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Abstract The field of non-coding RNA (ncRNA) has ex-
panded over the last decade following the discoveries of
several new classes of regulatory ncRNA. A growing amount
of evidence now indicates that ncRNAs are involved even in
the most fundamental of cellular processes. The heat shock
response is no exception as ncRNAs are being identified as
integral components of this process. Although this area of
research is only in its infancy, this article focuses on several
classes of regulatory ncRNA (i.e., miRNA, lncRNA, and
circRNA), while summarizing their activities in mammalian
heat shock. We also present an updated model integrating the
traditional heat shock responsewith the activities of regulatory
ncRNA. Our model expands on the mechanisms for efficient
execution of the stress response, while offering a more com-
prehensive summary of the major regulators and responders in
heat shock signaling. It is our hope that much of what is
discussed herein may help researchers in integrating the fields
of heat shock and ncRNA in mammals.
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Introduction

Cells undergo stress in response to a variety of conditions
including transient exposure to hot or cold temperatures,
heavy metals, exogenous chemicals, oxidative stress,
ischemia/reperfusion (I/R), salt, pH shifts, etc. Activation of
the stress response results in a reprioritization of cell physiol-
ogy to support survival. This process is generally associated
with repression in basal transcription and translation; howev-
er, heat shock proteins (HSP) and other chaperones are the
exception as they become actively transcribed and translated
in response to cellular stresses (Calderwood 2005). A number
of mechanisms exist for rapid execution of the stress response.
In eukaryotes, heat-mediated activation of HSP gene expres-
sion is facilitated by the transcription factor HSF1 (heat shock
factor 1). In unstressed cells, HSF1 is present in the cytoplasm
as an inactive monomer bound to several chaperones (e.g.,
HSPA1A/HSP72, HSPC1/HSP90, etc.). Upon heat shock,
HSF1 is released from the complex resulting in its
trimerization and translocation to the nucleus. HSF1 binds to
sequence motifs termed heat shock elements (HSEs) in pro-
moters of HSP genes leading to its transactivation. HSF1 is
controlled, in part, by a negative feedback loop in which HSP
induction functions to re-sequester DNA-bound HSF1.
Regulation of HSF1 activity and expression of HSP genes
are fundamentally important for cytoprotection and cell sur-
vival following heat stress.

In association with transcriptional activation, the transcripts
of HSP genes are also stabilized in response to heat stress.
This phenomenon appears to be mediated, in part, though the
3′UTR (3′ untranslated region) of HSP transcripts involving
decreased deadenylation and suppression of mRNA decay via

R.F. Place and E.J. Noonan contributed equally to this manuscript.

R. F. Place (*)
Anvil Biosciences, 3475 Edison Way, Ste J, Menlo Park,
CA 94025, USA
e-mail: Place.Robert@gmail.com

E. J. Noonan
Division of Cancer Prevention, Cancer Prevention Fellowship
Program, Rockville, MD, USA

E. J. Noonan (*)
Laboratory of Human Carcinogenesis, Center for Cancer Research,
37 Convent Dr., Bldg. 37 Room 3060, Bethesda,
MD 20892-4258, USA
e-mail: Emily.Noonan@gmail.com

Cell Stress and Chaperones (2014) 19:159–172
DOI 10.1007/s12192-013-0456-5



ARE (AU-rich domain)-dependent mechanisms (Dellavalle
et al. 1994; Moseley et al. 1993). Conversely, other non-
HSP transcripts are generally destabilized in response to heat
stress and/or accumulate within stress granules or p-bodies
(Buchan and Parker 2009). As such, regulating mRNA stabil-
ity is also a fundamental component of managing the heat
shock response in stressed cells.

A resurgence of interest in the field of non-coding RNA
(ncRNA) has emerged over the last decade as a result of new
discoveries defining novel classes of ncRNAs with diverse
biological activities. In fact, ncRNAs are continually being
implicated in a vast number of cellular processes including cell
growth, disease, embryogenesis, gene regulation, signal trans-
duction, receptor activation, etc. Once defined by only the
traditional housekeeping ncRNAs (i.e., rRNA, tRNA, etc.),
the recent cast of regulatory ncRNAs has expanded to include
such species as miRNAs (microRNAs), lncRNAs (long non-
coding RNAs), and circRNAs (circular RNAs). While the ac-
tivities associated with ncRNAs are approaching those of pro-
teins, many functions still remain unknown. As such, ncRNA is
a growing ‘hot spot’ for biological research even in fields
thought to be well-defined. The mammalian heat shock re-
sponse is no exception as ncRNAs are being identified as
integral components in this process. Although this area of
research is only in its infancy, this review article focuses on
several classes of regulatory ncRNAs and summarizes the ac-
tivities of select examples implicated in mammalian heat shock.
In addition, it proposes a greater involvement for ncRNA than
what is currently known and defines some putative roles in
which ncRNA may regulate the heat shock response. It is our
hope that much of what is discussed herein may be taken into
consideration by researchers to help push the field forward.

The basics of miRNA

MicroRNAs (miRNAs) comprise a large class of small ncRNA
that have emerged as key regulators of gene expression in
nearly all multicellular organisms (reviewed in Kim et al.
2009; Pasquinelli 2012). Core components of the miRNA
pathway are generally well-conserved with only subtle varia-
tions in the animal kingdom. In mammals, miRNAs are pre-
dominantly transcribed by RNApolymerase II (Pol II) into long
primary transcripts termed pri-miRNA. Approximately one-
third of known miRNAs are embedded within the introns of
protein-coding genes, which are often co-transcribed with their
host gene. Other miRNAs can be found in exons or processed
from much larger ncRNAs. Biogenesis of most miRNAs is
dependent on the sequential activity of RNase III family mem-
bers Drosha and Dicer. Following transcription, Drosha excises
short hairpin structures (∼60–100 nucleotides in length) from
the primary transcripts in the nucleus to form premature
miRNA (pre-miRNA). Pre-miRNAs are subsequently exported

to the cytoplasm by the protein Exportin 5 (XPO5) and
processed by Dicer into double-stranded RNAs ∼19–24 nucle-
otides in length. These resulting duplexes are the mature form
of miRNA. Some miRNAs bypass the conventional order of
biogenesis and mature independent of Drosha processing.
These include mirtrons and tailed mirtrons, which release their
cognate pre-miRNA through splicing and exonuclease trim-
ming (Berezikov et al. 2007).

