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ABSTRACT

Motivation: The Illumina paired-end sequencing technology can

generate reads from both ends of target DNA fragments, which can

subsequently be merged to increase the overall read length. There

already exist tools for merging these paired-end reads when the

target fragments are equally long. However, when fragment lengths

vary and, in particular, when either the fragment size is shorter than a

single-end read, or longer than twice the size of a single-end read,

most state-of-the-art mergers fail to generate reliable results.

Therefore, a robust tool is needed to merge paired-end reads that

exhibit varying overlap lengths because of varying target fragment

lengths.

Results: We present the PEAR software for merging raw Illumina

paired-end reads from target fragments of varying length. The pro-

gram evaluates all possible paired-end read overlaps and does not

require the target fragment size as input. It also implements a statis-

tical test for minimizing false-positive results. Tests on simulated and

empirical data show that PEAR consistently generates highly accurate

merged paired-end reads. A highly optimized implementation allows

for merging millions of paired-end reads within a few minutes on a

standard desktop computer. On multi-core architectures, the parallel

version of PEAR shows linear speedups compared with the sequential

version of PEAR.

Availability and implementation: PEAR is implemented in C and uses

POSIX threads. It is freely available at http://www.exelixis-lab.

org/web/software/pear.
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1 INTRODUCTION

The Illumina sequencing platform can produce millions of short

reads in a single run. The deep sequencing capability and low

cost of the sequencing-by-synthesis technology is useful for a

plethora of applications ranging from whole-genome sequencing

(Liu et al., 2012; Wang et al., 2010) to profiling microbial com-

munities by sequencing the hypervariable regions of the 16S ribo-

somal RNA (rRNA) gene (Bartram et al., 2011; Caporaso et al.,

2011; Degnan and Ochman, 2012; Rodrigue et al., 2010; Zhou

et al., 2011). However, single-end reads produced by the Illumina

platform typically have a length that ranges from 75 to 300-bp.

Furthermore, there is an exponential increase in error rates (ERs)

along the reads (Cox et al., 2010). The Illumina platform can also

generate paired-end reads by sequencing the forward and reverse

strands of each target DNA fragment. If the target DNA frag-

ment size is smaller than twice the length of the single-end reads,

that is, if there exists an overlap, the corresponding paired-end

reads can be merged into a fragment. By merging paired-end

reads, the overlapping region between them can also be deployed

for correcting sequencing errors and potentially yield sequences

of higher quality. Merging paired-end reads is the first processing

step in a plethora of sequence analysis pipelines. Hence, its

accuracy is crucial for all downstream analyses.
There exist several proof-of-concept mergers such as iTag

(Degnan and Ochman, 2012), BIPES (Zhou et al., 2011) and

Shera (Rodrigue et al., 2010). Some production-level mergers

such as FLASH (Magoč and Salzberg, 2011), PANDAseq

(Masella et al., 2012) and COPE (Liu et al., 2012) have also

been recently introduced.

Shera merges the reads by maximizing the number of matches

between the paired-end reads. Both, Shera and FLASH (see later

in the text) ignore the quality scores of the base calls. Shera

merges all reads and leaves it to the user to decide which

merged reads are correct. Because it is a proof-of-concept imple-

mentation, it is up to 100 times slower than competing mergers.
FLASH constructs merged reads that maximize the overlap

length-to-matches ratio. FLASH requires the mean DNA frag-

ment size and standard deviation of the fragment size as input

parameters. Therefore, it can only merge paired-end reads into

fragments of ‘almost’ identical size. Furthermore, our tests show

that FLASH performs poorly when the overlaps between reads

are short (Section 3).
COPE deploys an analogous approach as FLASH for finding

the best overlap, but also takes into account the quality scores of

mismatches. COPE is designed to handle deep genome sequen-

cing datasets. Thus, it considers that k-mers that occur infre-

quently are likely to be sequencing errors. COPE exhibits high

memory requirements and also relatively long execution times.
PANDAseq merges fragments by maximizing the probability

of true sequence matches, given the observed sequences. It com-

bines quality scores with sequence matches and thereby improves

merging quality. In contrast to FLASH, PANDAseq works well

with short overlap regions and does not require prior knowledge

of the target DNA fragment size. However, it assumes that all

paired-end reads can be merged. Thus, if the sample contains*To whom correspondence should be addressed.
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DNA fragments that are at least twice as long as the single-end

reads, PANDAseq exhibits a high false-positive rate (FPR).
Finally, most current paired-end mergers assume that the

DNA fragments are longer than the individual single-end

reads. When this does not hold, for example when sequencing

the V6 region of 16S rRNA genes of bacterial samples [fragment

sizes range between 110 and 130-bp (Gloor et al., 2010)] with

read lengths of 150-bp (see case C in Fig. 1), current mergers will

generate erroneous results.

