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ABSTRACT

Motivation: Advancements in high-throughput technology have

allowed researchers to examine the genetic etiology of complex

human traits in a robust fashion. Although genome-wide association

studies have identified many novel variants associated with hundreds

of traits, a large proportion of the estimated trait heritability remains

unexplained. One hypothesis is that the commonly used statistical

techniques and study designs are not robust to the complex etiology

that may underlie these human traits. This etiology could include non-

linear gene � gene or gene� environment interactions. Additionally,

other levels of biological regulation may play a large role in trait

variability.

Results: To address the need for computational tools that can explore

enormous datasets to detect complex susceptibility models, we have

developed a software package called the Analysis Tool for Heritable

and Environmental Network Associations (ATHENA). ATHENA com-

bines various variable filtering methods with machine learning tech-

niques to analyze high-throughput categorical (i.e. single nucleotide

polymorphisms) and quantitative (i.e. gene expression levels) predictor

variables to generate multivariable models that predict either a cat-

egorical (i.e. disease status) or quantitative (i.e. cholesterol levels)

outcomes. The goal of this article is to demonstrate the utility of

ATHENA using simulated and biological datasets that consist of

both single nucleotide polymorphisms and gene expression variables

to identify complex prediction models. Importantly, this method is

flexible and can be expanded to include other types of high-through-

put data (i.e. RNA-seq data and biomarker measurements).

Availability: ATHENA is freely available for download. The software,

user manual and tutorial can be downloaded from http://ritchielab.psu.

edu/ritchielab/software.

Contact: marylyn.ritchie@psu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The sequencing of the human genome and significant advance-

ments in high-throughput technology allow for exploratory

analyses, which have the goal of interrogating variation at dif-

ferent levels of biological regulation (Ideker et al., 2001; Reif

et al., 2004). These technologies generate a massive amount of

various types of data and are steadily becoming less expensive

and more efficient (Pareek et al., 2011). One major bottleneck in

making full use of these data is the analysis strategy. First, be-

cause of the massive amount of data being generated, analysts

must have access to computers with adequate resources. Second,

computational techniques must be used that can analyze datasets

with hundreds of thousands to millions of predictor variables in

a feasible amount of time. Finally, to incorporate the potential

complexity of these predictor variables, statistical methods must

be used that can detect non-linear interactions and handle vari-

ous types of data appropriately. Thus far, the most commonly

used analytical techniques have focused on the first two require-

ments. For example, genome-wide association studies (GWAS)

calculate the association of each individual single nucleotide

polymorphism (SNP) from a high-throughput genotyping plat-

form with the trait of interest. The P-value is then corrected for

all of the statistical tests that were done (Watanabe, 2011).

Inherently, this type of analysis is only going to find associations

with strong enough main effects to pass the significance thresh-

old. Therefore, GWAS will not find SNPs with phenotypic

effects that rely on variation at another predictor variable

(gene� gene or gene� environment interactions). This could be

a factor in one of the major criticisms of GWAS—much of the

trait variability estimated to be due to genetic factors remains

unexplained by the thousands of novel variants identified by

these studies (Visscher et al., 2012).
To address this criticism, various statistical methods have been

developed that allow for the discovery of gene–gene and gene–

environment interactions (Cordell, 2009). For example, multifac-

tor dimensionality reduction performs an exhaustive analysis of

all n-wise interacting loci to generate multilocus predictor models

(Ritchie et al., 2001). Here, we assess several methods that

have capacity to perform a meta-dimensional analysis. A meta-

dimensional study is defined as one that integrates different types

of data that represent different levels of biological regulation to

predict a given outcome (Holzinger and Ritchie, 2012). The

Analysis Tool for Heritable and Environmental Network

Associations, or ATHENA, is a software package that combines

various statistical methods as a filtering-modeling pipeline to

identify complex prediction models (Holzinger et al., 2010,*To whom correspondence should be addressed.
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2011, 2012; Turner et al., 2010). The overall goal of ATHENA is

to provide the user with a platform to flexibly apply the statis-

tical techniques to identify models that may be missed by other
methods or any single method alone. The statistical methods in

ATHENA are selected based on a number of criteria, including

robustness to non-linear interactions, which will allow us to

assess the role of these types of genetic effects on phenotypic
variation in complex human traits. Figure 1 shows a schematic

of the ATHENA methodology. ATHENA includes filtering and

modeling components to generate the complex prediction
models. In this analysis, we assess the modeling methods’ abilities

to identify complex genetic models using simulated data. Owing

to the substantial increase in noise that is inherent to high-
throughput data, we apply the ATHENA filtering method

Random Jungle (RJ) to the biological dataset before generating

the prediction models. The filtering and modeling methods have

been previously tested with various inputs, including SNPs and
expression data. Future work will assess other components of

ATHENA, such as the inclusion of environmental factors and

the impact of certain characteristics of genetic data such as
sample size, missing data points and minor allele frequency.