Canonical miRNA activity is dependent on its incorporation
into the RNA-induced silencing complex (RISC). Members of
the argonaute (AGO) protein family are at the core of RISC,
which function to recognize mature miRNAs and process them
to single-stranded forms by expelling one strand of the miRNA
duplex. In mammals, AGO1 and AGO2 are the major facilita-
tors of miRNA activity (Wang et al. 2012). Sequence of the
loaded miRNA guides RISC to complementary transcripts and
suppresses gene expression by blocking translation and/or
degrading messenger RNA (mRNA). Most miRNAs regulate
gene expression by imperfect base-pairing with sequence in the
3′UTRs of target transcripts; however, atypical target site loca-
tions have been identified in 5′UTRs and coding sequence, as
well (Hafner et al. 2010). Specificity is largely dependent on the
first ∼7–8 nucleotides at the 5′-end of each miRNA (termed the
‘seed’ region) in which a high degree of complementarity is
essential for effective targeting. It has been estimated that
miRNAs control∼50%of all protein coding genes inmammals
(Krol et al. 2010). In fact, functional studies have indicated that
miRNAs participate in the regulation of nearly every cellular
process investigated thus far.

miRNAs target heat shock protein transcripts

It has been shown that miRNAs play a critical role in regulating
gene networks in response to cellular stresses (reviewed in
Leung and Sharp 2010). Depending on where miRNAs are
embedded in stress pathways, they can function to restore
homeostasis via feedback loops or enforce new gene expres-
sion programs. For instance, HSPA5/GRP78 is an essential
chaperone critical for protein quality control in the endoplasmic
reticulum that functions to promote cell survival in response to
certain stress conditions (Tranter et al. 2010). During stroke,
miR-181 levels increase in ischemic tissue potentiating injury
by targeting and depleting levels of HSPA5/GRP78 (Ouyang
et al. 2012). High glucose stress damages cardiomyocytes in
the diabetic heart by increasing expression of miR-1 and miR-
206. BothmiRNAs target and repress HSPD1/HSP60, which is
an important protein in the defense against diabetic myocardial
injury (Shan et al. 2010). In rat ventricular cells, miR-1 also
functions to promote apoptosis during oxidative stress by
targeting both HSPD1/HSP60 and HSPA1A/HSP70 (Xu
et al. 2007). Conversely, ischemia preconditioning in the mu-
rine heart decreases levels of miR-378* and miR-711, which

160 R.F. Place, E.J. Noonan



aid in tissue protection by increasing levels of downstream target
HSPA1A/Hsp70.3 (Tranter et al. 2011). In addition, depletion of
miR-320 enhances levels of its downstream target HSPB6/
HSP20 to protect cardiomyocytes from I/R-induced death (Ren
et al. 2009). It has also been shown that miR-3120 plays a role in
regulating constitutive levels of HSPA8/Hsc70 in neuronal cells
by targeting multiple conserved sites within its 3′UTR (Scott
et al. 2012). Because HSPA8/Hsc70 catalyzes the uncoating of
clathrin-coated vesicles, miR-3120 overexpression prevents ves-
icle uncoating. Such results imply that changes in miRNA
expression can interfere or supplement target HSP activity.

Transcriptional regulation of the heat shock response is
orchestrated largely by HSF1. It has been disclosed that
miR-378 directly targets and represses the expression of
HSF1 in cardiomyocytes (Yuan et al. 2010). As such, deple-
tion or overexpression of miR-378 may likely impact HSF1
activity and induction of downstream HSPs in the heart.
Studies in human breast cancer have also implicated miR-
608 as a putative regulator of HSF1. HER2-positive breast
cancer requires aberrant HSF1 activity during tumorigenesis.
A polymorphism in miR-608 (rs4919510) that putatively
lowers its binding affinity for a target site within the HSF1
3′UTR has been shown to contribute to HER2-positive breast
cancer risk (Huang et al. 2012). While speculative, the path-
ological mechanism is that rs4919510 weakens suppression of
HSF1 mRNA by miR-608 contributing to aberrant HSF1
levels in HER2-positive breast cancer cells.

Constitutively expressed miRNAs can also function to
sequester basal expression of stress response genes in
unstimulated cells. This is best exemplified in the case of
extracellular ligands MICA and MICB, which are readily
induced by a variety of stressors including heat shock
(Stern-Ginossar et al. 2008). In unstressed cells, basal expres-
sion levels are inhibited by miR-20a, miR-93, and/or miR-
106b in order to maintain minimal production of each ligand.
However, upon stimulation, the levels of these miRNAs do
not change; rather the transcription of MICA and MICB
surges and protein levels become readily detectable. By this
mechanism, levels of transcript after stress saturate the con-
centration threshold for effective inhibition by the miRNAs
resulting in protein production.