Here we present PEAR, a fast and accurate paired-end read

merger. PEAR merges reads by maximizing the assembly score

(AS) of the read overlap via a scoring matrix that penalizes

mismatches with a negative value � and rewards matches with

a positive value �. Our approach takes quality scores and

sequence matches into account. It does not require preprocessing

of the raw data or specifying the fragment size. Furthermore,

PEAR neither requires prior information on read length nor

target fragment size. It can reliably identify reads that can

either be merged or need to be discarded. The program is accur-

ate on datasets with (i) short overlaps and (ii) DNA target frag-

ment sizes that are smaller than single-end read lengths.
To identify false-positive merged reads, we propose a statis-

tical test that is based on the observed expected alignment scores

(OESs). On simulated paired-end reads with a mean overlap of

20-bp (Section 3.1), PEAR correctly merges 90.44% of the frag-

ments with a FPR of 2.78% when our statistical test is disabled.

It correctly merges 70.06% of the fragments with a FPR of only

0.48% when the significance level of the test is set to 1%. The

best competing merger (PANDAseq) correctly merges 83.51% of

the fragments, but with a FPR of 6.65%.
We implemented PEAR in C. It includes an optimized

memory management scheme that allows the user to specify

the amount of random access memory (RAM) available for

executing the program. Therefore, it can be deployed on off-

the-shelf desktop and laptop computers as well as on high-end

multi-core servers. In Section 2.4 we outline why PEAR becomes

faster when using less memory. Finally, the parallel version of

PEAR scales linearly with the number of cores.

2 IMPLEMENTATION

In paired-end sequencing mode, the Illumina Consensus

Assessment of Sequence and Variation (CASAVA) software gen-

erates two FASTQ files (Cock et al., 2010), one for each reading

direction of the fragment. The files contain exactly the same

number of reads. Corresponding paired-end reads can be identi-
fied by their coordinates in the flow cell. The Illumina flow cell is
a planar optically transparent surface similar to a microscope

slide. It contains a lawn of oligonucleotide anchors bound to
its surface.
PEAR scores all possible overlaps for each pair of correspond-

ing paired-end reads to determine the overlap with the highest

AS. Subsequently, PEAR conducts a statistical test to assess the
statistical significance of the merged reads. If the merged reads
do not pass this test or if the overlap length is smaller than a

user-defined threshold (based on the expected approximate
sequence length in the experiment) the pair of reads will not be
merged. Otherwise, PEAR returns the merged fragment and will

also correct errors using the Illumina quality scores.

2.1 Overlap algorithm

For each base, CASAVA (v1.8) yields an ASCII-encoded quality

score that represents an integer value Q, which can be converted
into the probability e of a sequencing error at the base via

e ¼ 10
33�Q
10 (e ¼ 10

64�Q
10 in earlier CASAVA versions). The base

frequency b of a nucleotide is the number of occurrences of

that nucleotide in the FASTQ files divided by the total number
of bases. The probability q of a random base match is

q ¼ P2
A þ P2

T þ P2
G þ P2

C. Given an overlapping region

C :¼ ðX,YÞ, where X and Y are the overlapping segments of
the two reads, we denote the observed (respectively true) base

at position i of the overlap by Xi,Yi (respectively X0i,Y
0
i). We

denote the length of the overlap region by jCj. The probability

that base Xi (resp. Yi) is erroneous is eXi
(resp. eYi

). Assuming

that errors are independent events, we can calculate the prob-
ability of a true base match, given the observed base match as

Pr½X0i ¼ Y0ijXi ¼ Yi� ¼ ð1� eXi
Þð1� eYi

Þ þ eXi
eYi

PACGT
b6¼Xi

P2
bPACGT

b6¼Xi
Pb

� �2
The probability of a true base match, given the observed base
mismatch is

Pr½X0i ¼ Y0ijXi 6¼ Yi� ¼ ð1� eYi
ÞeXi

PYiPATGC
b6¼Xi

Pb

þ ð1� eXi
ÞeYi

PXiPATGC
b6¼Yi

Pb

þ eXi
eYi

PATGC
b6¼Xi,Yi

P2
bPATGC

b6¼Xi,Yi
Pb

� �2
and the probability of a true base mismatch, given the observed
base mismatch (or match) is