2 MATERIALS AND METHODS

2.1 Data simulation

To test our approach, we simulated data that consisted of SNP genotypes

with two functional SNPs that predicted a binary outcome. These

datasets were generated using genomeSIMLA, which has been previously

described in detail (Dudek et al., 2006). Several genetic models were

simulated with different effect types, effect sizes and variable counts for

a total of 12 models. Two null models (where no genetic effect was

simulated) were also generated to get a false-positive estimate. The data

were simulated with patterns of correlation between the SNPs to repre-

sent linkage disequilibrium. Details of the model parameters are show in

Table 1. The penetrance functions used to generate the models can be

found in Supplementary Table S1.

For the meta-dimensional data simulation, we modified a previously

developed technique to generate SNP genotype and expression variables

(EVs) that predict a quantitative outcome (Chalise and Fridley, 2012).

This method has previously been described in detail (Holzinger et al.,

2012). We generated datasets with genetic effect models that consisted

of two or three function variables with various effect types, effect sizes

and variable counts for a total of 12 models. The descriptions of these

models are shown in Table 2. We also simulated two null models for this

analysis. More details about the genetic effects of the models can be

found in Supplementary Table S2. Figure 2 shows a schematic of each

of the three genetic effect models as described in Table 2. For each model,

an indirect effect SNP was generated by forcing correlation between this

SNP and the functional EV with an R2 value of �0.3.

2.2 Biological dataset

For this analysis, we used a publicly available dataset that consists of

genome-wide SNPs, EVs and a cytotoxicity measurement generated from

172 HapMap lymphoblastoid cell lines (LCLs). Details of this dataset can

be found from a previous study that used these data (Huang et al., 2007).

Briefly, cytotoxcity of etoposide, a chemotherapeutic agent, was calcu-

lated as IC50, or the concentration of drug at which 50% of the cells

remain viable. IC50 values were log-transformed. This quantitative

outcome was adjusted to account for relatedness, ethnicity and gender

using the residuals from a mixed model regression analysis in genABEL

in the R software package (Aulchenko et al., 2007). We reduced the initial

number of SNPs downloaded from the HapMap Web site from �3 to

�1.3 million by removing SNPs with minor allele frequency50.05 and

genotyping call rate of5100% (i.e. no missing data). The EV data con-

sisted of �18000 transformed and normalized baseline expression levels

Fig. 1. ATHENA filtering and modeling components

Table 2. Meta-dimensional data simulation details

Parameter Values

Genetic effect model All main effects (main); SNP�SNP interaction

effectþEV main effect (S�SþE); SNP�EV

interaction effect (S�E)

Effect sizea 0.05; 0.15

Variable count 100 SNPs/50 EVs; 1000 SNPs/500 EVs

Individuals 4000 with quantitative outcome

Datasets per model 100

aCalculated as the adjusted R2 value from the linear regression model that included

all of the main and interaction effects listed.

Table 1. SNP-only simulation details

Parameter Values

Genetic effect model No main effects; main and interaction effects

Effect sizea 0.01; 0.05; 0.15

Variable count 100; 1000

Individuals 2000 cases/2000 controls

Datasets per model 100

aCalculated as broad sense heritability or the proportion of outcome variation due

to all genetic effects.
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from the LCLs using the Affymetrix GeneChip Human Exon 1.0ST

Array. These expression levels were downloaded from Gene Expression

Omnibus, accession id: GSE7792.

2.3 ATHENA filtering: RJ

For the biological dataset analysis, we applied a variable filtering method

before modeling to reduce the noise in the dataset. We used RJ (Schwarz

et al., 2010), which is a parallelized and faster implementation of Random

Forests (RF) (Breiman, 2001). Briefly, RFs use a bootstrap sample of the

data to grow a collection of decision or regression trees without pruning.