Because of their ability to stabilize oncoprotein function,
HSPC/HSP90 family members have been the target of drug
development for a number of malignancies. Despite the inherent
importance in cancer therapeutics, little has been disclosed in
regards to miRNA regulation of HSPC/HSP90 transcripts. A
recent study has shown that miR-223 may function as a putative
tumor suppressor by targeting HSPC4/Hsp90B1 in osteosarco-
ma (Li, Cai et al. 2012). Additionally, miR-101 has been iden-
tified to indirectly regulate HSPC/HSP90 isoforms by targeting
co-chaperone p23 (Liu, Zou et al. 2012). Like members of the
HSPC/HSP90 family, p23 has also been implicated in several
cancers (e.g., childhood acute lymphoblastic leukemia), in part,

by protecting HSPC/HSP90 proteins from drug inhibitors
(Forafonov et al. 2008). In the interest of drug development, it
would be relevant to compare or combine the effects of such
miRNAs with HSPC/HSP90 inhibitors currently being evaluat-
ed in the clinic (e.g., 17-AAG).

miRNA target sites are abundant in heat shock
gene transcripts

Many different algorithms exist for prediction of miRNA
targets sites in gene transcripts (e.g., TargetScan, miRanda,
DIANA-MicroT, RegRNA, miRTar, etc.). While all share
common rules, each possess unique features or search criteria
for defining putative target sites. For example, all algorithms
utilize the ‘seed’ region in miRNAs as the main determinant
for target site prediction; however, TargetScan considers ad-
ditional features such as target site conservation across differ-
ent species (Friedman et al. 2009). Differences can also arise
from the source of transcript sequence. For instance,
TargetScan utilizes the Ensembl database by default to define
3′UTRs, whereas miRanda retrieves sequences from the
University of California Santa Cruz (UCSC) genome database
(Bina 2008; Flicek et al. 2008). If the miRanda algorithm was
applied to both databases, only a 65 % overlap in target
prediction would be observed (Ritchie et al. 2009). Other
search engines like RegRNA offer a different approach by
allowing users a simple interface to perform custom scans of
input sequence (Huang et al. 2006). Regardless of search
method, there is always a possibility of false-positive prediction.
It has been calculated that the false-positive rate can vary
between 24 and 70 % depending on algorithm and search
criteria (Thomson et al. 2011). In addition, some analyses will
also miss genuine miRNA target sites. Each program often
generates different lists of predicted targets. As such, it is gen-
erally good practice to combine results from multiple programs
in order to encompass all possible target sites, as well as define
overlap to maximize predictive power (Sethupathy et al. 2006).

In silico analyses of HSF1 and several major inducible
HSPs (i.e., HSPA1A, HSPA6, and HSPC1) reveal numerous
putative miRNA target sites in 3′UTRs. Table 1 lists example
search results for select algorithms including TargetScan,
miRanda, DIANA-MicroT, and RegRNA. Although the
search outcomes vary between each algorithm, all queries
share overlapping results. This simple observation reveals
HSF1 and its major downstream regulators are not deficient
of putative miRNA target sites thereby supporting a hypoth-
esis in which miRNAs likely play a more prevalent role in
regulating heat shock signaling.

One of the more interesting aspects of miRNA biology is
their ability to elicit pleiotropic effects by targeting multiple
transcripts. In fact, it is not uncommon for a single miRNA to
regulate multiple genes within a specific signaling cascade or
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cellular mechanism. The heat shock signaling pathway should
be considered no exception to this phenomenon. Search algo-
rithms like miRTar allow analysis of multiple scenarios in-
cluding the ability to predict recurring miRNA target sites
shared among a series of selected genes (Hsu et al. 2011).
Analysis of 3′UTR sequences from 36 heat shock-related
genes (i.e., 17 members of the HSP70 superfamily, 11 mem-
bers comprising the HSPB family, five members of the HSPC/
HSP90 family, HSPD1, HSPE1, and HSF1) reveal several
miRNAs with putative target sites across multiple gene tran-
scripts (Table 2). For instance, miR-92a-2-5p has target sites
predicted in eight of the 36 heat shock-related genes including
HSF1 and HSPA1A. Such information supports a hypothesis
that the heat shock response and its related factors may be
subject to coordinate control by the same miRNAs.

Heat shock-responsive miRNAs

While alterations in miRNA expression have been recorded in
several organisms following exposure to various stressors,
minimal data has been generated analyzing miRNA expres-
sion following heat stress in mammals. Microarray analyses
have shown that recurring heat exposure in rats alters miRNA
expression patterns in the small intestine resulting in the

upregulation and downregulation of 18 and 11miRNAs, respec-
tively (Yu et al. 2011) (Table 3). Integrated bioinformatics
analyses also revealed that the changes in miRNA expression
are inversely correlated with alterations in mRNA levels of
putative downstream targets to imply heat-induced changes in
the transcriptome are, in part, mediated by miRNA. In mice,
thermal preconditioning increases the expression of miR-1,
miR-21, and miR-24 in the heart to generate a cardioprotective
phenotype resistant to I/R injury (Yin et al. 2008) (Table 3).
Interestingly, direct injection of the miRNAs was able to substi-
tute for heat shock and inhibit cardiac infraction (Yin et al. 2008;
Yin et al. 2009). In vitro analyses in human cell lines have also
shown that miR-125b, miR-154, and miR-382 were activated in
response to mild hyperthermia (Oshlag et al. 2013) (Table 3).

One of the more compelling studies identified 27 annotated
miRNAs differentially regulated by heat shock in cultured
normal adult human dermal fibroblast (HDF) cells (Wilmink
et al. 2010) (Table 3). Comparative analyses with other
miRNA expression profiles from different stressors (i.e., fo-
late deficiency, arsenic exposure, radiation, hypoxia, and cig-
arette smoke) identified a group of inducible miRNAs (miR-
125b, miR-222, miR-22, and let-7c) conserved by most stress
signals. As such, it is possible to envision that some miRNAs
may be universal responders analogous to minimal stress
proteins. Conversely, other inducible miRNAs were unique

Table 1 miRNA target sites are detectable in heat shock gene transcripts

Gene
name

Alt. name(s) 3'UTR
sizea

miRNA target search
algorithm

miRNA target site
search resultsb

Predicted regulatory miRNAsc

HSF1 HSTF1 387 nt TargetScan 72 miR-3714 ; miR-445-3p; miR-4666-3p; miR-4668-3p ;
miR-548c-3p ; etc.

miRanda 1 miR-431

DIANA-MicroT-
CDS

10 miR-654-5p; miR-541-3p; miR-615-5p; miR-3619-5p;
miR-92a-2-5p; etc.

