
RESEARCH ARTICLE

Weighting schemes in metabolic graphs for identifying
biochemical routes

S. Ghosh • P. Baloni • S. Vishveshwara •

N. Chandra

Received: 31 August 2013 / Revised: 10 October 2013 / Accepted: 12 October 2013 / Published online: 6 November 2013

� Springer Science+Business Media Dordrecht 2013

Abstract Metabolism forms an integral part of all cells

and its study is important to understand the functioning of

the system, to understand alterations that occur in disease

state and hence for subsequent applications in drug dis-

covery. Reconstruction of genome-scale metabolic graphs

from genomics and other molecular or biochemical data is

now feasible. Few methods have also been reported for

inferring biochemical pathways from these networks.

However, given the large scale and complex inter-con-

nections in the networks, the problem of identifying bio-

chemical routes is not trivial and some questions still

remain open. In particular, how a given path is altered in

perturbed conditions remains a difficult problem, warrant-

ing development of improved methods. Here we report a

comparison of 6 different weighting schemes to derive

node and edge weights for a metabolic graph, weights

reflecting various kinetic, thermodynamic parameters as

well as abundances inferred from transcriptome data. Using

a network of 50 nodes and 107 edges of carbohydrate

metabolism, we show that kinetic parameter derived

weighting schemes
KS

M

KP
M

� �
and KM

Kcat

� �h i
fare best. However,

these are limited by their extent of availability, highlighting

the usefulness of omics data under such conditions. Inter-

estingly, transcriptome derived weights yield paths with

best scores, but are inadequate to discriminate the theo-

retical paths. The method is tested on a system of Esche-

richia coli stress response. The approach illustrated here is

generic in nature and can be used in the analysis for met-

abolic network from any species and perhaps more

importantly for comparing condition-specific networks.

Keywords Biochemical networks � Weighted

networks � Alternate paths � Transcriptomics �
Metabolomics

Introduction

Metabolites are the end products of cellular regulatory

processes and their levels can be regarded as the ultimate

response of biological systems to the environmental

changes, thereby making it essential to study metabolism.

The significance of understanding metabolic behaviour for

identifying drug targets or drug design strategies have long

been established (Cornish-Bowden and Cárdenas 2003).

Given that about a thousand different enzymes exist even

in a typical prokaryotic cell, which catalyse numerous

biochemical conversions, that are well orchestrated through

many inter-connections and extensive cross-talk, compre-

hending metabolism as a whole requires a systems biology

approach. Cellular metabolism is often altered in diseases,

leading to an increased recognition of the importance of

metabolic analysis in drug discovery (Flight 2010; Tennant
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et al. 2010). Metabolic fluxes can be seen as fundamental

determinants of cellular physiology as they quantitatively

show the contributions of various pathways to overall

cellular functions. Analysing metabolic fluxes serves as a

useful method to relate a cell’s genotype to its phenotype.

This information can also be exploited to identify targets

for drug discovery or to enhance the performance of a

pathway of commercial importance.

Elucidation of biological pathways has been said to be

one of the biggest challenges in the systematic analysis of a

genome (Palsson 2000). Metabolic pathways can be

defined as a series of consecutive enzymatic reactions that

produce specific products in a living system. Abstracting

these as networks, provide useful insights into the mecha-

nistic and topological behaviour of the system. Compound–

compound, reaction–reaction or enzyme–enzyme graphs

have been used widely (Arita 2012; Hawick 2011; Ma’ayan

2009). Bipartite graphs between compounds or reactions

and enzymes are also used (Acuña et al. 2011). Flow of

biochemical information under different conditions and

therefore the dynamics of a network are commonly studied

by analysing shortest paths between pairs of nodes (Pit-

känen et al. 2009; Verkhedkar et al. 2007). Lately, attention

has been shifting to construction of weighted networks

(Croes et al. 2005, 2006; Ideker et al. 2001; Scott et al.