The importance of each of the variables is then tested using the out-

of-bag individuals not included the bootstrap sample and then ranked

according to an importance score. The importance score is calculated as

the percent increase in mean squared error after permuting the variable

values. Specifically, we used a modified version of the importance score,

which takes into account correlated predictor variable (i.e. linkage dis-

equilibrium in SNPs) (Meng et al., 2009).

2.4 ATHENA modeling: GENN and GESR

Two different analysis methods are available in ATHENA: grammatical

evolution neural networks (GENN) and grammatical evolution symbolic

regression (GESR) (Motsinger et al., 2006, submitted for publication;

Turner et al., 2010; Holzinger et al., 2011). Both use computational evo-

lution to optimize an initial random population of solutions to generate a

final best model. Specifically, grammatical evolution (O’Neill and Ryan,

2001), a more computationally efficient variation of genetic programing

(Koza, 1992) is used to optimize artificial neural networks (ANNs) or

symbolic regression formulas (SRs) in GENN and GESR, respectively.

ANNs are a collection of analog processors that operate in parallel to

model the relationship between a set of input variables (i.e. SNPs) and the

output variable (i.e. case or control status) (Bishop, 1995). SRs are math-

ematical functions that map input variables to an output variable and are

traditionally optimized using a form of genetic programing (Moore et al.,

2007). The details of the grammatical evolution (GE) algorithm for both

GENN and GESR are given below:

(1) The dataset is divided into five equal parts for 5-fold cross-valid-

ation (4/5 for training and 1/5 for testing).

(2) Training begins by generating a random population of binary

strings initialized to be functional ANNs or SRs. Both the model

structure and the variables included are randomly generated. The

population is divided into demes across a user-defined number of

CPUs for parallelization.

(3) The ANNs or SRs in the population are evaluated using the train-

ing data and the fitness (balanced classification accuracy for binary

outcomes or R2 for quantitative outcomes) for each model is

recorded. The solutions with the highest fitness are selected for

crossover and reproduction, and a new population is generated.

(4) Step 3 is repeated for a predefined number of generations.

Migration of best solutions occurs between CPUs every

n-number of generations, as specified by the user.

(5) The overall best solution across generations is tested using the

remaining 1/5 data and fitness is recorded.

(6) Steps 2–5 are repeated four more times, each time using a different

4/5 of the data for training and 1/5 for testing. The best model is

defined as the model identified the most over all five cross-

validations. Ties are broken using the fitness metrics described

later in the text.

For this analysis, fitness is calculated using R2 for quantitative outcomes,

where, for each individual i, y is the observed value, y-hat is the predicted

value and y-bar is the mean of the observed values (Equation 1).

Balanced accuracy is used for binary outcomes, where TP are the true

positives, FN are the false negatives and TN are the true negatives

(Equation 2). This is the average of the sensitivity and specificity of the

solution.

r� squared ¼ 1�

P
i

ðyi�ŷiÞ
2

P
i

ðyi�yÞ
2

2
64

3
75 ð1Þ

balanced:accuracy ¼
ðTP=ðTPþ FNÞ þ TN=ðTNþ FPÞÞ

2
ð2Þ

2.5 Lasso

We compare GENN and GESR with Lasso, a regression-based variable

selection method that minimizes the sum of squared errors using a tuning

parameter (Tibshirani, 1996). The resulting coefficient shrinkage allows

for the generation of a parsimonious prediction model. For this study, we

implemented Lasso using the R package penalized (Goeman, 2010). For

each of the genetic models, we optimized the lambda value (or coefficient

shrinkage tuning parameter) as suggested by the authors. We also used

5-fold cross-validation so that R2 values would be comparable with those

in GENN and GESR.

3 IMPLEMENTATION

3.1 ATHENA

ATHENA is implemented in Cþþ and uses the libGE (version

0.2.6) grammatical evolution library and the GAlib (version
2.4.7) genetic algorithms library for both GENN and GESR.
The application can run in parallel with multiple populations

and uses the Message Passing Interface (MPI) for communica-
tion. In cases where no parallel infrastructure exists, a serial ver-

sion can be compiled to run with a single population. Dummy
configuration files showing specific parameters for the simulated

and biological dataset analyses are shown in Supplementary
Table S3. These parameter settings were chosen based on a series

of previous optimization tests that were done to identify the
settings that performed best across various genetic models

(Holzinger et al., 2010, 2011).