RegRNA 84 miR-1205 ; miR-1226; miR-3934; miR-1825; miR-1972 ; etc.

HSPA1A HSPA1A HSP72;
HSPA1;

258 nt TargetScan 33 miR-4699-3p; miR-4635 ; miR-127-5p; miR-527 ; miR-561 ; etc.

miRanda 9 miR-146a;miR-146b-5p;miR-183 ;miR-34c-5p;miR-449a ; etc.

DIANA-MicroT-CDS 8 miR-146b-5p;miR-146a ; miR-548ao-5p;miR-34a ;miR-412 ; etc.

RegRNA 62 miR-127-5p; miR-146b-5p; miR-561 ; miR-570; miR-1264 ; etc.

HSPA6 HSP70B' 307 nt TargetScan 40 miR-106a ; miR-20a ; miR-20b ; miR-106b; miR-519d; etc.

miRanda 23 miR-376a ; miR-20b ; miR-17; miR-106a; miR-93 ; etc.

DIANA-MicroT-CDS 10 miR-4646-5p; miR-298; miR-5688; miR-20a ; miR-106b; etc.

RegRNA 70 miR-103b ; miR-106a ; miR-298 ; miR-20b ; miR-376a; etc

HSPC1 HSP90; HSP90N;
HSP90A;
LAP2;
HSPN; HSPCA;
HSP90AA1

974 nt TargetScan 136 miR-9; miR-361-5p; miR-495; miR-224; miR-370 ; etc.

miRanda 14 miR-96 ; miR-1271; miR-411 ; miR-148a; miR-377 ; etc.

DIANA-MicroT-CDS 62 miR-4778-3p; miR-578; miR-515-5p; miR-529e; miR-205-5p; etc.

RegRNA 182 miR-1224; miR-142-3p; miR-632; miR-3119; miR-518d-5p ; etc.

a 3′UTR sequence of human genes was obtained through the UCSC genome browser
b All searches were performed with default settings. Search results refer to the total number of putative miRNA regulatory sites listed following each
search query
c Target sites are defined by their cognate human miRNA. All miRNAs in bold were detected by at least one other search algorithm
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to only heat stress (e.g., miR-452, miR-382, and miR-378)
implying certain miRNAs may be stress-type dependent.

miRNA expression patterns following heat shock are likely
context dependent in regards to cell type, as well. For instance,
miR-1 has been reported to be muscle specific with important
pathophysiological functions in the heart (Yang et al. 2007).
As such, miR-1 may not be induced and/or participate in
cytoprotection following heat shock in other tissues. While
these examples indicate miRNA levels do change in response
to heat exposure, it is unclear if the mechanisms regulating
expression are at the level of transcription and/or involve
HSF1. Like the core set of inducible HSPs (e.g., HSPA1A,
HSPA6, etc.), it would be interesting to determine if there is a
key miRNA signature indicative of heat shock.

Heat shock may also manipulate miRNA levels by affecting
their biogenesis. In support, it has been shown in mammalian
cells that thermal stress increases Dicer levels, which may influ-
ence miRNA maturation (Oshlag et al. 2013). Additionally,
HSPC1/Hsp90 has been shown to be an important regulatory
of RISC by functioning to mediate loading of miRNA into the
complex (Iwasaki et al. 2010). As such, heat-induced changes in
HSP expression may directly alter RISC activity/assembly.

The short on long non-coding RNAs

Less than 2 % of the mammalian genome actually codes for
proteins, yet ∼70–90 % is transcribed in some context as long
non-coding RNAs (lncRNAs). As such, lncRNAs are pro-
posed to be the largest transcript class in the mammalian
transcriptome (Derrien et al. 2012). Originally thought to be
only genomic “dark matter” manifesting as transcriptional

noise, lncRNAs have now been shown to possess biological
function participating in a variety of processes including gene
regulation, signal transduction, development, etc. LncRNAs
are generally defined as transcripts longer than 100–200 nu-
cleotides in length in order to distinguish them from smaller
RNA species such as miRNAs, piRNAs (piwi-interacting
RNAs), siRNAs (small interfering RNAs), and small nucleo-
lar RNAs (snoRNAs); although, size should be considered a
rather subjective limit when defining lncRNAs (reviewed in
Wapinski and Chang 2011). Some subclasses include asRNAs
(antisense RNAs), lincRNAs (long intergenic non-coding
RNAs), paRNAs (promoter-associated RNAs), eRNAs (en-
hancer RNAs), etc. While the term has only been recently
defined, some ncRNAs discovered in years past are now
appropriately referred to as lncRNAs (e.g., H19, Xist, etc.).

LncRNAs can function in cis and/or in trans . Cis-acting
lncRNAs are restricted to their site of synthesis and act on one
or more proximal genes transcribed at the same locus. Their
expression is often coordinated with that of neighboring
genes. Such lncRNAs can behave as structural components
of chromatin and offer sites of interaction for modifiers,
remodelers, or other regulatory proteins (Rodriguez-Campos
and Azorin 2007). For instance, an antisense lncRNA tran-
scribed within the INK4/ARF locus referred to as ANRIL
recruits chromatin modifiers PRC1 and PRC2 to promote
heterochromatin formation and silence gene expression
(Kotake et al. 2011; Yap et al. 2010; Yu et al. 2008).
Alternatively, cis -acting lncRNAs can displace bound
factors. LncRNAs transcribed in CpG islands (CGIs)
have been proposed to inhibit binding of DNMT3B
and prevent local DNA methylation at active genes
(Ginno et al. 2012).