2005; Zien et al. 2000). However the complexity in met-

abolic networks are typically high, due to the scale as well

as extensive inter-connections in the networks, posing

challenges to the problem of identifying biochemical

routes. It is particularly difficult to identify alternate routes

or alterations that may occur in a disease condition or upon

other types of perturbations. With an increase in the

amount of genomic data and subsequent increase in the

availability of reconstructed metabolic network data for

different organisms, the need to analyse them is also

increasing rapidly. It is therefore necessary to explore

development of newer and improved methods for mining

biologically useful information from such networks.

Graphs provide an elegant method of abstraction and

analysis of biochemical reactions and their interactions. In

this work we have explored weighting the graphs with

kinetic, thermodynamic parameters or inferred molecular

abundances as edge weights and compare different

weighting schemes to infer biologically meaningful bio-

chemical routes. Earlier reports in literature where graphs

are weighted include parameters such as connectivity

information of the metabolites and centrality of nodes

(Aittokallio and Schwikowski 2006; Ideker et al. 2002;

Noirel et al. 2008). It is important to explore different

parameters for deriving the weights and to perform a sys-

tematic comparison of different weighting schemes, so that

the weights capture biologically meaningful information

and hence will provide paths that are biologically

significant.

In this study, large-scale experimental data as well as

datasets of kinetic parameters are used to study the

dynamics of carbohydrate metabolism by integrating

kinetic and thermodynamic data to the metabolic network.

Towards this goal, five major pathways of carbohydrate

metabolism have been captured as a network and weighted

using different weighting schemes. These weighting

schemes are a function of kinetic and thermodynamics

parameters and mimics the biological system nicely. Met-

abolic networks integrated with these weighting schemes

are investigated to study the significance of adding weights

to the networks. Furthermore, the developed methodology

is also used to compare large networks from pairs of

phenotypic states so as to identify differences in metabolic

routes and further larger shifts if any, in the metabolic

focus of the cell in a perturbed state. An example test case

of lactose shift in Escherichia coli has been analysed for

this purpose.

Methods

Two networks are used in this study. The first consists of

five major pathways from carbohydrate metabolism, Gly-

colysis, Kreb’s Cycle, Pentose Phosphate Pathway, Pyru-

vate metabolism and Gluconeogenesis from E. coli. These

pathways were chosen since they are well characterized

biochemically and also their kinetic and thermodynamic

parameters as well as abundances of enzymes and metab-

olites are available. Thus, 51 nodes/metabolites and 107

edges are in this network, which is referred to as Network-

1. The second (Network-2) is an extension of Network-1

and includes additional pathways to capture the entire

carbohydrate metabolism. Network-2 thus contains 250

nodes/metabolites and 331 edges. Kinetic parameters are

not available for all reactions in this network; however

transcriptome and metabolome data are available, which

are incorporated into it. Network-1 is used for comparing

weighting schemes where as Network-2 is used for ana-

lyzing a case scenario of lactose stress response.

Network reconstruction

For metabolic network reconstruction, the substrates and

products involved in the reactions formed nodes and an

edge was drawn between them, if they shared a substrate-

product relationship. The network so generated was a

directed network to emphasize the direction of the fluxes.

In case of a reversible reaction, connections were made in

both directions. The chemical compounds involved in each
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reactions and the respective reversibility information was

obtained from KEGG database (Ogata et al. 1999).

Weighting schemes

Six different weighting schemes based on the kinetic,

thermodynamic and transcriptome data for all the reactions

have been used in this study. The kinetic parameters were

obtained from BRENDA (Scheer et al. 2011), BioNumbers

(Milo et al. 2010) for each enzyme at pH = 7 and 298 K

where available and through literature survey for the

remaining (parameters listed in Table S1). The details of

the weighting schemes are provided below:

Scheme 1 [sc1]:
KS

M

KP
M

: Ratio between the Michaelis-

Menton [MM] kinetic constant of the substrate and the

product. For irreversible reaction, we assume KP
M to be

very high (very low affinity for the product) with a

default value of 0.1.