3.2 RJ

The Linux 64 Bit MPI version of RJ (Build 1.3.0) was down-
loaded precompiled from http://imbs-luebeck.de/imbs/de/node/

227. For this analysis, we used the parallel implementation of
RJ (rjunglep). The specific parameter settings for each of the runs

are shown in Supplementary Table S4.

Fig. 2. Schematic of the three meta-dimensional genetic effect models.

From left to right: main effect model, SNP�SNPþEV (S�SþE),

SNP�EV (S�E). SNP.IND had an indirect effect on the phenotype

via its correlation with the EV
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4 RESULTS

4.1 Simulated data

For the simulation studies, we applied GENN, GESR and Lasso

directly to the datasets with no variable filtering. We simulated

the data to have variable counts similar to what is expected for

the post-filtering number in biological data. For both the SNP-

only and the SNP þ gene expression (or meta-dimensional) data,

we compare the detection power (number of times the correct

variables were identified in the best model), modeling accuracy

and parsimony of the three modeling methods.

4.1.1 SNP-only data We ran GENN, GESR and Lasso on all
100 datasets and calculated various detection powers. We also

compare the average balanced accuracy of the best models in the

testing set and the average number of variables in the best models

as a metric of deviation from the expected value of two SNPs.

Figure 3 shows the results for each of the 14 genetic effect

models for the SNP-only simulations (Pendergrass et al., 2010).

For each model, the average fitness (balanced accuracy), average

model size (number of variables in the best model) and various

detection powers are shown.

For GENN (squares) and GESR (triangles), detection power

is summarized as the number of times out of the 100 datasets that

SNP1, SNP2, both SNPs (full model) or both SNPs with no false

positives (full model specific) are identified in the final best model.

Because the Lasso models (circles) were much less parsimonious,

full model detection was calculated as the number of times SNP1,

SNP2 or both SNPs appeared in the top four variables as deter-

mined by the absolute value of the regression coefficient. This

value was chosen because it was the average size of the GENN

and GESR models across all models. The full model specific

detection power was calculated as the number of times both

SNPs were identified in the top two variables as determined by

the absolute value of the regression coefficient.
For the models with main and interaction effects (1–6), all

three methods identify both SNPs in the best model at least

50/100 datasets (green bars). GENN adds additional loci in the

best model as indicated by a lower full model specific detection

power (yellow bars). However, the average model size is52.5 for

each of the GENN analyses, so the method is adding few add-

itional ‘false positive’ loci to the model and is still relatively

parsimonious. Overall, GENN also has slightly better average

fitness than GESR for these models.
GENN has better detection power and is more parsimonious

than GESR and Lasso for all of the models with no main effects

(7–12). Importantly, Lasso had essentially no power to identify

the model with no main effects, as shown by the circles. Lasso

was also much less parsimonious as shown by the model size.

Additionally, for model 12, none of the methods identified the

model. This appears to be an effect size/variable count threshold

at which the parameters of GENN and GESR (i.e. number of

generations and population size) would need to be adjusted to

allow for model detection.

4.1.2 Meta-dimensional simulated data For each of the meta-
dimensional data simulations models, we ran the three methods

on 100 datasets per model. Figure 4 shows the results from this

analysis. The detection power results are summarized slightly

differently than the SNP-only simulation results. SNP detection

power is the average number of times either SNP was identified

in the best model for the genetic effects that include two SNPs

(main and S� SþE). EV detection power is the number of times

the EV was identified in the best model. Two var. detection

power is the number of times at least two of the variables from

the genetic effect model were identified. Full model detection

power is the number of times all of the direct effect variables

were identified. The detection power for Lasso was calculated so

that full model indicates that the functional variables were in the

Fig. 3. Results from the SNP-only simulation analyses. Description of

the 14 genetic effect models is shown in the first three columns. Detection

power is defined as the number of times out of 100 datasets the indicated

variable(s) is identified. Avg. Fitness is defined as balanced accuracy.

Avg. Model Size is defined as the average number of variables in the

best model

701

ATHENA

Data
,
data set
,
3.4.2&emsp;
,
data set
,
data set
,
,
-
data set
less than 
very 
``
''
-
3.4.3&emsp;
data set
x


top five and full model specific indicates they were in the top two

or three as determined by the absolute value of the coefficient.

We standardized the coefficients so that they would be compar-

able for SNPs and EVs. Note that because the S�E model only

has two direct effect variables, the two var. and full model detec-

tion powers will be identical.
For most of the genetic effect models, Lasso has highest power

to detect the functional variables. This could be, in part, due to

the manner in which the meta-dimensional data were simulated.