Table 2 Recurring miRNA tar-
get sites exist across multiple heat
shock-related genes

amiRNAs correspond to
human sequence
b 3′UTRs from 36 heat shock-
related genes were scanned using
the miRTar search engine with
default settings in order to identify
common regulatory miRNAs
shared by the different gene
transcripts

miRNAa Number of
predicted
gene targets

Names of predicted heat shock-related gene targetsb

miR-92a-2-5p 8 CRYAB; HSF1; HSPA12B; HSPA1A; HSPB6; HSPB7; HYOU; TRAP1

miR-4270 8 CRYAA; HSPA12A; HSPA14; HSPA4; HSPB6; HSPB7; HSPB8; HYOU1

miR-762 7 HSPA12A; HSPA12B; HSPA14; HSPA5; HSPB6; HSPB7; HYOU1

miR-680 7 HSF1; HSPA12B; HSPA4; HSPB1; HSPB6; HSPB7; HYOU1

miR-4268 7 HSP90AA1; HSP90B1; HSPA12A; HSPA12B; HSPA14; HSPA4; TRAP1

miR-3189 7 HSP90AA1; HSPA12B; HSPA1A; HSPA4; HSPA5; HSPB2; HSPD1

miR-3127 7 HSPA12A; HSPA12B; HSPA1A; HSPB2; HSPB6; HSPB7; HYOU1

miR-220c 7 HSPA121A; HSPA12B; HSPA14; HSPA1A; HSPA9; HSPB8; HYOU1

miR-1909 7 CRYAA; HSP90AA1; HSP90AB1; HSP90B1; HSPA14; HSPB1; HSPB6

miR-637 6 HSF1; HSPA14; HSPA1A; HSPB6; HSPB7; HYOU1

miR-370 6 CRYAA; HSP90AA1; HSP90AB1; HSPA12A; HSPB7; HYOU1

miR-30c-1-3p 6 HSPA4; HSPA5; HSPB6; HSPB7; HYOU1; ODF1

miR-92a-1-5p 5 HSF1; HSPA12B; HSPA14; HSPB6; HSPB8

miR-761 5 HSP90AB1; HSPA12A; HSPA1A; HSPB1; HSPB7

miR-298 5 HSPA6; HSPA9; HSPB8; HSPH1; HYOU1
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In contrast, trans-acting lncRNAs diffuse from their site of
synthesis and act on many genes located at distant loci on same
or different chromosomes. As such, these types of lncRNAs can
act within large genic networks. For example, steroid receptor
RNA activator (SRA) is an lncRNA transcribed in humans
from chromosome 5q31.3 that elicits its pleotropic effects on
gene expression by functioning as a molecular subunit and
essential co-activator for a variety of nuclear hormone receptors
(i.e., estrogen, androgen, progesterone, etc.) (Lanz et al. 1999).
LncRNAs can also regulate gene expression networks in trans
by acting as molecular decoys for endogenous miRNAs. These
lncRNAs possess multiple miRNA target sites, which function
as competitive inhibitors for other transcripts. For instance,
HULC is an lncRNA transcribed from chromosome 6p24.3
that appears to function as a molecular decoy by sequestering
the activity of miR-372 in liver cancer cells (Wang et al. 2010).
Any transcribed RNA (e.g., lncRNA, pseudogene, mRNA,
etc.) that influences the levels of another transcript by compet-
ing for the same pool of miRNAs are referred to as competing
endogenous RNAs (ceRNAs). Collectively, trans -acting
lncRNAs have been described to function as signals, guides,
decoys (i.e., ceRNAs), or scaffolds for chromatin or other
cellular machinery to regulate such processes as gene expres-
sion, protein activity, and/or subcellular localization.

lncRNA is an auxiliary factor of HSF1 activation

The hallmark of the heat shock response is the rapid and robust
induction of cytoprotective genes driven predominantly by the
transcription factor HSF1. Under normal conditions, HSF1 is
present in the cell cytoplasm as an inactive monomer. Upon
heat stress, HSF1 localizes to the nucleus as a homotrimer and

binds to HSE stimulating the transcription of stress response
genes. HSF1 is largely controlled by bound chaperone proteins
(i.e., HSPA1A/HSP70, HSPC1/HSP90, p23, etc.), which dis-
associate upon heat shock making it possible for HSF1 to

Table 3 Reported miRNAs deregulated by heat stress

Citation Organism Tissue/cell type Heat stress Deregulated miRNAsa

Yu et al. 2011 Sprague–Dawley rats Small intestine tissue 40 °C for 2 h over 10
consecutive days

UP: miR-34b, -137, -154, -672, -219-5p, -375, -7a,
-34a, -30a*, -500, -185, -203, -200a, -140*,
let-7d, -125a-5p, -27b, -210

DOWN: miR-322, -142-5p, -434, -204, -142-3p,
-193, -31, -150, -148b-3p, -223, -23a

Yin et al. 2008 ICR mice Heart tissue 42 °C for 15 min with
2 h recovery at RT

UP: miR-1, -21, -24

DOWN: not reported/evaluated

Oshlag et al. 2013 Human Hela and JAR cell lines 39.5 °C for 1.5 to 8 h UP: miR-125b, -154, -382

DOWN: not reported/evaluated

Wilmink et al. 2010 Human HDF cells in culture 44 °C for 40 min with
4 h recovery at RT

UP: miR-125b, -452, -133b, -192, -382, -378, -101,
-424, -22

DOWN: miR-138, -7, -376a, -31, -222, -33a, -29b,
-606, let-7c, let-7d, - 218, -196a, -204, -196b,
-154, -1298, -18a, -487b

ICR imprinting control region, RT room temperature, UP upregulated miRNAs, DOWN downregulated miRNAs
amiRNA sequences correspond to cognate species

Fig. 1 HSF1 trimerization in response to heat shock requires lncRNA
HSR1. In unstressed cells, HSF1 is predominantlymonomeric. Upon heat
shock, chaperone proteins dissociate from HSF1 freeing monomers to
form functional homotrimers. HSR1 is an lncRNA ∼2 kb in length
containing a long poly(A) tail. It is constitutively present in cells, but
following heat shock HSR1 undergoes conformational changes and as-
sociates with protein eEF1A. Though typically involved in translational
regulation, eEF1A acquires an apparent non-canonical function upon
binding HSR1. Both eEF1A and HSR1 associate with HSF1 bringing
about its trimerization. Within this mechanism, HSR1 behaves much like
a molecular thermosensor that effectively regulates HSF1 mobilization