Scheme 2 [sc2]: KM

Kcat
: Inverse of catalytic efficiency i.e.;

the efficiency with which an enzyme converts a substrate

into product.

Scheme 3 [sc3]: DG: The thermodynamic feasibility of

any reaction can be established by calculating the

DG value for the formation of the product. DG was

calculated for each reaction using the ‘Group contribu-

tion method’ (GCM) (Mavrovouniotis 1990; Dreyfuss

et al. 2013; Liebermeister and Klipp 2006).

Scheme 4 [sc4]: 1
Vmax

: Inverse of the maximum velocity

was taken as the edge weight between any two

metabolites.

Scheme 5 [sc5]: 1
Vmax½S�: Similar to sc4, but with an added

constraint of metabolite availability. The metabolite

concentrations were obtained from ordinary differential

equation (ODE) based kinetic model of carbohydrate

metabolism. This model consisted of 64 reactions, of

which all reactions were assumed to follow Michaelis–

Menton kinetics, except those describing metabolite

transports. The model was simulated using Teranode

Design Suite (www.teranode.com).

Scheme 6 [sc6]: 1
½E�: where [E] is the molecular abun-

dance of the enzyme responsible for driving the reaction,

obtained from transcriptomic experiments.

Implementation of weights

To maintain the stoichiometric information of the reaction,

parameters were calculated by taking the average of all the

substrates and products. For a reaction: A ? 2B ? C ? D,

the different weighting schemes were implemented as

follows:

KS
M

KP
M

¼
KA

Mþð2�KB
MÞ

3

KC
M
þKD

M

2

;

KM

Kcat

¼
KA

Mþð2�KB
MÞ

3

Kcat

;

DG was calculated for complete reaction using GCM;
1

Vmax
= Every reaction and therefore edges connecting

the substrates and products have same value of Vmax, since

it is common for a reaction;

1

Vmax½S�
¼ 1

Vmax � ðA� B� BÞ
1
3

;

1
½E� = constant for a given reaction.

Finally, a total of 7 networks (6 weighted and 1

unweighted) were generated to analyse and compare the

different weighting schemes. It should be noted here, that

since our analysis involves calculating shortest paths, the

weighting schemes have been formulated such that a lower

edge weight and a lower path score implies higher bio-

logical relevance. The path score is calculated by summing

the edge weights.

Network analysis

Floyd–Warshall algorithm (Floyd 1962) is used to calcu-

late shortest paths between all pairs of nodes. The algo-

rithm was implemented in MATLAB-BGL (Batenkov

2011; Gleich 2009). Cytoscape (Shannon et al. 2003) was

used for the purpose of visualizations.

Results

In this study, a weighted biochemical network of carbo-

hydrate metabolism (Network-1) is reconstructed and

weighted based on the different kinetic and thermodynamic

parameters and the abundances of the enzyme responsible

for driving the reactions. Shortest paths between all pairs of

nodes are calculated and compared with reference paths to

study the impact of weights on the network and further

more to compare the different weighting schemes. The

transcriptome and metabolome based weighting scheme is

further used for identifying alterations in biochemical

routes in E. coli upon stress induction using Network-2.

Network reconstruction

Five major pathways of the carbohydrate metabolism, (a)

Glycolysis, (b) Kreb’s cycle, (c) Pentose Phosphate path-

way, (d) Pyruvate metabolism and (e) Gluconeogenesis in

E. coli as provided in KEGG (Ogata et al. 1999) is used to
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reconstruct the network (Network-1). The network consists

of 51 nodes and 107 edges, capturing a total of 64 reac-

tions, of which 23 are reversible. Figure 1 shows the

complete view of the biochemical network used in this

study. Edges in the network are weighted using six dif-

ferent weighting schemes, (1)
KS

M

KP
M

, (2) KM

Kcat
, (3) DG, (4) 1

Vmax
,

(5) 1
Vmax½S� and (6) 1

½E�.

