while no linear

relation was detected between s2
SAP and age. The sign of the

correlation coefficient of mHP and BEI suggests that the orthostatic

challenge induced a tachycardic response and an association from

SAP to HP becoming less and less important with age. Similarly to

REST the progressive decrease of s2
HP and BRS and the gradual

increase of mSAP was significant.

Linear Regression Analysis of Complexity Indexes on Age
Table 1 reports the results of the linear regression analysis of

complexity parameters on age at REST. Independently of the

approach (i.e. MB, LP or CE) NCIHP was significantly linearly

correlated with age. The correlation coefficients of NCIHP
MB,

NCIHP
LP and NCIHP

CE were negative, thus suggesting a

progressive loss of complexity of HP dynamics with age. The

analysis of SAP complexity points out differences among the

methods. Indeed, while NCISAP derived from MF techniques,

NCISAP
LP and NCISAP

CE, were significantly associated with age,

NCISAP
MB was unrelated to it. The correlation coefficients of

NCISAP
LP and NCISAP

CE were negative, thus indicating a

progressive loss of complexity of the SAP series with age.

Regardless of the method complexity of RESP dynamics was

unaffected by aging.

Table 2 reports the results of the linear regression analysis of

complexity indexes on age during STAND. In this condition solely

the complexity of HP series was influenced by senescence. Indeed,

NCISAP and NCIRESP were unrelated to age. NCIHP was found

significantly related to age when computed according to MB and

LP approaches, while NCIHP
CE was independent of it. The

correlation coefficients of NCIHP
MB and NCIHP

LP on age were

positive, thus suggesting that HP variability during STAND

became more and more unpredictable with age.

Linear Regression Analysis of Causality Indexes on Age
Table 3 reports the results of the linear regression analysis of

causality parameters on age at REST. Regardless of the method

(i.e. MB, LP and CE) CRSAPRHP, CRRESPRSAP, CRHPRRESP and

CRSAPRRESP showed the same association with age: while

CRSAPRHP, CRHPRRESP and CRSAPRRESP were unaffected by

age, CRRESPRSAP was linearly associated to it. The correlation

coefficient of CRRESPRSAP was positive, thus suggesting that aging

reduced the strength of the causal link from RESP to SAP. The

methods were not in full agreement in the case of CRHPRSAP and

CRRESPRHP. Indeed, the MB approach was the unique technique

detecting a significant linear relation of CRHPRSAP on age. The

correlation coefficient of CRHPRSAP
MB was positive, thus indicat-

Figure 1. Comparison of the MB, LP and CE approaches.
Grouped bar-graphs show the mean (plus standard deviation) of the
optimal model order, po, leading to the minimum of the Akaike figure
of merit according to the MB approach (white bar) and of the number
of components, qo, utilized to build the optimal multivariate
embedding space leading to smallest unpredictability according to
the LP method (gray bar) and to the minimal amount of information
according to the CE technique (black bar). po and qo are shown as a
function of the experimental condition (i.e. REST and STAND) and values
are pooled together regardless of age. The designated effect series are
HP, SAP and RESP in (a), (b) and (c) respectively. The symbols # indicates
a significant difference with p,0.05 within the same experimental
condition (i.e. REST or STAND) while varying the method. The symbols *

indicates a significant difference with p,0.05 within the method while
varying the experimental condition.
doi:10.1371/journal.pone.0089463.g001
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ing that the strength of the causal link from HP to SAP diminished

with age. In the case of CRRESPRHP, both LP and CE approaches

found a significant linear association with age, while the MB one

was unable to detect it. The correlation coefficients of

CRRESPRHP
LP and CRRESPRHP

CE were positive, thus suggesting

that the influence of RESP on HP became more and more

ineffective with age.

Table 4 reports the results of the linear regression analysis of

causality indexes on age during STAND. The association of

CRRESPRHP, CRHPRRESP and CRSAPRRESP with age did not

depend on the method (i.e. MB, LB and CE). Indeed, all the three

approaches found that CRRESPRHP, CRHPRRESP and CRSAPR

RESP were unrelated to age. Conversely, the association of

CRSAPRHP, CRHPRSAP and CRRESPRSAP with age depended

on the method. Only the LP approach was able to detect the

significant linear relation of CRSAPRHP with age. The correlation

coefficient of CRSAPRHP
LP was positive, thus indicating that the

strength of the causal link from SAP to HP became weaker and

weaker with age. The significant linear association of CRHPRSAP

with age was detected only by the MB technique. The correlation

coefficient of CRHPRSAP
MB was positive, thus indicating that a

progressive decrease of the intensity of the causal relation from HP

to SAP with age. In the case of CRRESPRSAP, only the CE method

was unable to detect a significant linear relation of the strength of

the causal link from RESP to SAP with age. Indeed, the

correlation coefficients of CRRESPRSAP
MB and CRRESPRSAP

LP

were significant and positive, thus suggesting that the senescence

reduced the association between RESP and SAP variability in the

temporal direction from RESP to SAP.