The effect of each variant on the outcome is determined by a

linear function as described previously (Holzinger et al., 2012).

Because Lasso is generating a linear prediction model, it may

have an advantage over GENN and GESR for this specific

type of simulation not seen in the SNP-only data. For GENN

and GESR, GENN had higher detection power for identifying

two variables (green bars) and the SNP (blue bars), whereas

GESR has overall higher EV detection power (red bars).

Additionally, GESR is too parsimonious as shown by the aver-

age model size which is �1 for each of the genetic effect models

where the correct model has either three (main and S� SþE) or

two (S�E) direct effect variables. Again, Lasso is the least par-

simonious with up to 73 variables in the final model.

Notably, neither GENN nor GESR was able to identify all

three variables in the model for the main and S� SþE genetic

effects 42/100 times. This could be due to the restrictions on

parameter settings that improve detection power but also result

in longer run times and increased memory consumption. To test

this, we ran 5/100 datasets from the 3-variable genetic effect

models (150 variables and an effect size of 0.15) with a larger

population size, maximum depth and longer number of gener-

ations in GENN and GESR. Table 3 shows the results from

these analyses. For GENN, 3/5 best models included all three

direct effects for the main effects datasets. One of the other

models included the two direct effect SNPs and the indirect

effect SNP, which is correlated with the EV. For the S� SþE

Fig. 4. Results from the meta-dimensional simulation analyses.

Description of the 14 genetic effect models is shown in the first three

columns. Detection power is defined as the number of times out of 100

datasets the indicated variable(s) is identified. Avg. Fitness is defined as

R2. Avg. Model Size is defined as the average number of variables in the

best model

Table 3. GENN and GESR results from meta-dimensional simulated

data from analyses with longer runtime

Method-model Best model variables Testing

R2
Time

GENN-Main SNP1 SNP2 EV FP1 FP2 FP3 0.16 10h

SNP1 SNP2 SNP.IND 0.13

SNP1 SNP2 EV FP1 FP2 0.18

SNP1 SNP2 EV SNP.IND FP1 0.13

SNP1 SNP2 FP1 0.15

GENN-S�SþE SNP1 SNP2 EV SNP.IND

FP1 FP2 FP3

0.14 10h

SNP1 SNP2 EV 0.15

SNP1 SNP2 EV FP1 FP2 0.14

SNP1 SNP2 EV FP1 FP2 0.13

SNP1 SNP2 EV FP1 0.16

GESR-main SNP1 FP1 FP2 0.05 2.2h

SNP2 0.05

SNP1 FP1 0.09

SNP2 0.08

SNP1 EV 0.12

GESR-S�SþE EV 0.06 2.2h

SNP2 EV 0.09

EV 0.06

EV 0.07

EV 0.09

Note: The correct variables are shown in bold. The direct effect variables are SNP1,

SNP2 and EV. The indirect effect variable is SNP.IND. The false-positive variables

are shown as FP-number. Fitness is the R2 value of the model in the testing set.

Time is computation hours per dataset.
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model, 5/5 best models included all three direct effect variables.

These analyses took �10h per dataset to run (�50h for the

entire analysis). Comparatively, the analysis for all 100 datasets

took 0.8h per dataset (80h for the entire analysis). These par-

ameter settings would have been a large computation burden

because it would take 1000 h to run all 100 datasets. GESR

did not identify42 of the direct effect variables in any of the

models, but computation time was shorter at �2.2h per dataset.
Owing to the ability to model more complex effects, and the

generally higher detection power, we chose to use GENN for the

biological dataset analysis. Also, because Lasso had the highest

detection power for all of the simulated meta-dimensional

models, we assessed its performance on the biological data, as

well.

4.2 Biological dataset

The biological dataset consisted of 172 individuals with genome-

wide SNPs, EVs and etoposide cytotoxicity, which was measured

as the concentration of drug at which 50% of the cells in the

LCL survived, or IC50. We used RJ to filter the SNPs and EVs to

achieve a variable count similar the simulated datasets. The fil-

tered variables were analyzed using GENN and Lasso based on

the results from the simulated data. Figure 5 is a schematic of the

biological dataset analysis design.
We ran RJ on the SNPs and EVs separately and performed

parameter tuning as suggested by the RF authors (Step 1).