Fig. 1 Cytoscape view of the

complete metabolic network

used in this study. The nodes/

metabolites are colour coded

according to the pathway it

belongs to. (Color figure online)
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Comparison of weighting schemes

This study required comparison between independent

weighting schemes lying in different value ranges and

therefore it was important to normalize the data before

carrying out any analysis. Standard data normalization

procedure was carried out using the following equation:

y� ¼ y� ymin

ymax � ymin

þ 1 ð1Þ

Once the data was processed, different weighting

schemes are compared by calculating all pair shortest

paths using Floyd–Warshall algorithm. A total of 1,892

shortest paths were calculated. Initially, the basic

topological properties such as path length distribution and

network diameter are calculated to check for any resultant

topological variations upon adding weights. In all the 7

networks as expected, the length of the shortest path mostly

occur in the range of 5–7 with the length of the longest

shortest path (network diameter) being 15.

We next analysed the influence of adding weights to the

flow of information by comparing the shortest path scores

and routes between the different weighting schemes. For

this, we describe two terms: (a) Reference paths (RPs) are a

list of biochemical paths that are experimentally well

characterized metabolic conversions. These paths were

obtained from standard text-books and KEGG; (b) Theo-

retical paths (TPs) are the set of all possible shortest paths

calculated between any two nodes from the network. This

does not include the RPs. We obtained a total of 86 RPs

(listed in Table S2) with each path having at least 2

intermediates, excluding the source and destination. Of the

1,806 TPs calculated, 1,272 paths had at least two inter-

mediates. Based on the path length score distribution, it

was observed that a very small percentage of paths exceeds

path length = 10. Therefore, amongst the 1,272 TPs, those

with more than 8 intermediate steps ([length 10) were not

included for this analysis to remove any bias that may arise

due to high scores obtained as a result of longer path

length. Finally, for each weighting scheme, the scores of

the computed paths corresponding to the 86 RPs were

compared to those of the remaining 1,066 TPs. It must be

noted that TPs reflect a set of all possible biochemical

conversions between all pairs of metabolites, under the

directional constraints of the network, if all conversions

were equally possible. Clearly, this is not the case, since in

the network considered, only 86 conversions are known to

be present. A good weighting scheme should be able to

discriminate among them and provide top ranks (lower

path costs) to the experimentally proven RPs.