Discussion on the Methodological Findings

The methodological findings of this study can be summarized as

follows: i) the study proposes a compact framework for the

assessment of complexity of cardiovascular variability and

causality of their interactions in a multivariate embedding space;

ii) the common feature of all techniques designed within the

proposed framework is the optimization of the embedding

dimension; iii) this framework facilitates the comparison between

Table 1. Linear regression analysis of the complexity
parameters on age at REST.

r significance

NCIHP
MB 20.350 Yes

NCIHP
LP 20.348 Yes

NCIHP
CE 20.317 Yes

NCISAP
MB 20.0989 No

NCISAP
LP 20.264 Yes

NCISAP
CE 20.243 Yes

NCIRESP
MB 0.0022 No

NCIRESP
LP 0.0572 No

NCIRESP
CE 0.129 No

NCIHP
MB, NCIHP

LP, NCIHP
CE = normalized complexity index of HP series derived

from MB, LP and CE approaches respectively; NCISAP
MB, NCISAP

LP,
NCISAP

CE = normalized complexity index of SAP series derived from MB, LP and
CE approaches respectively; NCIRESP

MB, NCIRESP
LP, NCIRESP

CE = normalized
complexity index of RESP series derived from MB, LP and CE approaches
respectively; r = Pearson product-moment or Spearman rank order correlation
coefficient; Yes/No= the variable is/is not significantly related to age with p,
0.05.
doi:10.1371/journal.pone.0089463.t001

Table 2. Linear regression analysis of the complexity
parameters on age during STAND.

r significance

NCIHP
MB 0.214 Yes

NCIHP
LP 0.208 Yes

NCIHP
CE 0.179 No

NCISAP
MB 0.086 No

NCISAP
LP 20.0538 No

NCISAP
CE 20.0361 No

NCIRESP
MB 20.0424 No

NCIRESP
LP 20.0570 No

NCIRESP
CE 20.0564 No

NCIHP
MB, NCIHP

LP, NCIHP
CE = normalized complexity index of HP series derived

from MB, LP and CE approaches respectively; NCISAP
MB, NCISAP

LP,
NCISAP

CE = normalized complexity index of SAP series derived from MB, LP and
CE approaches respectively; NCIRESP

MB, NCIRESP
LP, NCIRESP

CE = normalized
complexity index of RESP series derived from MB, LP and CE approaches
respectively; r = Pearson product-moment or Spearman rank order correlation
coefficient; Yes/No= the variable is/is not significantly related to age with p,
0.05.
doi:10.1371/journal.pone.0089463.t002

Table 3. Linear regression analysis of the causality
parameters on age at REST.

r significance

CRSAPRHP
MB 0.0864 No

CRSAPRHP
LP 20.0676 No

CRSAPRHP
CE 20.0514 No

CRHPRSAP
MB 0.287 Yes

CRHPRSAP
LP 0.0233 No

CRHPRSAP
CE 0.104 No

CRRESPRHP
MB 20.0493 No

CRRESPRHP
LP 0.201 Yes

CRRESPRHP
CE 0.361 Yes

CRRESPRSAP
MB 0.249 Yes

CRRESPRSAP
LP 0.229 Yes

CRRESPRSAP
CE 0.259 Yes

CRHPRRESP
MB 0.119 No

CRHPRRESP
LP 0.173 No

CRHPRRESP
CE 20.0399 No

CRSAPRRESP
MB 20.128 No

CRSAPRRESP
LP 20.180 No

CRSAPRRESP
CE 0.0978 No

CRSAPRHP
MB, CRSAPRHP

LP, CRSAPRHP
CE = causality ratio from SAP to HP series

derived from MB, LP and CE approaches; CRHPRSAP
MB, CRHPRSAP

LP,
CRHPRSAP

CE = causality ratio from HP to SAP series derived from MB, LP and CE
approaches; CRRESPRHP

MB, CRRESPRHP
LP CRRESPRHP

CE = causality ratio from RESP
to HP series derived from MB, LP and CE approaches; CRRESPRSAP

MB,
CRRESPRSAP

LP CRRESPRSAP
CE = causality ratio from RESP to SAP series derived

from MB, LP and CE approaches; CRHPRRESP
MB, CRHPRRESP

LP,
CRHPRRESP

CE = causality ratio from HP to RESP series derived from MB, LP and CE
approaches; CRSAPRRESP

MB, CRSAPRRESP
LP CRSAPRRESP

CE = causality ratio from SAP
to RESP series derived from MB, LP and CE approaches; r = Pearson product-
moment or Spearman rank order correlation coefficient; Yes/No = the variable
is/is not significantly related to age with p,0.05.
doi:10.1371/journal.pone.0089463.t003
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linear MB and nonlinear MF classes and, inside the MF class,

between LF and CE techniques; iv) the simultaneous assessment of

complexity and causality favors the interpretation of changes of

complexity in terms of modifications of the strength of physiolog-

ical relations.