Pr½X0i 6¼ Y0i jXi 6¼ Yi� ¼ 1� Pr½X0i ¼ Y0i jXi 6¼ Yi�

Pr½X0i 6¼ Y0i jXi ¼ Yi� ¼ 1� Pr½X0i ¼ Y0i jXi ¼ Yi�

If any of the bases are undetermined (denoted by N),

Pr½X0i ¼ Y0ijXi ¼ N or Yi ¼ N� ¼ q

Pr½X0i 6¼ Y0ijXi ¼ N or Yi ¼ N� ¼ 1� q

PEAR calculates the AS for each possible overlap

[assuming no gaps, as they are infrequent on Illumina platforms

A

B

C

Fig. 1. Three possible scenarios for paired-end read lengths and target

DNA fragment lengths. (A) Short overlap between the paired-end reads;

(B) no overlap between the paired-end reads; (C) single-end read length is

larger than the target DNA fragment length
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(Nakamura et al., 2011)] with a scoring matrix that rewards matches

by a positive value � and penalizes mismatches with a negative value
�. Scoring matrices for evaluating sequence alignments are being

routinely used, for instance, in Basic Local Alignment Search Tool

(Altschul and Gish, 1996) and Bowtie2 (Langmead and Salzberg,

2012). Empirical tests using simulated data showed that setting

� :¼ 1:0 and � :¼ �1:0 yield the best results (data not shown).

Given the overlap C :¼ ðX,YÞ, we define AS asX
i¼1:::jCj

ðPr½X0i ¼ Y0ijXi ¼ Yi� � �Þ
�i ðPr½X0i 6¼ Y0ijXi 6¼ Yi� � �Þ

1��i

where

�i ¼
1 : A match is observed ðXi ¼ YiÞ

0 : A mismatch is observed ðXi 6¼ YiÞ

�
For the merged reads, PEAR computes the overlap that

maximizes the AS. We denote the overlap that maximizes the

AS by C�.

2.2 Statistical test

To test the significance of the merged reads and to identify reads

that shall not be merged, we calculate a P-value for the null

hypothesis that the two corresponding reads are independent

from each other. By independent we mean that any overlap

between the two reads is purely by chance. For an overlap

C ¼ ðX,YÞ between two reads x and y, we define OESðCÞ to

be the observed expected alignment score (OES)

OESðCÞ ¼
X

i¼1:::jCj

Pr½X0i ¼ Y0ijXi,Yi� � �þ Pr½X0i 6¼ Y0ijXi,Yi� � �

and dOESðx, y,!Þ ¼ max
Ĉ2Dðx, y,!Þ

OESðĈÞ

where Dðx, y,!Þ is the set of all possible overlaps between se-

quences x and y with a size of at least !.
Let ~x and ~y be two independent random sequences and let us

further assume that there are no sequencing errors. Then, the

P-value, that is, the probability of a random sequence producing

an OES that is at least as high as the OES obtained from the

merged reads. The P-value is defined as the probability ofdOESð ~x, ~y,!Þ being greater or equal than the observed

OESðC�Þ. We obtain

PrðdOESð ~x, ~y,!Þ � OESðC�ÞÞ ¼ 1� PrðOESðC�Þ4dOESð ~x, ~y,!ÞÞ

� 1�
Y

C2Dð ~x, ~y,!Þ

Pr OESðC�Þ4OESðCÞð Þ

¼ 1�
Y

C2Dð ~x, ~y,!Þ

X‘ðjCjÞ
k¼0

jCj

k

� �
� qk � ð1� qÞjCj�k

� 1�
Ymaxðl1, l2Þ

i¼!

X‘ðiÞ
k¼0

i

k

� �
� qk � ð1� qÞi�k

 !2

� 1�
Y1
i¼!

X‘ðiÞ
k¼0

i

k

� �
� qk � ð1� qÞi�k

 !2

¼: P-value

where

‘ðcÞ ¼ ðOESðC�Þ � � � cÞ=ð�� �Þ
� �

� 1

By default, PEAR uses an OES with a P 50:01 as cutoff. If the

OES of the best merged read is smaller than this value, the reads

will not be merged. Choosing a smaller P-value will reduce the

FPR of the merged sequences, but a lower number of reads will

be merged.

If the underlying overlap size is unknown, ! can be set to 1.0.

If, however, the overlap is known to be short (�35-bp in our

simulations), our statistical test will reject up to 4% (based on

our simulations) correctly merged sequences because of low qual-

ity scores. To recover more merged reads, we provide the possi-

bility to set ! to the computed overlap size after the merging

step, instead of using a predefined fixed value. However, when

using this work-around, the P-value of the statistical test is not

valid anymore, as ! depends on the output of our algorithm.