Figure 2 plots the percentage distribution of the path

scores obtained after using different weighting schemes for

the 86 RPs as compared to the 1,066 TPs. The figure

clearly indicates that use of weights in general improve the

scores, with the paths corresponding to the 86 RPs having

higher scores (lower weights/lower cost) while the 1,066

TPs having much poorer scores (higher weights/higher

cost). It must be noted that from an unweighted graph, all

1,066 TPs and the 86 RPs score the same (if path length is

same) and hence it is difficult to discriminate RPs from

TPs. Among the weighting schemes, sc1 and sc2 perform

best in identifying RPs as the best biochemical routes. The

significance of using weights is thus clear from this ana-

lysis, of which the kinetic parameters
KS

M

KP

M

and KM

Kcat
present

the best weighting schemes with sc1 scoring 70.8 % of RPs

with high ranking scores (lower path scores) and sc2

scoring 74.4 %. On the other hand, sc3/4/5 although have

lesser percentage of RPs in the low-scoring region; they are

higher when compared to TPs. Infact, as can be seen in

Fig. 3(a, b), sc3 and sc5 consistently display higher path

scores as compared to its counterparts. Another interesting

observation that is evident from Fig. 2f as well as Fig. 3(a,

b) is that transcriptome derived weighting schemes gives

the lowest scores for a given path, amongst all other

schemes. However, it is inadequate to distinguish the TPs

from the RPs (Figs. 2f, 3b). Figure 3b shows the heat map

of the distribution of the scores for all the 1,152 paths (86

RPs ? 1,066 TPs). In case of sc1 and sc2, it is clearly

visible that the paths belonging to RPs (top panel) have

lower scores as compared to other TPs (lower panel). It

should be pointed out here that few TPs do exist that have

lower path scores, indicating that alternate routes with

marginally lower scores exist for many reactions suggest-

ing that subtle change in the kinetic parameters and/or

molecular abundances at key positions in the network

could be sufficient to bring about alterations in biochemical

routes, indicating a means of achieving robustness of the

biological network from random perturbations. These are

the paths that must be investigated thoroughly and should

be considered during therapeutic interventions. Overall, it

is clear from this analysis that scoring schemes do add to

the dynamicity of the network and hence important to

consider for inferring biologically significant routes.

Analysis of alternate paths

In the previous section, we discussed about the pool of TPs

that can form alternate paths under diseased or perturbed

conditions. To probe further into this aspect, we performed

a detailed analysis and compared the different weighting

schemes on the basis of the routes taken up by the shortest

paths. Table 1 shows the number of different routes taken

up by the different scoring schemes. Overall, it is observed

that the different networks majorly tend to follow the same
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route, with a small percentage (*4–5 %) of shortest paths

showing different routes.

An example of an alternate path is observed when one

considers the traversal from acetyl-CoA to malate, wherein

the different weighting schemes suggest two routes, one via

citrate, and another via oxaloacetate. Considering that the

reactions are reversible, both the routes are feasible and can

be taken under different dynamic states of the system. Such

examples strongly indicate the presence of alternate routes

that may turn out to be important under certain abnormal

conditions.

Overall, it is seen that for a given pair of nodes, different

weighting schemes can yield different routes, highlighting

the fact that each weighting scheme adds its own per-

spective to the network and thus integrating these weight-

ing schemes, where parameters are available, could lead to

much more useful networks. Often, all weighting schemes

cannot be applied to specific networks being studied, due to

the paucity of data. For example, Vmax, KM and Kcat are

available for some enzymes, whereas transcriptomics and

metabolomics data is available for some other enzymes. A

more useful approach would then be to combine different

parameters that may be available for the system under

consideration, so as to obtain integrated weights. This

becomes even more important in light of the omics data

that is now increasingly becoming available in large

quantities. Moreover, choosing a particular weighting

scheme would depend on the question being asked. For

e.g.: in cases such as environmental shifts or non-avail-

ability of preferred nutrient source, weights derived from

biochemical parameters may not be useful, but metabolo-

mics and transcriptomics data, if available, may prove to be

useful to understand the various hidden adjustments being

undertaken by the cell to adapt to a particular condition.

Fig. 2 Percentage distribution of the path scores for the different

weighting schemes, a sc1, b sc2, c sc3, d sc4, e sc5 and f sc6. Red bar

represents the 86 RPs (Reference/Standard) while the blue bar

represent 1,066 TPs (Theoretical). Percentage distribution was cal-

culated to normalize the discrepancy of the number of data points in

the two sets. (Color figure online)
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To illustrate this, we combine transcriptomic and meta-

bolomics data, which is equivalent to integrating sc5 and sc6

and apply network analysis (using Network-2) to understand

stress response. As an example, we choose E. coli, a well

studied bacterial system for which omics data and other bio-

chemical and molecular data are readily available. This

approach lends for ready adaptation in other networks as well.

E. coli stress response

Escherichia coli cells are known to best grow on glucose

medium and undergo stress when the medium is shifted to

lactose (Kayser et al. 2005). This phenomenon is known as

glucose–lactose shift, under which the bacteria alters its

metabolism to adapt to the new environmental conditions.