A Multivariate Compact Framework for the Assessment
of Complexity and Causality in Cardiovascular Variability
Series
We applied a multivariate compact framework for the

assessment of dynamical complexity and causality over an

arbitrary set of signals, V. In the case of MB and LP approaches

the complexity of an assigned effect series was evaluated as its

degree of unpredictability in V (i.e. the portion of normalized

variance of the assigned effect series that cannot be explained

based on all signals present in V). In the case of the CE method the

complexity of the selected effect series was assessed as the amount

of information carried by the designated effect series that cannot

be derived from the signals present in V. In the case of MB and LP

approaches the strength of the causal relation from a cause series

to an effect one in V was computed, according to the notion of

Granger causality [12], as the fractional decrement of unpredict-

ability of the assigned effect series resulting from the inclusion of

the cause series into the incomplete V disregarding the supposed

cause. In the case of CE method causality was assessed, according

to the notion of information transfer [35], as the fractional

decrement of the information carried by the selected effect series

resulting from the inclusion of the cause series into the incomplete

set of conditioning signals formed by V devoid of the presumed

cause.

One of the main features of the framework is the assessment of

complexity of a designated effect series into a multivariate

embedding space built in V. This characteristic distinguishes the

proposed approach from univariate methods exploiting embed-

ding spaces built over a unique series [29,30,44–47]. In our

application the multivariate embedding space might provide a

more efficient description of the overall complexity of the

cardiovascular control than the univariate embedding space

usually constructed using solely the HP components because it

allows a more complete representation of the dynamical behavior

of the subsystems contributing to the overall functioning of the

cardiovascular system. Indeed, the joint exploitation of variables

directly linked to cardiac, vascular and respiratory subsystems (i.e.

HP, SAP and RESP) might reveal portions of the cardiovascular

system that otherwise might remain unveiled or undervalued using

the time course of a single variable. Since the multivariate

embedding space is the starting point for causality analysis [12,48],

the proposed framework allows the joint evaluation of complexity

and causality indexes. At difference with most of the applications

of causality approaches, the proposed framework is grounded on

the optimization of the multivariate embedding dimension, thus

avoiding the common practice of its arbitrary assignment

[13,49,50] or its opportunistic setting to a value allowing the best

separation among populations and/or experimental conditions

[16]. In our study the multivariate embedding dimension was

optimized by MB, LP and CE approaches according to,

respectively, the classical Akaike information criterion, the

maximization of the predictability of the assigned effect series,

and the minimization of the information carried by the assigned

effect series. The optimization of the multivariate embedding

dimension allows the reduction of the number of parameters

needed to be set, thus favoring the automatic computation of

complexity and causality markers.

Another element of novelty of the proposed framework is the

possibility of performing the direct comparison between MB and

MF classes of methods. The MB methods interpret the dynamical

interactions according to a model, while the MF ones are

completely data-driven and do not impose any particular

predefined structure to the dynamics. While several studies

advocated the use of MF approaches for the computation of

causality due to their straight adherence to the data and their

ability to account for nonlinearities of any type [16,48], the

presumed superiority of MF tools was never checked over real,

short and noisy data via a direct comparison to MB methods.

Understanding the additional information that might be derived

from MF methods compared to MB ones is a relevant issue

because MB approaches, especially if based on multivariate linear

regression models, are well-established, robust and computation-

ally efficient [25]. The proposed framework compares MF

approaches with a traditional MB method based on multivariate

linear regression model [25]. In this MB approach the multivariate

embedding space was built sequentially by adding M delayed

components at a time, one for any of the signals present in V. This

strategy, quite common in applications of multivariate linear

regression models [13,51–55], might lead to an overparametriza-

tion of the model and to possible suboptimality of the description

of the interactions among signals because the number of

components exploited in any regression is constrained to be the

Table 4. Linear regression analysis of the causality
parameters on age during STAND.

r significance

CRSAPRHP
MB 0.180 No

CRSAPRHP
LP 0.316 Yes

CRSAPRHP
CE 20.0107 No

CRHPRSAP
MB 0.255 Yes

CRHPRSAP
LP 20.0742 No

CRHPRSAP
CE 0.0387 No

CRRESPRHP
MB 20.00073 No

CRRESPRHP
LP 20.154 No

CRRESPRHP
CE 20.152 No

CRRESPRSAP
MB 0.243 Yes

CRRESPRSAP
LP 0.219 Yes

CRRESPRSAP
CE 0.0755 No

CRHPRRESP
MB 0.0103 No

CRHPRRESP
LP 20.0107 No

CRHPRRESP
CE 20.123 No

CRSAPRRESP
MB 0.185 No

CRSAPRRESP
LP 20.064 No

CRSAPRRESP
CE 0.0239 No

CRSAPRHP
MB, CRSAPRHP

LP, CRSAPRHP
CE = causality ratio from SAP to HP series

derived from MB, LP and CE approaches; CRHPRSAP
MB, CRHPRSAP

LP,
CRHPRSAP

CE = causality ratio from HP to SAP series derived from MB, LP and CE
approaches; CRRESPRHP