Supplementary Tables S5 and S6 show the results from this par-

ameter tuning. Next, we took the top 10% of the variables with

non-zero importance scores in the final iteration of the optimized

RJ runs and ran them in GENN and Lasso. The filtered datasets

consisted of 428 SNPs and 39 EVs. We ran both methods the

following ways: only SNPs (Step 2.1), only EVs (Step 2.3) and

SNPsþEVs (Step 2.2). Finally, we assessed only the SNPs and

EVs from the best GENN and Lasso models (Step 3). The results

are shown in Table 4. Strikingly, GENN is much more parsimo-

nious than Lasso when selecting variables for the final model.

Additionally, even with far fewer variables, the R2 values are

larger in the GENN model in every analysis except Step 2.2.

Many of the same variables appear in both the Lasso and

GENN models, whereas several are unique to the analysis

type. For example, the EVs HIST1H4A-1 and HIST1H4A-2

only appear in the GENN models. This could indicate that

they were identified because of non-linear interaction effects

that Lasso would not be able to identify.

Furthermore, we compared the R2 value from the best GENN

model with the adjusted R2 value from a linear regression model

that included the same three SNPs and five EVs using the R

software package (R Development Core Team, 2011). The ad-

justed R2 value for this model was 0.47 and the model P-value

Table 4. Results from modeling analyses of the RJ filtered data

Analysis Best GENN

model

Best Lasso model Testing R2

(GENN/

Lasso)

SNPs

(step 2.1)

rs1014390 rs1600172 rs12327115 0.18/0.15

rs883834 rs7283476 rs158

rs1600172 rs883834 rs951340

rs1014390 rs4788961

rs6726177 rs4483064

rs10889205 rs947939

rs9355434 rs735155

rs7867860 rs17675487

rs1025926 rs4783018

rs17119606 rs35335364

EVs

(step 2.3)

HIST1H4A-1 FAM3A TECPR2 0.42/0.27

ACER2 TLL2 ARMCX2

EDARADD TRIM3 LMNA

GDI2 EDARADD LARP6

ACER2 MREG

SNPsþEVs

(step 2.2)

rs1600172 rs883834 rs735155 0.21/0.44

HIST1H4A-1 rs7283476 rs10497812

HIST1H4A-2 rs1600172 rs12453548

rs1014390 rs12113766

rs6726177 rs158

rs7867860 rs12327115

rs10889205 rs2709984

rs17119606 rs17675487

rs4783018 EDARADD

rs11964461 ACER2

rs16964544 FAM3A

rs12189541 TRIM3

rs9355434 MVP

rs4788961 ARMCX2

rs11681616 LMNA

Top SNPs

þEVs

(step 3)

rs883834 rs7283476 rs12327115 0.57/0.55

rs1014390 rs883834 rs947939

rs1600172 rs17119606 rs4483064

HIST1H4A-1 rs1014390 rs17675487

HIST1H4A-2 rs6726177 rs1025926

EDARADD rs1600172 FAM3A

rs7867860 EDARADD

rs10889205 TRIM3

rs4788961 ACER2

rs4783018 ARMCX2

rs9355434 LMNA

rs735155 HPN

rs158 LARP6

rs951340

Fig. 5. Schematic of the filtering-modeling pipeline for the biological

dataset analysis
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was 2.2� 10�16. The larger R2 suggests that the GENN best