Fig. 3 a Path scores of the different weighting schemes for the 86

RPs. Sc3 and sc5 show consistent higher values, while sc6

consistently shows lower values. b Heat map showing the scores

obtained by each path by the different weighting schemes (sc1, sc2,

sc3, sc4, sc5, sc6); top panel represents the 86 RPs and the bottom

panel shows 1,066 TPs. Higher density of blue is seen for sc1 and sc2

in the top panel. It should also be noted that sc6 shows lower scores

for all the paths. (Color figure online)
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Given this information and the network approach described

above, it was interesting to study the changes that the

bacteria achieve upon lactose shift (Jozefczuk et al. 2010).

This network (Network-2) consists of 250 nodes/metabo-

lites and 331 edges/interconnections. The experimental

data (transcriptome and metabolomics data) are available

for two time points (OD = 0.6 and 0.7) before the induc-

tion of stress and 4 time points, after every 10 min of stress

induction. Metabolomics data is also available for 90, 140

and 210 min after stress. The first time point (t0) at

OD = 0.6 represents the control and is abstracted as an

unweighted network. For the other time points (t1–t8), the

fold change of metabolite and enzyme concentrations are

combined as shown in Eq. 2 to weight the networks.

Eij ¼
1

RMi
� RMj

� RT

ð2Þ

where, R� ¼ ratio ¼ perturbed
controlðOD¼0:6Þ; Mi = metabolite i,

Mj = metabolite j; T = enzyme involved in the reaction;

Eij = edge weight.

It should be mentioned here that since this stress

response involved metabolic alteration and not genetic

defects or mutations, the kinetic and thermodynamic

parameters would not alter and hence, using weighting

schemes derived from only the omics data was sufficient to

understand the metabolic shifts.

Nine different networks representing the different time

points are generated. To study how information is processed,

shortest paths between all node pairs are analysed and com-

pared between the networks. Table 2 gives the number of

alternate routes and therefore metabolic adjustments that are

taken up as the system shifts to different time points. Transi-

tion of the system upon perturbation and attainment of altered

steady state behaviour is clearly seen. Pairs that show more

than 20 % alternate routes are in bold values while those

showing lower percentage of alternate routes are in italicized

values. In general, networks generated after stress induction

show high similarity amongst themselves as compared to the

time points before the induction of stress. Higher percentage

of dissimilarity between t0 and t1 highlights the dynamics that

occur at the transcriptomics as well as the metabolomics data

as the bacteria shifts from a log phase (OD = 0.6) to sta-

tionary phase (OD = 0.7). However, upon introducing stress

the cell dynamics changes rapidly to obtain a new altered

steady state that best suits the environmental conditions. Ini-

tially, at t3 (10 min after stress) the network shows higher

similarity to the unperturbed network and slowly transition

away from the unperturbed state. It is interesting to note that

38.8 % of the metabolic pathways are altered between the

initial steady state (t0) and the altered steady state (t8).

Experimental data suggests that upon inducing stress, bacte-

rial growth is arrested for 40 min after which it resumes

growth. Based on this and the data described in Table 2, it

seems that although alterations start occurring immediately

after stress induction, cell growth is resumed only after a

particular threshold of alterations have been successfully

manifested. Infact, the average difference is seen to be lowest

for the network at t5 (40 min) suggesting the majority of

changes required for adaptation have been accomplished at

this stage. Based on the above network analysis, one can easily

gather that upon stress induction, the organism immediately

starts preparing itself to deal with stress and hence we observe

major metabolic shifts immediately after the stress response.