MB, CRRESPRHP
LP CRRESPRHP

CE = causality ratio from RESP
to HP series derived from MB, LP and CE approaches; CRRESPRSAP

MB,
CRRESPRSAP

LP CRRESPRSAP
CE = causality ratio from RESP to SAP series derived

from MB, LP and CE approaches; CRHPRRESP
MB, CRHPRRESP

LP,
CRHPRRESP

CE = causality ratio from HP to RESP series derived from MB, LP and CE
approaches; CRSAPRRESP

MB, CRSAPRRESP
LP CRSAPRRESP

CE = causality ratio from SAP
to RESP series derived from MB, LP and CE approaches; r = Pearson product-
moment or Spearman rank order correlation coefficient; Yes/No= the variable
is/is not significantly related to age with p,0.05.
doi:10.1371/journal.pone.0089463.t004
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same. Conversely, the strategy followed by both the proposed MF

approaches (i.e. LP and CE) leads to a reconstruction of the

multivariate embedding space using fewer components. Defined as

parsimoniousness of a model its ability to describe interactions

among signals using a small number of components, it can be

stated that the proposed MF approaches are more parsimonious

than the MB one. Indeed, at every increment of the embedding

dimension we tested all the candidate components and we selected

the one providing the maximal correlation between the original

effect series and its prediction in the case of the LP approach, and

the maximal reduction of uncertainty about the future evolution of

the effect series in the case of the CE method. Parsimoniousness is

a quality because limits overfitting even though, when it is

excessive, it might become a disadvantage because it leads to

underfitting. The optimization of the embedding dimension allows

the best unfolding of the system dynamics as well as it solves the

issue of setting the delay of the interactions from any cause signal

to the effect one and the lag between components belonging to the

same signal. The setting of these parameters is a non trivial issue.

Indeed, the interaction delay is usually set according to

physiological considerations about the latency of reflexes [56],

while the delay among components of the same signal is set such a

way to minimize correlation among samples [57]. However,

although the values of these parameters can be found in literature

or can be easily estimated by computing the decorrelation time,

their reliability is questionable. Indeed, while the latency of the

interactions is usually estimated by opening closed loop circuits

using surgical procedures and pharmacological challenges, thus

being inadequate when closed loop reflexes are active, decorrela-

tion time is an average parameter that cannot be optimal for any

time scale, thus being inappropriate in presence of multiple

temporal scales.

In addition, the proposed framework allows the comparison

between two different techniques for the evaluation of complexity

and causality inside the same class of MF approaches (i.e. LP and

CE). The differences between LP and CE methods depend on the

exploitation of two different functionals. While the LP approach

exploited the correlation between observed and predicted data, the

CE method quantified directly the uncertainty in the information

domain. The comparison was carried out without altering the

logic of coarse graining of the system evolution in the multivariate

embedding space. Indeed, both LP and CE methods exploited the

k-nearest-neighbor technique [27,34]. The k vectors closest to the

current one, regardless of their actual distance from it, formed the

library of patterns utilized to build the conditional distribution of

the future values (i.e. the distribution of the images of the k-

nearest-neighbor vectors). The conditional distributions are

utilized to set the predictor and assess the uncertainty as the

variance of the prediction error in the case of the LP approach or

as the average value of the Shannon entropy of the conditional

distributions in the case of the CE method. Therefore, this

framework provides a unique opportunity to compare different

MF approaches under similar settings.

The framework proposes the contemporaneous evaluation of

complexity and causality indexes. This simultaneous evaluation is

important because the assessment of causality might be helpful to

interpret variations of complexity with age in terms of physiolog-

ical mechanisms. For example, since at REST the decrease of the

strength of the causal link from RESP to HP combined with the

invariable intensity of the causal relation from SAP to HP is

incompatible with the decreased complexity of HP variability with

age, we suggest that mechanisms other than cardiorespiratory

coupling and cardiac baroreflex are responsible for the loss of

complexity of the HP variability during senescence. During

STAND the increase of the complexity of the HP variability with

age was associated to a progressive decrease of the strength of the

causal link from SAP to HP in presence of an invariable intensity

of the causal relation from RESP to HP. Therefore, during

STAND the observed increase of the complexity of the HP

variability with age can be attributed to the progressive reduction

of the effectiveness of the cardiac baroreflex. This finding suggests

that cardiac baroreflex plays an important role in keeping low the

complexity of HP variability and its impairment leads to an

increase of the complexity of the cardiac control.