This implies that the random sequences are more restricted when

choosing overlaps than the original input sequences. We will

refer to the aforementioned, valid P-value as the maximal

accepted probability (MAP). Our tests show that PEAR can pro-

duce 4% more merged sequences using MAP at the cost of a

slight (�0.1%) increase in FPRs.

2.3 Output

PEAR generates four FASTQ output files. One contains the suc-

cessfully merged reads, two files contain the forward and reverse

unmerged reads and one the discarded reads. Discarded reads are

reads that fail to pass one of the following quality filters, which

are applied after the merging process. These filters require the

user to set some program parameters, which are outlined below.

Minimal quality score for trimming

It is common to trim the reads and use their high quality part

due to the low quality of base calls toward the end of Illumina

reads (Caporaso et al., 2011). Consequently, PEAR includes

the option to trim unmerged reads that contain at least two

consecutive bases with quality scores lower than a user-speci-

fied minimal quality score value.

Minimal length of output sequences

PEAR discards merged sequences or trimmed unmerged reads

that are shorter than this threshold.
Maximal length of the output sequences

PEAR discards sequences longer than the specified maximal

length.
Maximal proportion of uncalled bases

This parameter allows for discarding reads that contain more

than the specified proportion of uncalled bases N. When the

value is set to 0, it will discard all reads containing one or more

uncalled bases N.

Now, assume two reads x and y can be merged and have an

overlapping region C. PEAR will correct errors in the overlap-

ping region and compute updated quality scores for the overlap.

For every pair of corresponding observed bases X and Y in

C and their quality scores eX and eY,, respectively, we distinguish

four cases—X and Y are identical, different, one of them is

uncalled or both of them are uncalled. When the two bases are

identical, PEAR simply inserts this base into the corresponding
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position in the merged sequence and assigns the product of the

quality scores: eXeY because errors are independent from each

other (see Section 2.1). When the base pairs are different, PEAR

inserts the base with the highest quality score and the corres-

ponding quality score. If (only) one of the two bases is uncalled

(N), PEAR uses the called base and its quality score. Finally, if

both bases are uncalled, we arbitrarily use the lower of the two

quality scores, as a quality score is required to obtain a valid

FASTQ output file.

2.4 Parallelization and memory management

PEAR target platforms are off-the-shelf laptop and desktop

computers. We implemented an appropriate memory allocator

and manager that allows PEAR to use only a predefined amount

of memory that the user can specify via a command-line switch.

PEAR can use several gigabytes, but also just a few kilobytes of

RAM.
Current off-the-shelf laptops and servers consist of multi-core

processors with a minimum number of two cores per processor,

thus increasing the total processing power of the system.

However, RAM clock rates are still slower than CPU clock

rates (also known as ‘memory-gap’). Thus, the time required

for loading data from RAM into cache memories and registers

can lead to performance deterioration.
To increase efficiency, PEAR takes into account both proper-

ties of modern hardware, that is, memory access patterns and the

number of cores. Currently, most tools process sets of paired-end

reads iteratively. They load a set of reads and merge them until

all reads in this set have been merged. Because disk accesses are

serial, most tools suffer from waiting times induced by loading

reads into RAM and the caches. To alleviate this performance

bottleneck, PEAR uses a standard double-buffering technique.

The main idea of double-buffering techniques is to split-up the

available RAM (specified by the user) into two buffers of equal

size, which we denote as active and passive buffer. At program

start-up there is an initial latency until the active buffer has been

filled with reads for the first time. Then, a dedicated thread

(which we denote as reader thread) loads a second set of reads

into the passive buffer, whereas the remaining threads process

the reads in the active buffer. If the reader thread has already

loaded the next set while the remaining threads are still process-

ing the reads in the active buffer, the reader thread will also start

merging reads. In the opposite case, the remaining threads will

idle until the reader thread has filled the passive buffer. Thus, to

obtain ‘good’ parallel performance, the buffer size needs to be

adapted to the system at hand (see later in the text).
Each thread only merges �500 reads from the active buffer at

a time. This per-thread set size of 500 yielded the best perform-

ance in our experiments (data not shown)
When all reads in the active buffer have been processed, the

first thread that finishes merging its assigned reads will become

the reader. The reader swaps the active buffer with the passive

buffer by simply flipping a memory pointer. Subsequently, it will

start filling the new passive buffer with the next reads from the

input file. The remaining threads will start processing reads from

the new active buffer. Thereby, we can parallelize the process of

reading from disk and merging reads. By using this technique, we

hide the latency of disk accesses and can use the majority of

threads/cores for merging short reads and thus reduce overall
run time.
We observed that the optimal RAM setting on a 48 core

Magny-Cours system (see Section 3.4 for details) is 200MB.
This is because each disk access only reads �100MB, as we
use two buffers of size 100MB each. Thus, the disk access

latency is overlapped by the remaining threads that work on
the reads in the active buffer. On four cores of the same hardware
configuration, the optimal empirical setting is 50MB.