Once, the system is stabilized it resumes growth and even the

number of metabolic shifts, as obtained from network ana-

lysis, decreases. This highlights the importance of such studies

for interpretation of experimental data, since we now know

Table 1 Different path routes taken up by the same pair of nodes due

to the different weighting schemes

unw Sc1 Sc2 Sc3 Sc4 Sc5 Sc6

unw 0 80 234 158 190 156 134

Sc1 0 258 118 295 206 136

Sc2 0 299 295 238 140

Sc3 0 120 258 141

Sc4 0 187 128

Sc5 0 125

Table 2 Percentage of altered routes between the different networks representing the time dependent response of the E. coli cell under carbon

stress condition

OD 0.6 OD 0.7 10 min 20 min 30 min 40 min 90 min 140 min 210 min

(t0) (t1) (t2) (t3) (t4) (t5) (t6) (t7) (t8)

(t0) 0 24.1 19.3 42.2 39.5 41.5 39.6 40.6 38.9

(t1) 0 15.3 35.5 39.8 36.6 39.3 35.7 39.5

(t2) 0 36.7 29.5 30.3 29.9 32.6 36.4

(t3) 0 9.8 14.2 11.5 12.6 19.4

(t4) 0 5.9 2.3 9.1 15.4

(t5) 0 4.7 3.2 10.1

(t6) 0 7.9 14.8

(t7) 0 7.3
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how and where these metabolic alterations occur. Figure 4

shows example of the different shortest paths taken up by the

same pair of nodes as a function of time.

Discussion

In this study, the problem of pathway identification has

been approached using network analysis, but after refining

the networks with thermodynamic and kinetic parameters

and protein abundances. Six different weighting schemes

based on the kinetic, thermodynamic and transcriptomic

data were used and compared using shortest path analysis.

It is observed that the schemes derived from kinetic data

fared best and could easily differentiate reference paths

from theoretical paths. Detailed analyses suggest that

adding weights, add to the information content of the

network and makes the network biologically more

Fig. 4 Illustration of the

different metabolic routes taken

up by the network at different

time points, highlighting the

change in dynamics of the cell.

Paths for two pairs of nodes are

shown in different colours at

a time point t0, b time point t2,

c time point t5 and d time point

t8, highlighting the different

phases of the system. (Color

figure online)
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meaningful. It is also noted that each weighting scheme,

adds its own perspective to the network and therefore

combining these weighting schemes would make the

network much more realistic. This was further tested

using E. coli stress response, wherein transcriptomic and

metabolomics data are integrated to derive a weighting

scheme.

A unique and important feature of this approach is that it

makes available a pool of potential alternate paths that can

be taken up by the system under different conditions.

Interestingly, even with the normal network topology, the

different weights can give rise to alternate routes. An

example of such routes that are feasible but not considered

standard is also provided. We believe that due importance

should be given to these low-scoring and feasible alternate

routes, which can then form a pool of possible paths that

can be targeted therapeutically under abnormal conditions.

The use of network makes it easier to perform such

analysis on large scale genomic data. Further, unlike other

methods of route identification such as flux balance ana-

lysis (FBA), this method does not need prior information to

define the objective function. Moreover, conditions that

mimic latency require down-regulation of fluxes, which is

difficult to capture via FBA, since minimizing the objective

function would lead to zero fluxes, therefore providing no

information about the system. Such conditions, however,

can be easily mimicked using the approach explained in

this study. When new data pertaining to enzyme or

metabolite abundances or even the variations in kinetic

parameters due to mutants or comparison of homologous

proteins become available, they can be easily incorporated

into the network. Studies providing insights about gene

knockouts, genetic defects, growth under nutrient deprived

conditions or anaerobic conditions can be easily performed

using this method.

An important limitation of the study is the availability of

kinetic, thermodynamic, transcriptomic and metabolomics

data for the same condition. Depending upon the origin of

the disease, a suitable weighting parameter that best

describes the abnormality can be used. For disease that

involve alterations in enzyme activity, weighting schemes

based on kinetic and thermodynamic parameters in com-

bination with transcriptomic and metabolomics data would

be useful, while for those abnormal conditions where shift

in metabolite concentration occurs (lactose shift), only

using transcriptomic and metabolomics data should be

sufficient to understand the flow of information in altered

condition.