Comparison Between MB and MF Approaches
Our findings pointed out differences between MB and MF

approaches. These differences might be explained either in terms

of the ability of the MF approach to account for potential

nonlinearities present at the level of the dynamics of the series

and/or at the level of the relations among different series, or in

terms of different capabilities of the approaches in limiting the

curse of dimensionality (i.e. the gradual decrease of the reliability

of complexity and causality indexes with the embedding dimension

[58] unavoidable in presence of a limited amount of data).

At REST, at variance of the MB technique, the MF approaches

were able to detect the decrease of complexity of the SAP

variability with age. The decline of the SAP complexity with age

might be associated to the well-known gradual increase of

sympathetic activity during senescence [59,60] leading to the

gradual increase of synchronization of sparse vasomotor activities

at peripheral vascular levels [61]. Given the inherent nonlinear

nature of synchronization it is not surprising to find out that the

age-related modifications of SAP dynamics cannot be detected by

a linear approach such as the MB one.

Moreover, at REST, again at variance with the MB approach,

the MF techniques were able to detect the dependence of the

intensity of the causal relation from RESP to HP on age. The

presence of a causal relation from RESP to HP is the result of a

nonlinear coupling between respiratory activity and vagal outflow

determining the respiratory-related HP variations [22,23,62].

Since nonlinear mechanisms provides the basis of the coupling

between respiratory activity and vagal outflow [22]. it is not

surprising to find out that a linear MB approach cannot detect the

gradual reduction of the strength of the causal link from RESP to

HP with age.

The MB approach was also unable to identify the progressive

decrease of the strength of the causal link from SAP to HP during

STAND detected by the LP approach. The causal relation from

SAP to HP during STAND is due to the activation of cardiac

baroreflex in response of the orthostatic challenge [63]. Since it

was observed that the likelihood of finding nonlinear interactions

between SAP and HP variabilities increased in old subjects [64],

again it is not surprising that a nonlinear MF approach such as the

LP one is more powerful than a linear MB method in detecting the

decreased efficiency of the cardiac baroreflex with age.

Regardless of the experimental condition MF approaches were

unable to identify the progressive decrease of the intensity of the

causal relation from HP to SAP. The causal link from HP to SAP

is the consequence of two opposite tendencies [18]: 1) a negative

relation of SAP on HP due to the diastolic runoff leading to a

decrease of diastolic arterial pressure while lengthening HP and,

thus, to a reduced SAP at the next cardiac beat in presence of an

unaltered pulse pressure; 2) a positive relation of SAP on HP due

to the Frank-Starling mechanism leading to an increase of SAP at

the next cardiac beat due to the larger ventricular filling induced

by the HP lengthening. The ability of the MB approach in

detecting the effect of age on the causal link from HP to SAP can
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be explained by hypothesizing that this relation needs high

dimensional embedding spaces to be perfectly unfolded. Unfortu-

nately, MF approaches exploited in this study might be inefficient

in presence of high dimensional dynamics, thus giving the reason

for their incapacity in detecting the relation revealed by the MB

approach. Indeed, MF approaches escape to the curse of

dimensionality by drastically limiting the embedding dimension

at the cost of reducing their efficiency in presence of high

dimensional dynamics and imposing the enlargement of the data

set to reliably explore higher dimensional spaces. Conversely, as a

consequence of the less parsimonious strategy to construct the

multivariate embedding space, the MB approach can be more

efficient in presence of high dimensional dynamics.

Comparison between LP and CE Approaches
Both MF approaches are parsimonious compared to the MB

one, but the CE technique makes use of a smaller number of

components than the LP one. Parsimoniousness is certainly helpful

to limit the rate of false detection of causality when causality is not

present (i.e. false positives), but it might increase the rate of false

negatives (i.e. the probability of missing causality when a causal

link does exist). This observation can explain the more frequent

detection of age-related changes of complexity and causality

indexes observed when the LP approach was applied compared to

the CE one. It is worth noting that when both MF techniques

detected a significant association of the parameters with age the

sign of the relation is the same. The greater parsimoniousness of

the CE approach might explain its inability to detect the

progressive increase of complexity of the HP dynamics with age

observed during STAND and to find out the progressive decrease

of the strength of the causal link from SAP to HP and RESP to

SAP with age during STAND. Both relations were identified by

the LP method. However, since LP and CE techniques exploit

different functionals it might happen that the differences between

the two MF approaches might be related to the quantification of

different aspects of dynamics as well.

Discussion on the Experimental Findings

The experimental results about the age dependency of the

complexity of the cardiovascular control can be summarized as

follows: a) while HP complexity progressively decreases with age at

REST, it gradually increases with age during STAND, thus

suggesting an age-related impairment of the cardiac control and of

the response of the cardiac regulation to stressors; b) SAP

complexity gradually decreases with age at REST, thus indicating

the progressive increase of sympathetic activity and/or modulation

with age; c) no association between SAP complexity and age is

observed during STAND, thus being indicative of a reduced

responsiveness of the vasomotor control to stressors; d) RESP

complexity is unrelated to age, thus demonstrating that respiratory

control is preserved in elderly people.