3 RESULTS AND DISCUSSION

To evaluate PEAR and compare it with the three state-of-the-art
mergers (FLASH v1.2.6, PANDAseq v2.4, COPE v1.1.2), we

used simulated datasets with varying overlap and DNA fragment
sizes as well as the following two empirical datasets:

(1) deep sequencing data of the Staphylococcus aureus genome

by MacCallum et al. (2009),

(2) reads generated from paired-end sequencing of a known
single sequence (template) used by Masella et al. (2012) to
test PANDAseq.

3.1 Simulated data

To mimic the sequencing of multiple hypervariable regions of

16S rRNA, we extracted a reference sequence dataset of 1000
full-length bacterial 16S rRNA gene sequences from the RDP

classifier training dataset (Wang et al., 2007). We then used ART
(v1.5.0) (Huang et al., 2012) to simulate 100-bp paired-end reads,
with mean target DNA fragment sizes of 101, 150, 165, 180, 190

and 250-bp, and a standard deviation of 10-bp. We set the par-
ameters of ART to generate target DNA fragments by randomly
sampling the reference sequences until a 10-fold coverage of the

reference dataset was reached. To obtain a more realistic test
dataset, we used two read quality profiles for simulating either

end of the respective pairs. The target DNA fragments produced
by ART provide the ground truth for the merged paired-end
reads.

We also generated an additional set of 150-bp long reads with
a mean fragment size of 101-bp, by extending all single reads in
the above 101-bp fragment size set to a length of 150-bp. We

extended the reads by complete random sequences with the
lowest possible quality scores. This setup emulates case C (see
Fig. 1) where the DNA fragment size is smaller than the length of

a single-end read.
We executed PEAR, COPE, FLASH and PANDAseq on the

above datasets and compared the lengths of the merged reads
with the true fragment lengths. We only consider merged
sequences whose length is equal to the true fragments size as

correct merged sequences. When the fragment size is at least
twice as long as the single read length, we consider that a
result returning unmerged reads is correct. We executed PEAR

with three different settings: (i) statistical test disabled, (ii)
P ¼ 0:01 and (iii) MAP¼ 0.01. In all tests the minimum overlap

size is 1; for all other parameters we use the default values. We
ran PANDAseq with default parameters as well as with a min-
imal overlap setting of 10-bp. FLASH requires the mean frag-

ment length and a proper minimal overlap value to work
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correctly. Therefore, we ran it with the known/true mean frag-

ment lengths. COPE includes four different modes of execution.

Mode 0 is similar to the FLASH approach, but with more

stringent alignment score parameters. Modes 1 and 2 further

use k-mer frequencies, and full-mode runs all three modes

sequentially and concatenates the results. COPE generated a

segmentation fault on our simulated data under COPE modes

1 and 2. Therefore, we only report results obtained under COPE

mode 0.
Table 1 shows experimental results. With the exception of the

first test case (no overlaps), PEAR consistently generates a larger

number of correctly merged sequences when the statistical test is

disabled. PEAR merges fewer correct fragments when the statis-

tical test is enabled. When setting the P-value or MAP to 0.01,

PEAR shows lower FPRs than all three competing mergers.

When we use MAP to evaluate the merged reads, PEAR pro-

duces more merged reads with an FPR that is analogous to the

FPR generated by PEAR with the statistical test. PEAR is robust

with respect to short overlaps because it can still merge �40% of

the reads when the mean overlap is only 10-bp. The FPR of

0.64% (MAP¼ 0.01) under this setting is 10 times lower than

for FLASH and PANDAseq. When reads do not overlap,

PEAR classifies them as unmerged with an FPR of 0.03%.

Here, the FPR is defined as the fraction of merged reads that

should not have been merged. Overall, PEAR shows low FPRs

across all test scenarios (overlap lengths). In addition, it does not

require any prior knowledge regarding overlap lengths.

Therefore, PEAR can be used for merging sequences with vary-

ing fragment sizes. PANDAseq performs equally well as PEAR

for the majority of cases where the overlaps exceed 20-bp.