164 R.F. Place, E.J. Noonan



trimerize. In human cells, another key determinant in this
process is an lncRNA termed HSR1 (heat shock RNA-1)
(Shamovsky and Nudler 2009). In vitro, HSR1 forms a com-
plex with eEF1A (eukaryotic elongation factor 1A), which is
required for HSF1 trimerization and its subsequent DNA bind-
ing activity (Fig. 1). As such, HSR1 depletion hinders induction
of stress response genes and dampens cell survival to prolonged
heat shock (Shamovsky et al. 2006). In this regards, HSR1
functions as an auxiliary factor required for the trimerization
and subsequent activation of HSF1.

lncRNAmediates general transcription repression by heat
stress

Upon heat shock, basal transcription is sequestered in eukaryotic
cells at the same time HSF1 is activated to drive transcription of
heat shock-specific genes. One mechanism by which heat shock
suppresses gene expression is through the upregulation of in-
hibitory ncRNA that function in trans to block general RNA
polymerase II (Pol II) activity. Two ncRNA species including
B2 RNA in mice and Alu RNA in humans are transcribed by
RNA polymerase III (Pol III) from short interspersed elements

(SINEs). During normal cellular growth, these RNA species
accumulate at relatively low levels; however, their abundance
transiently increases by as much as 40-fold under certain con-
ditions of stress (i.e., heat shock) (Li et al. 1999; Liu et al. 1995).
Although the kinetics of induction resembles that of heat shock
proteins, upregulation of B2 and Alu RNAs is achieved by a
separate stress-activated transcriptional mechanism. There is no
shared sequence homology between B2 and Alu RNAs, but
rather their biological functions are considered to be very sim-
ilar. Following stress, B2 orAlu RNAs directly bind to the active
site within Pol II, disrupting its interaction with promoter DNA
and interfering with phosphorylation of the carboxy terminal
domain (CTD; Fig. 2) (Yakovchuk et al. 2009, 2011). As such,
both B2 and Alu RNAs function in trans as direct repressors of
general Pol II activity contributing to the global downregulation
of basal gene expression following heat stress.

lncRNA regulates transcriptional elongation of stress
response genes

7SK is an abundant nuclear ncRNA widely conserved in the
Metazoan kingdom. In fact, it has been shown to be one of the

Fig. 2 Suppression of basal transcription following heat shock is medi-
ated by lncRNA. a Under normal conditions, RNA polymerase II (Poll II)
associates with gene promoters through the help of accessory factors such
as TATA-binding protein (TBP) to drive basal transcription of house-
keeping genes. Phosphorylation (P) of heptapeptide repeats at serine-5
within the carboxyl terminal domain (CTD) of Pol II is facilitated by
TFIIH to signify transcription initiation. b LncRNAs B5 in mice

(∼178 nts) or Alu in humans (∼300 nts) are upregulated in response to
heat stress. Both RNA species function in trans as repressors of basal
transcription by binding to the active site of Pol II, preventing proper
association with DNA, and suppressing CTD phosphorylation. TFIIH
does not appear to disassociate from the complex, rather its kinase activity
is suppressed following lncRNA interaction with Pol II
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most abundant nuclear transcripts in human cells
(Wassarman and Steitz 1991). It is transcribed by Pol III
and plays a major role in regulating transcription. Under
normal conditions, Pol II briefly pauses following release
from gene promoters. In order for transcription to contin-
ue, Pol II is stimulated by the kinase activity of P-TEFb
(positive transcription elongation factor b) resulting in
CTD hyperphosphorylation and transcription elongation.
7SK functions in trans as an essential structural compo-
nent and repressor of the P-TEFb complex. In mammalian
cells, a fraction of P-TEFb is sequestered in an inactive
state by 7SK and several other factors (e.g., HEXIM1,
etc.). In fact, it has been estimated that more than 50 %
of its total cellular levels are bound to 7SK (Nguyen et al.
2001). P-TEFb is subsequently activated upon release from
the repressor complex as a result of conformational
changes in 7SK (Peterlin et al. 2012; Yang et al. 2001).
Under conditions of cellular stress, nearly all P-TEFb is
ejected from 7SK causing a substantial increase in active
P-TEFb levels. Although a direct role of 7SK in the heat
shock response has not yet been examined, it seems likely
as P-TEFb is known to rapidly localize to the promoters
of stress response genes following heat shock (Fig. 3) (Lis
et al. 2000). As such, prompt mobilization of P-TEFb
following heat stress supports efficient transcription of heat
shock response genes.

lncRNA immobilizes proteins to the nucleolus in response
to heat stress

The nucleolus coordinates several vital cellular processes by
sequestering or releasing proteins in response to specific
physiological signals. Upon cellular stress, nucleolar deten-
tion of proteins becomes an important step in maintaining
cellular homeostasis (Boulon et al. 2010). This process is
mediated, in part, by a group of inducible lncRNAs tran-
scribed by RNA polymerase I (Pol I) from intergenic spacers
(IGS) located between ribosomal genes (Audas et al. 2012).
Different stress signals induce subsets of IGS transcripts,
which function to sequester various proteins. In response to
heat stress, IGS transcription occurs at two loci positioned
16 kb (IGS16) and 22 kb (IGS22) downstream of the rRNA
(ribosomal RNA) transcription start site (TSS) in human cells.
The resulting lncRNAs function in cis to recruit and immobi-
lize HSPA1A/HSP72, as well as other proteins (e.g., RNF8),
to the rDNA (ribosomal DNA) cassette in the nucleolus
(Fig. 4). Furthermore, silencing of specific IGS lncRNAs
prevents enrichment of nucleolar proteins at targeted loci
(Audas et al. 2012). Nucleolar translocation of HSPA1A/
HSP72 is known to be a key event during the heat response
reported to accelerate nucleolar recovery and protect cellular
integrity (Kotoglou et al. 2009; Pelham 1984; Welch and
Feramisco 1984). As such, transcription of lncRNAs in the