The experimental results about the age dependency of the

strength of the causal relations among cardiovascular variabilities

can be summarized as follows: 1) while at REST aging preserves

the strength of the causal link from SAP to HP along the cardiac

baroreflex, during STAND a negative relation with age was found,

thus indicating that in elderly individuals the cardiac baroreflex

remains a fundamental reflex for homeostasis at REST but its

efficiency in response to stressors is progressively lost with age; 2) at

REST and during STAND the strength of the causal link from HP

to SAP decreases with age due to the progressive exploitation of

Frank-Starling mechanism at REST and the progressive increase

of peripheral resistances during STAND; 3) regardless of the

experimental condition the intensity of the causal relation from

RESP to HP decreases with age, thus reflecting the increase of

sympathetic tone and the uncoupling between respiratory activity

and vagal outflow; 4) regardless of the experimental condition the

intensity of the causal relation from RESP to SAP decreases with

age as a probable result of the progressive increase of left

ventricular thickness and vascular stiffness and of the gradual

decrease of the respiratory-related HP variations; 5) the causal link

from SAP to RESP is not affected by aging, as a likely result of the

negligible role played by this pathway in short-term cardiovascular

control; 6) the causal relation from HP to RESP is unmodified by

aging due to the preserved nerve conduction velocity and neural

processing time with age.

Effect of Age on HP and SAP Traditional Parameters
We confirm that at REST the mean HP is unrelated to age [65],

mean SAP progressively increases with age [65], and HP variance

gradually decreases [4,8,66]. The tendency of SAP variance to

increase with age at REST observed in [67] was found to be

significant in this study. Several mechanisms have been advocated

to explain these relations with age: i) the depressed pacemaker

activity of sinoatrial node myocytes [68]; ii) the gradual

augmentation of tonic sympathetic activity as measured from

post-ganglionic sympathetic nerves directed to skeletal muscles

[59,60]; iii) the progressive increase of norepinephrine concentra-

tions [36,60,69]; iv) the continuing decline of vagal modulation as

assessed from the amplitude of respiratory sinus arrhythmia in the

time or frequency domain [8,36,65,70]; v) the gradual alteration of

the adrenoceptor function [71]; vi) the progressive diminution of

the responsiveness of the sinus node to sympathetic outflow

[36,65,72]; vii) the steady decrease of BRS [36,60,65,73]. The

association between the BRS decline and the increase of the SAP

variance with age observed at REST stresses the buffering role of

baroreflex.

During STAND we confirm the positive dependence of HP

mean and the negative relation of HP variance on age [36,66], the

positive correlation of SAP mean with age [73] and the lack of a

linear relation between SAP variance and age [36,73]. During

STAND, at difference of REST, the BRS decline with age was not

associated to a progressive increase of the SAP variance. This

finding might be the consequence of the simultaneous decrease of

the intensity of the causal relation from HP to SAP with age, thus

leading to a situation of progressive HP-SAP uncoupling with age.

These results have been explained by the reduced effect of the

postural maneuver on the cardiovascular variables due to the

diminished responsiveness of the sinus node to neural inputs in

response to stressors [36,65,72,74], to the reduced responsiveness

of the vasculature to vasodilatator agents [75] and in reaction to

stimuli [36,65,73], to the increase of peripheral resistances [65],

and to the decreased cardiac baroreflex efficiency in response to

the postural challenge [65].

Effect of Age on Complexity Indexes
This study confirms the gradual decrease of the complexity of

the HP dynamics with age detected at REST using a univariate

approach [4,6–9]. Since this finding was obtained by constructing

a multivariate embedding space, we conclude that accounting for

series more closely related to vascular and respiratory systems (i.e.

SAP and RESP) was inessential for the quantification of

complexity of the HP variability [11]. This finding appears to be

robust because it was detected by all the proposed approaches. As

a new finding STAND was associated with a progressive increase

of the HP complexity with age. Since the HP complexity during

STAND decreased [33,76] as a result of the sympathetic activation
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and vagal withdrawal [73,77–79], this finding indicates a reduced

ability of the cardiovascular system to cope with the postural

challenge with age. This finding confirms, at the level of the

complexity of the cardiovascular control, the difficulty of old

individuals to deal with sympathetic stressors such as exercise and/

or orthostatic challenge [65,80]. Therefore, we suggest the use of

complexity analysis of HP series during orthostatic challenge to

quantify the reduced ability of the cardiovascular control of elderly

subjects to cope with stressors.