However, its FPR increases with decreasing overlap size, regard-

less of the minimal overlap size setting. Furthermore,

PANDAseq incorrectly merges 55.4% of the reads that do not

overlap and 25.11% of the reads when the mean overlap is set

to 10-bp. We will discuss the reasons for this behavior in

Section 3.5.
FLASH failed to merge the majority of reads for small overlap

sizes, but exhibits low FPRs for merged sequences. FLASH

merges reads by maximizing the fraction f (number of matches

to overlap size ratio). The default threshold of f in FLASH is

0.75 and the default minimal overlap size (!) is 10. This setting
can be shown to have a P-value of 0.00156 for merged reads by

using the statistical test introduced in Section 2.2 and replacing

OES with f. However, overlaps that exclusively maximize fmight

not yield correctly merged sequences. Let us consider two pos-

sible overlap sizes !1 and !2 for paired-end reads x and y, where

!15!2. As an example, we assume !1 :¼ 10 with 1 mismatch,

!2 :¼ 50 with 6 mismatches and a true overlap size of !2. Then

f!1
¼ 0:94f!2

¼ 0:88 and FLASH will choose the overlap of size

!1 as merged read. Because OES!1
¼ 95OES!2

¼ 38, PEAR

will return the correct result. FLASH also requires the mean

fragment length as input, which restrains its applicability to data-

sets with uniform fragment length.
COPE, PANDAseq and FLASH were unable to merge

reads under application scenario C (see Fig. 1) where the DNA

fragment size is smaller than a single-end read (Table 1).

PANDAseq incorrectly merges over one-third of the reads in

this scenario.

3.2 S.aureus genome data

This dataset was initially generated by MacCallum et al. (2009)

(available for download at http://gage.cbcb.umd.edu/data) to

assess short read-based genome assembly quality. We used the

raw dataset that contains 647 052 pairs of 101-bp long reads with

a mean DNA fragment size of 180-bp and 45	 coverage of the

Table 1. Simulated dataset of paired-end reads with different overlap

sizes

Software Merged Correct

(�)

Correct

(%)

FPR

(%)

100-bp paired-end reads with no overlaps (23 096 pairs)

COPE (mode0) 31 23 065 99.87 0.13

FLASH 0 23 096 100 0

PANDAseq (default) 12 796 10 300 44.59 55.4

PANDAseq (�o¼ 10) 10 562 12 534 54.27 45.7

PEAR (test disabled) 8 184 14 912 64.57 35.4

PEAR (P¼ 0.01) 8 23 088 99.96 0.03

PEAR (MAP¼ 0.01) 33 23 063 99.86 0.14

100-bp paired-end reads with 10-bp mean overlaps (24 969 pairs)

COPE (mode0) 5 755 5 709 22.86 0.80

FLASH 8968 8 309 33.27 7.34

PANDAseq (default) 19 616 14 690 58.83 25.11

PANDAseq (�o¼ 10) 17 783 12 053 48.27 32.22

PEAR (test disabled) 19 691 17 112 68.53 13.10

PEAR (P¼ 0.01) 9 365 9 315 37.31 0.53

PEAR (MAP¼ 0.01) 10 080 10 015 40.11 0.64

100-bp paired-end reads with 20-bp mean overlaps (25 858 pairs)

COPE(mode0) 9 819 9 750 37.71 0.70

FLASH 10917 10 843 41.93 0.67

PANDAseq (default) 23 136 21 596 83.51 6.65

PANDAseq (�o¼ 10) 22 736 20 722 80.14 8.85

PEAR (test disabled) 24 153 23 386 90.44 3.16

PEAR (P¼ 0.01) 18 202 18 115 70.06 0.48

PEAR (MAP¼ 0.01) 19 265 19 165 74.12 0.52

100-bp paired-end reads with 35-bp mean overlaps (27 026 pairs)

COPE (mode0) 11 771 11 693 43.27 0.66

FLASH 15603 15 507 57.37 0.61

PANDAseq (default) 26 068 25 849 95.64 0.84

PANDAseq (�o¼ 10) 26 267 26 026 96.29 0.92

PEAR(test disabled) 26 866 26 712 98.84 0.57

PEAR (P¼ 0.01) 25 939 25 833 95.59 0.41

PEAR (MAP¼ 0.01) 26 380 26 273 97.21 0.41

100-bp paired-end reads with 50-bp mean overlaps (28 339 pairs)