model (0.57) is capturing the non-linear relationships between

the variables that explain a portion of the phenotype variation

that the linear regression model would not detect. Supplementary

Figure S1 shows the most predictive ANN model from the

GENN analysis described in Step 3. Taken together these results

suggest that using 41 variable type is more informative than

either of the variable types alone (Step 3). However, the

number of input variables has a large impact on the modeling

performance of GENN, as shown by comparing the best models

from Step 2.2 and Step 3. Although they contain many of the

same variables, the testing R2 is substantially greater when the

number of variables is reduced in Step 3

5 DISCUSSION

ATHENA is a software package that incorporates various exist-

ing statistical methods that have specific strengths (i.e. variable

selection or variable modeling) to allow the user to perform a

powerful meta-dimensional study. ATHENA can be used to

analyze one or more data types, while allowing for interactions

between variables to generate meta-dimensional models that pre-

dict either a binary or quantitative phenotypes. For this analysis,

we used simulated datasets to assess the performance of the

ATHENA modeling methods GENN and GESR and compared

them with Lasso. Overall, our results suggest that GENN is

better at correctly and accurately detecting genetic models with

no main effects (Fig. 3). In the simulated meta-dimensional data,

Lasso had higher detection power for the full model than both

GENN and GESR. However, when we used more powerful par-

ameter settings, GENN was also able to identify the full model

consistently. The amount of noise in the data has an increasingly

detrimental effect on GENN and GESR, as shown by the sub-

stantial decrease in detection power from 100 to 1000 SNPs in

the simulated data (Figs 3 and 4). To address this, we used RJ as

a variable selection method because it allows for the identifica-

tion of non-linear interactions and the output from the analysis is

a ranked list of variables, which can be seamlessly filtered into a

more powerful and parsimonious modeling technique, like

GENN.

Another important consideration when selecting analysis

methods is the computation time. Supplementary Table S7

shows the CPU time for GENN, GESR and Lasso for each of

the different analyses. Lasso is considerably faster than either

GENN or GESR, so if computational resources are a major

limitation, this may be the optimal method. However, Lasso is

not robust to models with no main effects, so the overall benefit

of a faster analysis would need to be weighted accordingly.
The filtering-modeling pipeline used here does have certain

limitations. First, none of the modeling techniques specifically

identify conditional relationships, which are likely to be ubiqui-

tous in meta-dimensional data. For example, if a SNP-affected

gene expression level, which, in turn, affected the phenotype,

methods such as GENN are more likely to identify either the

SNP or the EV, but not both. One method, which could model

these types of relationships in a more informative manner are

Bayesian networks (Jiang et al., 2010; Carniak, 1991). Future

improvement to ATHENA will include incorporating Bayesian

networks into the software package to allow for the generation of

more interpretable meta-dimensional models.

Another limitation of our analysis is the selection of the

threshold in the RJ results for filtering variables into GENN.

There is no direct correlation between the RJ importance

scores and a more interpretable metric such as a P-value.

Therefore, the significance level that best distinguishes signal

from noise for different types of data is difficult to determine.

One threshold selection technique may involve running RJ

x-number of times with a different random seed each time and

selecting the variables that appear in the top spots across the

analyses. One issue with this process, however, is the computa-

tional burden of running RJ many times as one single analysis

can take hours or days to complete. Alternatively, there are other

variable selection methods that do not rely on computationally

intense data-driven analyses. Biofilter (Bush et al., 2009), which

is currently a part of the ATHENA package, is a method that

uses information from databases such as Kyoto Encyclopedia of

Genes and Genomes (KEGG) and Gene Ontology (GO) to select

SNPs that are more likely to be a part of the same pathway or

interacting with one another based on known biological func-

tions. Other filtering techniques will be explored in future work.
In our best model, there were three SNPs and three EVs,

which explained �57% of the adjusted trait variation in our

dataset. This model was more predictive than a linear regression

model that included the same variables. One limitation in our

biological analysis, however, is the small sample size (n¼ 172).

This issue is somewhat ameliorated by the relatively large herit-

ability estimates of chemotherapeutic agent cytotoxicity in LCLs

(Watters, 2004). With this sample size, we should still be able to

identify valid models with larger effects; however, an ideal

dataset would be larger to allow for the identification of smaller

effects. The next step in validating this model is to show that it

predicts etoposide cytotoxicity in independent datasets. For a

single SNP, there are factors that make replication less than triv-

ial. Briefly, the most significant SNP is likely correlated with, or

tagging, the true causal SNP. If the correlation patterns between

the discovery and replication datasets are different, the effect

sizes and significance levels will also be different, making exact

replication difficult. This effect is amplified when trying to rep-

licate SNP–SNP interactions or, in our case, meta-dimensional

models. One option for expanding the idea of replication to

meta-dimensional model discovery is to determine whether sets

of SNPs or genes that are correlated with the originally identified

variables are predictive in independent datasets. Additionally,

functional studies could be done to determine if perturbing the

identified genetic regions results in a phenotypic change. For this

analysis, an in vitro experiment could be done using the available

LCLs to determine if the IC50 values change when the genes in

the predictive model are knocked down.
The ultimate goal of ATHENA is to identify biological path-

ways or sets of genes that are a part of the genetic etiology of

various complex phenotypes. These models could then be used to

identify potential drug targets or to identify genes that predict

drug response. By developing a method that incorporates data

from different levels of biological regulation and captures non-

linear relationships between variables, we may be able to explain

more of the trait variability, as was observed in this analysis.
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