Fig. 3 Transcription elongation of heat shock genes is regulated by
lncRNA. RNA polymerase II (Pol II) pauses following transcription
initiation at gene promoters. P-TEFb promotes transcription elongation
by phosphorylating (P) heptapeptide repeats at serine-2 within the carbox-
yl terminal domain (CTD) of Pol II. 7SK is a nuclear lncRNA (∼331 nts)
that interacts with a subpopulation of P-TEFb repressing its activity and

sequestering its ability to interact with transcription complexes. Induction
of the stress response (e.g., heat shock) causes P-TEFb to disassociate from
7SK allowing it to interact with Pol II and promote transcription elongation
of susceptible genes including heat shock response factors. By this mech-
anism, 7SK functions in trans as a scaffold component of P-TEFb and
regulator of gene transcription in response to stress signals
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IGS region and their biological activity is essential for facilitat-
ing some of the cytoprotective effects associatedwith heat stress.

Pseudogenes as lncRNAs

Long regarded as a genomic graveyard, pseudogenes might
actually possess biological function in context as lncRNAs.
For instance, expression of the pseudogene PTENP1 seques-
ters the same miRNAs that normally repress translation of the
tumor suppressor PTEN thereby increasing its protein levels
(Poliseno et al. 2010). As such, pseudogenes may actually be a
vast repository for regulatory lncRNAs, in part, by function-
ing as molecular decoys for their ancestral genes. The HSPA/
HSP70 superfamily has roughly 30 pseudogenes in the human
genome, while HSPC1/HSP90 is estimated to have 12
pseudogenes including HSP90B3P; a known lncRNA
(Brocchieri et al. 2008). Each one of these pseudogene tran-
scripts contains numerous putative miRNA target sites, which
may function in sequestering miRNAs that would otherwise
repress HSP levels or other target transcripts.

The significance of circular RNAs

Discovered more than 20 years ago, circular RNA (circRNA)
was an enigmatic class of ncRNA thought to exist only in low
abundance as a result of occasional errors in splicing (Nigro
et al. 1991). However, it is now known that circRNAs are a
prevalent form of ncRNA in the mammalian transcriptome
(Jeck et al. 2013). Unlike linear RNA with exposed termini
(e.g., mRNA, lncRNA, etc.), cirRNAs are formed when the 5′
and 3′ end of exons within the same transcript are covalently
linked together to form a circular molecule. Because
circRNAs are predominantly comprised of only exonic se-
quence, their biogenesis appears to represent a novel form of
alternative splicing (Salzman et al. 2012). In some instances,
circRNAs are >10 times more abundant than their cognate
linear transcript of the same gene (Jeck et al. 2013). Like
lncRNAs, circRNAs have been shown to function as a type
of ceRNA capable of sequestering miRNA activity. For ex-
ample, a circRNA termed ciRS-7/CRD1as contains more than
70 conserved miRNA target sites and acts as a molecular
“sponge” for miR-7 (Hansen et al. 2013; Memczak et al.

Fig. 4 Nucleolar sequestration of
HSPA1A is facilitated by
lncRNA. a Transcription of
ribosomal DNA (rDNA) occurs in
the nucleolus of mammalian cells.
Between each ribosomal gene is a
region of repetitive sequence long
believed to be devoid of
transcriptional activity referred to
as the intergenic spacer (IGS).
HSPA1A/HSP72 is a prototypical
inducible protein activated in
response to heat stress. b One
hallmark of the heat shock
response is nucleolar recruitment
of HSPA1A/HSP72 in addition to
its overexpression. Within the IGS
region, heat stress activates
transcription at specific loci
located 16 kb (IGS16) and 22 kb
(IGS22) downstream of the rRNA
TSS. Other stress stimuli trigger
transcription at different IGS loci.
The resulting lncRNAs (∼300 nts)
function in cis to capture a
subfraction of HSPA1A/HSP72 at
the sites of transcription forcing its
sequestration in the nucleolus.
RNA polymerase I (Pol I) is
responsible for transcription
within the IGS region; however, it
is unclear if the lncRNAs remain
tethered to chromatin as nascent
transcripts (as shown) or bound by
other factors
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2013). However, circRNAs are inherently more stable than
linear molecules as their unique structure provides protection
against exonuclease activity (Hansen et al. 2013; Memczak
et al. 2013).

Similar to lncRNAs, it is plausible circRNAs have ad-
ditional roles in the cell other than strict ceRNA activity.
For instance, circRNAs may function as structural compo-
nents or allosteric regulators for RNA-binding proteins.
CircRNAs may also possess non-folding chaperone-like
function acting to store, sort, or localize bound factors such
as miRNA. Studies have shown that numerous circRNAs
are expressed under a variety conditions across different
tissues and developmental stages (Hansen et al. 2013;
Memczak et al. 2013). As such, it is reasonable to specu-
late that circRNAs function in the stress response, as well.
CircRNAs may act as molecular decoys for stress-induced
miRNAs, stressors may elevate their expression levels, or
known stress response genes may generate cognate
circRNAs. These ncRNA species represent a novel topic
that should be explored within the field of heat shock and
stress response.