COPE (mode0) 7 915 7 858 27.73 0.72

FLASH 20025 19 940 70.36 0.42

PANDAseq (default) 27 939 27 834 98.21 0.37

PANDAseq (�o¼ 10) 28 049 27 944 98.61 0.37

PEAR(test disabled) 28 335 28 234 99.63 0.36

PEAR (P¼ 0.01) 28 288 28 190 99.47 0.35

PEAR (MAP¼ 0.01) 28 329 28 229 99.61 0.35

150-bp paired-end reads with 100-bp mean overlaps (33 217 pairs)

COPE (mode0) 43 0 0 100

FLASH 44 0 0 100

PANDAseq (default) 11 417 0 0 100

PANDAseq (�o¼ 10) 14 146 0 0 100

PEAR (test disabled) 33 187 33 071 99.56 0.35

PEAR (P¼ 0.01) 33 136 33 022 99.41 0.34

PEAR (MAP¼ 0.01) 33 185 33 071 99.56 0.34
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S.aureus genome. To determine the true target DNA fragment

sizes, we used Bowtie2 (Langmead and Salzberg, 2012) to map

the merged reads to the reference genome. We use the corres-

ponding end-to-end mode in Bowtie2 and do not allow for open-

ing gaps in either sequence (the reads and the reference genome).

This guarantees that all merged reads that can be mapped to the

reference genome are correctly merged. This is because there are

two possible scenarios for incorrectly merged reads: (i) they can

be longer than the corrected one, in which case the sequences can

be aligned by opening gaps in the reference sequence or (ii) they

are shorter than the corrected one, and the sequences can be

aligned by opening gaps in the merged sequences. Therefore,

we consider that a merged paired-end read is correct only if

Bowtie2 finds a hit on the reference genome. Note that, the

results are conservative because some of the correctly merged

reads might be missed by Bowtie2 due to sequencing errors.
We summarize the results in Table 2. All mergers work well in

this setting. PANDAseq correctly merges the highest amount of

reads; PEAR �2% less (statistical test disabled). Nonetheless, a

quarter of the reads merged by PANDAseq were not mapped to

the reference genome using Bowtie2. In contrast only 4.9% of the

merged reads from PEAR could not be mapped. COPE merges

less reads than PEAR and shows a lower FPR when the statis-

tical test in PEAR is disabled. This is likely because COPE is

specifically designed for such deep sequencing datasets.

3.3 Single known sequence data

We used a dataset that was deployed by Masella et al. (2012) to

assess PANDAseq. The dataset contains paired-end reads from a

single template sequence. The template sequence is the V3 region

of the Methylococcus capsulatus (ATCC 33009) 16S rRNA gene.

It has a length of 198-bp, including the primers. The FASTQ files

contain 673 845 pairs of 108-bp long paired-end reads. Each pair

overlaps by exactly 18-bp. We calculate the ‘true’ merged reads

by computing a global pairwise sequence alignment between the

merged reads and the template sequence. Subsequently, we check

if the overlapping region contains gaps, we consider a merged

read to be correct if there is no gap. We also calculate the ER of

the merged reads to evaluate error correction performance. The

ER is the average number of errors per merged read (excluding

gaps) with respect to the template sequence. We ran PEAR

with default parameters. We executed PANDAseq with default

parameters and with a minimum overlap setting of 10-bp.

We applied FLASH with a template sequence length of 198-bp

and a read length of 108-bp.
For this dataset, PEAR merges the highest number of reads

when the statistical test is disabled (Table 3). When setting

P ¼ 0:01 and using the test, less reads are merged, but only

0.03% of the merged reads are false positives. Both,

PANDAseq and FLASH, produce comparable results but with

a slightly higher FPR. We executed COPE in full mode (see

Section 3.1) on this dataset. COPE did not merge any reads,

however. The ER of the raw reads is 0.51. Although the overlap

size is only 18-bp all mergers decrease the ER. Merged reads

produced by FLASH and PANDAseq show ERs that are

slightly lower than PEAR (statistical test disabled). However,

PEAR yields three times lower ERs when the statistical test is

enabled.

3.4 Run time and memory requirement

To compare run times between PEAR and competing mergers,

we used the dataset from Section 3.3. We conducted experiments

on an AMD Opteron 6174 2.2 GHz 4-processor machine with 12

cores each and a total of 48 cores. We used the default PEAR

memory setting of 200 MB. PANDAseq is the fastest tool on a

single core. Surprisingly, when running the experiment with four

cores, which corresponds to a standard desktop PC, PANDAseq

is slower than for the sequential run, whereas PEAR and

FLASH are equally fast and twice as fast as PANDAseq.