At REST the complexity of the SAP series was found to

decrease with age. We speculate that the progressive increase of

the sympathetic activity with age [59,60] determines a decrease of

the number of temporal scales observable in the SAP series in the

low frequency band (i.e. from 0.04 to 0.15 Hz) by synchronizing

mechanisms operating in this band (e.g. peripheral vasomotion)

[61]. Conversely, the complexity of the SAP variability was

unrelated to age during STAND. Since sympathetic activity

progressively increased with age [59,60] and STAND led to an

additional sympathetic overactivation [77,78], a progressive

reduction of the SAP complexity could be expected during

STAND. Since the expected progressive reduction was not found

in this study, the lack of association between SAP complexity and

age during STAND might be the result of the reduced

responsiveness of vasculature to vasomotor sympathetic control

with age [36,65,73].

Regardless of the experimental condition RESP complexity was

unrelated to age. Therefore, it can be concluded that senescence

does affect respiratory centers and brain stem level and, more

generally, respiratory activity. Since respiration is a strong

periodical function, even though with a certain degree of

irregularity about the dominant frequency [33], it is not surprising

to find out that this pattern is maintained during aging

independently of the experimental condition (i.e. REST or

STAND).

Effect of Age on Causality Indexes
At REST we did not find any linear relation of the strength of

the causal link from SAP to HP on age. This finding suggests that

the intensity of the causal relation from SAP to HP was preserved

in old individuals and, thus, in elderly people the relation from

SAP to HP (i.e. the cardiac baroreflex) continues to play an

important role in regulating cardiovascular variables. This result

was confirmed by BEI. This result might appear surprising at the

first sight because we found that BRS gradually fell with age

[36,60,81]. Nevertheless, it is worth noting that the decrease of the

gain of the relation from SAP to HP does not necessary imply a

diminished strength of the causal link from SAP to HP because

gain and strength measure different aspects of a relation between

variables [15]. For example, during graded head-up tilt BRS

progressively decreased [77], while the strength of the causal

relation from SAP to HP progressively increased [23,63,82]. On

the contrary, during STAND we observed a gradual reduction of

the intensity of the causal relation from SAP to HP with age, thus

suggesting a progressive reduction of the efficiency of the cardiac

baroreflex control with age that was unveiled by a maneuver

challenging cardiac baroreflex regulation (i.e. STAND). This

finding was again confirmed by BEI, thus remarking the

association between this traditional index [40] and state-of-art

causality markers.

The causal relation from HP to SAP, i.e. the so-called

mechanical feedforward pathway, forms with the cardiac barore-

flex feedback the closed loop regulating HP-SAP interactions. This

closed loop control was found active both at REST and during

STAND [15,63]. Since the mechanical feedforward pathway relies

on the opposite actions of Frank-Starling mechanism and diastolic

runoff, with a prevalence of the diastolic runoff in humans [18],

the reduction of the strength of the causal link from HP to SAP

with age could be observed in presence of the progressive

balancing of the two opposite influences during senescence. At

REST we can hypothesize that Frank-Starling mechanism gains

importance with age in regulating HP-SAP variability interactions

due to the diminished importance of the cardiac baroreflex [65],

thus reducing the dominance of the diastolic runoff. During

STAND the main mechanism underpinning the decrease of the

strength of the relation from HP to SAP with age might be the

increase of peripheral resistances progressively reducing the

importance of the diastolic runoff during senescence [65]. The

decreased strength of the causal link from HP to SAP combined

with the diminished intensity of the causal relation in the opposite

temporal direction (i.e. from SAP to HP) observed during STAND

led to a situation of progressive HP-SAP uncoupling with age. This

finding stresses further the gradual loss of the ability to deal with

orthostatic challenge with age.

Another relevant finding of this study is the progressive decrease

of the strength of the causal link from RESP to HP with age at

REST. Since the relation from RESP to HP is the result of the

continuous modifications of the membrane potentials of pregan-

glionic vagal motoneurones and their responsiveness to stimulatory

inputs imposed by respiratory activity [22,62], the gradual

decrease of the strength of the link from RESP to HP is likely to

be the consequence of the gradual increase of tonic sympathetic

activity with age [59,60,83], of the progressive vagal withdrawal

leading to the progressive reduction of the respiratory sinus

arrhythmia [8,36,65,70] and of the gradual uncoupling between

respiratory activity and the heart. This finding corroborates recent

observations based on a transfer entropy approach using a fixed

embedding dimension [49] and on a method quantifying phase

synchronization between nonlinear models of the cardiac and

respiratory oscillators [84]. This trend was not detected during

STAND, thus suggesting that the limitation of the respiratory sinus

arrhythmia induced by the sympathetic activation evoked by

STAND did mask this phenomenon.