An integrated model for the heat shock response pathway

The conventional heat shock response pathway is characterized
by the rapid trimerization/activation of HSF1 and subsequent
transcriptional upregulation of cytoprotective genes such as
HSPs (e.g., HSPA1A, HSPA6, etc.). While it is becoming
increasingly clear that ncRNAs are integral components of a
variety of cellular processes, they are frequently overlooked in
context to the heat shock response pathway in mammals. As
such, it is our hope that introduction of an updated model
integrating the traditional heat shock response with the activi-
ties of regulatory ncRNA (i.e., miRNA, lncRNA, and
circRNA) may offer a more comprehensive summary
highlighting the major regulators and responders of heat shock
signaling (Fig. 5). In this model, lncRNAs in the form of
molecular thermosensors also function as primary responders
to heat stress. Thermosensors undergo conformational changes
upon heat stress leading to alterations in activity and/or com-
plex composition. For instance, heat shock activates HSR1 to
assist in HSF1 trimerization and triggers 7SK to release P-
TEFb reserves for efficient transcription of heat shock response

Fig. 5 ncRNAs function as
integral components of the heat
shock response in mammals. The
heat shock response is typically
characterized by the rapid
trimerization/activation of HSF1
and subsequent transcriptional
induction of heat shock proteins
(e.g., HSPA1A, HSPA6, etc.).
ncRNAs including lncRNAs and
miRNAs are often overlooked
regulators of the heat shock
response pathway. This model
illustrates the diverse functional
roles that ncRNAs play or likely
play in heat stress. Select
examples of lncRNA (black
boxes) and miRNA (white boxes)
involved in the heat shock
response are delineated by solid
lines . Dashed lines define
putative functional interactions of
ncRNA not yet examined/
reported
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genes (Peterlin et al. 2012; Shamovsky et al. 2006). Although
there is some debate over the evolutionary origin of HSR1, its
function in vitro is preserved and still exemplifies the role of
lncRNAs as key regulators of thermal stress (Kim et al. 2010).

In addition to HSPs, it is important to recognize that HSF1
also likely regulates the expression of ncRNAs including
lncRNAs, circRNAs, and/or miRNAs. By this mechanism,
transcriptional activation would mirror that of other heat shock
response genes in which HSF1 binds HSE sites in gene pro-
moters to drive transcription of ncRNAs. HSF1-independent
mechanisms also regulate gene transcription including the ex-
pression of several regulatory lncRNAs. For instance, B5 in
mice and Alu in humans are transcribed in response to heat
stress and function in trans to repress basal transcription of
housekeeping genes (Yakovchuk et al. 2009, 2011). In addition,
lncRNAs transcribed within the IGS region of rDNA function to
immobilize HSPA1A and other cellular proteins (e.g., RNF8) to
the nucleolus during heat shock (Audas et al. 2012).

Depending on downstream targets, inducible miRNAs may
provide an additional feedback mechanism for controlling HSP
levels and/or restoring homeostasis. For example, miR-1 is
activated in the heart upon thermal stress, which has indepen-
dently been shown to target and suppress HSPA1A expression
(Yin et al. 2008; Xu et al. 2007). Other inducible miRNAs may
enforce the stress program by targeting other cellular proteins.
In heart tissue, heat shock activates expression of miR-21,
which contributes to the cytoprotection phenotype by reducing
the levels of proapoptotic genes like BCL-10 (Yin et al. 2008).
Other cellular miRNAs constitutively present in unstressed
cells may quell basal expression of stress response genes and/
or control HSF1 levels in order to suppress unnecessary stim-
ulation or accumulation of stress factors. This is best exempli-
fied by miR-20a, which has been shown to silence basal
expression of stress-induced proteins MICA and MICB in
unstressed cells (Stern-Ginossar et al. 2008). Additionally, it
has been disclosed that miR-378 targets HSF1, which may
function to titrate intracellular HSF1 levels (Yuan et al. 2010).

Based on their defined activities and general abundance,
lncRNAs and/or circRNAs may have additional functions as
ceRNAs in the heat shock response. Inducible lncRNAs or
circRNAs could putatively contribute to the rapid induction of
stress response genes by sequestering miRNA activity. Other
cellular lncRNA or circRNAs present in unstressed cells may
function to titrate basal activity of heat shock-inducible
miRNAs. By this mechanism, heat stress would increase
miRNA levels and exceed the regulatory thresholds
established by cellular concentrations of ceRNAs.

Beyond intracellular interactions

Members of the HSPA/HSP70 and HSPC/HSP90 family are
known to be secreted into circulation. One mechanism by

which they enter the extracellular environment is through
packaging of small membrane vesicles (∼30–100 nm in diam-
eter) called exosomes (Lv et al. 2012). Exosomes are secreted
by numerous cell types and function as an intercellular delivery
system of internalized molecules. In additions to HSPs,
ncRNAs (e.g., miRNA, lncRNA, etc.) are also found within
exosomes, although miRNAs comprise up to ∼75 % of all
mappable reads following sequencing experiments (Huang
et al. 2013). Exosomal miRNAs can exist as mature duplexes
or associated with AGO proteins as part of RISC. Given that
intracellular cross-talk is prevalent between miRNAs and
HSPs, it is possible that such interactions occur in context of
the extracellular environment, as well. For instance, HSPC1/
Hsp90 has been shown to be required for miRNA loading and
RISC assembly in the cell (Iwasaki et al. 2010). Exosomal
HSPs may also play a role in maintaining miRNA integrity in
the exosome by stabilizing RISC and/or mature duplexes, as
well as facilitating loading of exosomal miRNA upon
intercellular delivery. Additionally, both HSPs and miRNAs
have been implicated in the activation of toll-like receptors in
the tumor microenvironment via non-canonical mechanisms
(Fabbri et al. 2012; Tamura et al. 2012). Given their common
destination, one could hypothesize they work as co-ligands in
the extracellular environment to regulate immune-tumor
communication.

The field of ncRNA is a growing ‘hot spot’ for biological
research as it represents a novel source of discovery for most
any cellular pathway. The heat shock response should be
treated as no exception. While examples of regulatory
ncRNAs in the mammalian heat shock response have been
highlighted in this article, many more remain undiscovered.
We propose ncRNAs have a greater involvement than what is
currently known and have defined several putative roles in
which ncRNA may function in regulating heat stress. It is our
hope that this article may serve as a stepping stone for re-
searchers to pursue projects interrogating the roles of ncRNA
in the mammalian heat shock response.
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