However, the main observation is that neither PANDAseq nor

FLASH yields substantial speedups when executed on several

cores (see Fig. 2). In fact, although PEAR yields linear speedups,

FLASH and PANDAseq yield no speedup at all. We excluded

COPE from most experiments because it does not merge any

reads for this dataset and because it has only been partially

parallelized; only the k-mer computation is parallelized. For

the sake of completeness, the overall run time of COPE on this

dataset is 395 s using the parallel k-mer computation on 48 cores

(minimum memory requirement of 16 GB). Hence, COPE is

substantially slower than the other programs we tested.

We also tested PEAR, FLASH and PANDAseq on a substan-

tially larger dataset of 36 504 800 101-bp long paired-end reads

from the human chromosome 14 (data available at http://gage.

cbcb.umd.edu/data). Using 48 cores, PEAR only requires 62 s to

finish, whereas FLASH and PANDAseq need 7 and 21.5 min,

respectively.

Table 2. A total of 647052 paired-end reads with mean fragment size

180-bp and read length 101-bp (S.aureus genome)

Software Merged Correct

(�)

Correct

(%)

FPR

(%)

COPE (full mode) 373543 369683 57.13 1.03

FLASH 369276 361663 55.89 2.06

PANDAseq (default) 534839 418747 64.72 21.71

PANDAseq (�o¼ 10) 533618 407477 62.97 23.64

PEAR (test disabled) 411321 391157 60.45 4.90

PEAR (P¼ 0.01) 202221 199764 30.87 1.22

PEAR (MAP¼ 0.01) 257409 251714 38.90 2.21

Table 3. Single template 198-bp sequence dataset of 673 845 108-bp

paired-end reads

Software Merged Correct

(�)

FPR

(%)

ER

COPE (full mode) 0 0

FLASH 660 984 660 030 0.14 0.4594

PANDAseq (default) 660 593 657 602 0.45 0.4333

PANDAseq (�o¼ 10) 660 522 657 609 0.44 0.4304

PEAR (test disabled) 663 025 661 717 0.20 0.4753

PEAR (P¼ 0.01) 576 225 576 035 0.03 0.1470

PEAR (MAP¼ 0.01) 578 887 578 679 0.04 0.1486

PEAR
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3.5 Reasons for high FPRs in PANDASeq

PANDAseq merges reads by choosing the overlap C, such that

jCj 2 ½1, minðjFj, jRjÞÞ that maximizes

Pr½F,R jC� ¼
Y

i¼1:::jCj

Pr½F0iþf ¼ R0i� � ð1=4Þ
fþr

ð1Þ

where F is the forward read sequence and R is the reverse read

sequence. When the DNA fragment size exceeds the sum of the
lengths of the reads (see Fig. 1, case B), a merger should not
merge the reads. According to Equation 1, PANDAseq will

merge reads with an overlap C, whenY
i¼1:::jCj

Pr½F0iþf ¼ R0i�4ð1=4Þ
2jCj

ð2Þ

Assuming that the merged sequences are generated randomly

with all base frequencies being equally likely with probability
0.25 and that all bases have an equal error probability e, we
can simplify Equation (2) to

Pr½X0i ¼ Y0ijXi ¼ Yi�
jCj=4
� Pr½X0i ¼ Y0ijXi 6¼ Yi�

3jCj=4

¼ ðð1� eÞ2 þ
e2

3
Þ
jCj=4
� ð
2

3
ð1� eÞeþ

2

9
e2Þ3jCj=44ð

1

4
Þ
2jCj

Solving the above inequality, we obtain e40:039. In other
words, when the bases have an average error probability that

is40.039, PANDAseq will favor merging randomly generated
sequences. Because the quality of Illumina reads decreases
toward the end of the reads, PANDAseq will therefore incor-
rectly merge reads that do not overlap.

4 CONCLUSIONS

We introduce PEAR, a new software tool that produces highly
accurate merged Illumina paired-end reads with low FPRs.

It can merge paired-end read datasets under settings where

most competing mergers fail. Furthermore, PEAR does not re-

quire preprocessing or quality control before merging. One main

application scenario is the merging of paired-end reads from

datasets with varying DNA fragment sizes. We have also intro-

duced a statistical test to evaluate the merged read. Finally,

PEAR scales well on most server and desktop computers. We

intend to implement an automatic buffer size tuning routine in

PEAR to maximize performance without user intervention.
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Fig. 2. Parallel speedups of PEAR, FLASH and PANDAseq on the

single template sequences dataset. The sequential runtimes for the three
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