We believe that with the increasing availability of high

throughput data, this approach can be successfully used to

understand the hidden metabolic changes that a cell

undergoes during perturbations which can be then exploi-

ted for many applications including drug discovery.

References

Acuña V, Ferreira C, Freire A, Moreno E (2011) Solving the

maximum edge biclique packing problem on unbalanced bipar-

tite graphs. Discret Appl Math. doi:10.1016/j.dam.2011.09.019

Aittokallio T, Schwikowski B (2006) Graph-based methods for

analysing networks in cell biology. Brief Bioinform

7(3):243–255

Arita M (2012) From metabolic reactions to networks and pathways.

Bact Mol Netw, Springer 804:93–106

Batenkov D (2011) Boosting productivity with the boost graph

library. XRDS Crossroads ACM Mag Stud 17(3):31–32

Cornish-Bowden A, Cárdenas ML (2003) Metabolic analysis in drug

design. C R Biol 326(5):509–515

Croes D, Couche F, Wodak SJ, van Helden J (2005) Metabolic

PathFinding: inferring relevant pathways in biochemical net-

works. Nucleic Acids Res 33(suppl 2):W326–W330

Croes D, Couche F, Wodak SJ, van Helden J (2006) Inferring

meaningful pathways in weighted metabolic networks. J Mol

Biol 356(1):222–236

Dreyfuss JM, Zucker JD, Hood HM, Ocasio LR, Sachs MS, Galagan

JE (2013) Reconstruction and validation of a genome-scale

metabolic model for the filamentous fungus Neurospora crassa

using FARM. PLoS Comput Biol 9(7):e1003126

Flight MH (2010) Drug screening: shifting energy metabolism. Nat

Rev Drug Discov 9(4):272

Floyd RW (1962) Algorithm 97: shortest path. Commun ACM

5(6):345

Gleich DF (2009) Models and algorithms for pagerank sensitivity.

Stanford University

Hawick KA (2011) Applying enumerative, spectral and hybrid graph

analyses to biological network data. Small 15:16

Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK,

Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001)

Integrated genomic and proteomic analyses of a systematically

perturbed metabolic network. Science 292(5518):929–934

Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering

regulatory and signalling circuits in molecular interaction

networks. Bioinformatics 18(suppl 1):S233–S240

Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A,

Steinhauser D, Selbig J, Willmitzer L (2010) Metabolomic and

transcriptomic stress response of Escherichia coli. Mol Syst Biol

6:364

Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis

of Escherichia coli in glucose-limited continuous culture.

I. Growth-rate-dependent metabolic efficiency at steady state.

Microbiology 151(3):693–706

Liebermeister W, Klipp E (2006) Bringing metabolic networks to life:

integration of kinetic, metabolic, and proteomic data. Theor Biol

Med Model 3(1):42

Ma’ayan A (2009) Insights into the organization of biochemical

regulatory networks using graph theory analyses. J Biol Chem

284(9):5451–5455

Mavrovouniotis ML (1990) Group contributions for estimating

standard gibbs energies of formation of biochemical compounds

in aqueous solution. Biotechnol Bioeng 36(10):1070–1082

Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010)

BioNumbers—the database of key numbers in molecular and

cell biology. Nucleic Acids Res 38(suppl 1):D750–D753

Noirel J, Ow SY, Sanguinetti G, Jaramillo A, Wright PC (2008)

Automated extraction of meaningful pathways from quantitative

proteomics data. Brief Funct Genomic Proteomic 7(2):136–146

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999)

KEGG: Kyoto encyclopedia of genes and genomes. Nucleic

Acids Res 27(1):29–34

56 S. Ghosh et al.

123

http://dx.doi.org/10.1016/j.dam.2011.09.019


Palsson B (2000) The challenges of in silico biology. Nat Biotechnol

18(11):1147–1150

Pitkänen E, Jouhten P, Rousu J (2009) Inferring branching pathways

in genome-scale metabolic networks. BMC Syst Biol 3(1):103

Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M,
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