A significant negative linear association between age and the

strength of the causal link from RESP to SAP was detected both at

REST and during STAND. In a previous study we found a

significant causal relation from RESP to SAP at REST and we

demonstrated that it was maintained during orthostatic challenge

[82]. The causal relation from RESP to SAP is the result of the

mechanical influences on venous return and on large vessels due to

respiratory-related modifications of intrathoracic pressure [85–

87]. The observed decrease of the strength of the causal link from

RESP to SAP might be a direct consequence of a less efficient

modification of the stroke volume and a reduced effect of the

intrathoracic pressure changes on large vessels resulting from the

increase of cardiac and vascular stiffness with age [83,88] due to

the progressive left ventricular wall and large elastic artery intimal

media thickening [83,88]. Since the modification of the stroke

volume at the respiratory rate depends also on the amplitude of

the respiratory sinus arrhythmia, its well-known decline with age

might contribute to the reduced respiratory-related variation of the

diastolic filling and, thus, to the decline of the respiratory-related

SAP changes with age.

None of the approaches was able to detect a linear association

between age and the strength of the causal relation from HP or

SAP to RESP both at REST and during STAND. Since previous

studies suggested that a causal link from SAP to RESP was

extremely unlikely in short-term cardiovascular regulation at

REST and during postural change [15,82], the uncorrelation
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between age and the strength of the causal relation from SAP to

RESP was expected. Conversely, previous studies detected a

significant causal link from HP to RESP as a result of the quickness

of the neural cardiac influences at the respiratory rate compared to

the slowness of the respiratory-related changes assessed according

to respiratory inductive plethysmography exploiting thoracic belts

[82,89]. Since fast respiratory-related HP variations decreased

with age, the lack of association between age and the strength of

the causal link from HP to RESP might be an unexpected result.

This surprising finding might be the consequence of the

preservation of the nerve conduction velocity and neural

processing time with age regardless of the experimental conditions.

Limitations of the Study and Future Developments
The strength of causal relations was estimated according to the

concept of Granger causality [12]. The Granger approach to the

inference of causality has been chosen among others [90] due to its

direct connection with the quantification of complexity based on

predictability and information content. We advocate the practical

exploitation of alternative definition of causality, including those

implying an intervention (i.e. the physical manipulation of the

cause to stimulate an effect) to elucidate on real data the

dependence of the conclusions on the adopted paradigm and the

difference between the assessment of causality based on sponta-

neous variability and physical interventions. Among possible

extensions we encourage the use of techniques based on

permutations of ordinal patterns [91], thus performing the analysis

directly in the framework of symbolic dynamics. Since the null

hypothesis of Normality of HP, SAP and RESP series was rejected

in 41%, 54% and 88% at REST and in 46%, 34% and 82%

during STAND a portion of the MB complexity might be the

result of the relevant percentage of non-Normal series. The

significant percentage of non-Normal distribution might have

some impact on the MB causality indexes as well. Future efforts

should be devoted to complete the automation of the MF analysis

by proposing an automatic procedure for setting the few

parameters, notably k, that still remain under control of the user.

From a more physiological standpoint the description of the

relation governing variability interactions should be rendered

more complete by accounting for new, contemporaneously

recorded, physiological quantities such as diastolic arterial

pressure, left ventricular contractility, stroke volume and venous

return. Moreover, instead of comparing young sedentary volun-

teers to elderly sedentary humans, future protocols should contrast

the same control group with elderly athletes with preserved peak
_VVO2 to clarify the role played by fitness deconditioning and

separate it from that of senescence. Further applications should be

devoted to make clear the role of diet in preserving complexity of

cardiac regulation and the intensity of the causal relations among

cardiovascular variabilities by comparing groups of people

following different eating habits.

Conclusions

This study proposed a compact framework for the assessment of

complexity of cardiovascular variability series and causality of their

interactions. The approach provided quantitative indexes that

have been demonstrated helpful in elucidating the effect of age on

cardiovascular control in humans. For example, results suggest

that mechanisms other than cardiorespiratory coupling and

baroreflex are responsible for the decrease of complexity of

cardiac regulation with age at REST, while the impairment of the

baroreflex is responsible for the increase of the complexity of the

cardiac control with age during STAND. The proposed markers

might be exploited in future clinical applications addressing the

issue of monitoring the aging process and assessing the perfor-

mance of countermeasures to the senescence of the cardiovascular

control. The framework is particularly powerful because it allows

the direct comparison between linear MB and nonlinear MF

approaches and the minimization of the number of parameters

needed to be set to perform complexity and causality analyses.

Therefore, from a methodological standpoint, it is helpful to

understand whether the exploitation of MF methods provides

additional insights compared to a traditional simpler linear MB

approach, and, from a more applicative standpoint, it favors user-

independent applications and improves reproducibility of the

results. The framework clearly demonstrates the importance of the

MF methods especially in presence of nonlinear dynamics and

nonlinearities in the interactions among series, the better reliability

of the MB approach when the complexity of the interactions needs

high dimensional embedding spaces to be fully unfolded, the

greater statistical power of the LP approach compared to the CE

one in detecting the age-related modifications of cardiovascular

control, and the importance of computing causality indexes

together with the more traditional complexity markers in the

context of the evaluation of the senescence of cardiovascular

regulatory mechanisms.
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