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Recent empirical and theoretical works on collective behaviors based on a topological interaction are
beginning to offer some explanations as for the physical reasons behind the selection of a particular number
of nearest neighbors locally affecting each individual’s dynamics. Recently, flocking starlings have been
shown to topologically interact with a very specific number of neighbors, between six to eight, while
metric-free interactions were found to govern human crowd dynamics. Here, we use network- and
graph-theoretic approaches combined with a dynamical model of locally interacting self-propelled particles
to study how the consensus reaching process and its dynamics are influenced by the number k of topological
neighbors. Specifically, we prove exactly that, in the absence of noise, consensus is always attained with a
speed to consensus strictly increasing with k. The analysis of both speed and time to consensus reveals that,
irrespective of the swarm size, a value of k ~ 10 speeds up the rate of convergence to consensus to levels close
to the one of the optimal all-to-all interaction signaling. Furthermore, this effect is found to be more
pronounced in the presence of environmental noise.

ynamic collective behaviors are commonly observed in a host of technological and natural systems. The

emergence of spatiotemporal order at the group level has been observed in many biological systems'>—

insect colonies, fish schooling, bird flocking, amoebae aggregating, bacteria swarming, in many human
activities*>—pedestrian and automobile traffic, and in the artificial world with robotic swarm systems®” and
sensor networks®®. These dynamic collective behaviors are believed to emerge from simple local interaction rules
governing the dynamics of individual agents'>"". They imply nonindependent individual decisions through local
information transfer between group members mediated by one or more signaling mechanisms. One of the most
prevalent collective decision-making processes consists in achieving a consensus decision—consensus means the
convergence to a common state asymptotically or in a finite time among all group members through local
interactions.

Until recently, the vast majority of dynamic models of collective behaviors of mobile agents relied on the basic
assumption that each individual’s neighborhood of interaction was based on a metric distance corresponding to
the fixed range of its sensory capabilities'>"*. A recent landmark study from the STARFLAG group imaged and
tracked wild flocks of starlings numbering in the thousands and revealed that the neighborhood of interaction
actually depends on a topological distance™*. More precisely, Ballerini et al.> discovered that each bird interacts on
average with a fixed number of nearest neighbors (six to eight). A few very recent studies®*** are starting to offer
initial explanations as for why the starlings topologically interact with their seven nearest neighbors. Camperi
et al.”’ used a self-propelled particles (SPPs) model'’ based on the extended formulation by Grégoire et al.>>, which
they themselves extended to three dimensions. Some results from the STARFLAG experiments were fed back into
the model through the parameters controlling the neighborhood of interaction, allowing Camperi et al.* to find
that topological models are more stable than metric ones, and that the minimal number of interacting neighbors
needed to achieve fully stable cohesion in a spatially balanced model is compatible with the observed value of six to
seven. Young et al.”' adopted a system-theoretic approach to analyze some empirical results from the STARFLAG
experiments and found that for the range of flocks observed the optimal number of neighbors does not depend on
the size of a flock. Instead, Young et al.*' have shown that both the optimal number of neighbors and the peak
value of robustness per neighbor depend on the shape of the flock. Komareji & Bouffanais®* used a network-
theoretic approach to study the dynamics of the signaling network of interaction between agents and found that a
minimum number k* of topologically interacting nearest neighbors is necessary to maintain the connectedness of
the signaling network as well as its controllability. Komareji & Bouffanais* also established that k* does depend
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on the number of individuals forming the collective, albeit moder-
ately, and for group sizes in the thousands, the value of k* is in
relatively good agreement with the empirical observations from the
STARFLAG experiments.

Here, we address the question of what is the connection between
the number k of topologically interacting neighbors tracked by each
individual in the swarm and the emergence of consensus. Using
network- and graph-theoretic approaches combined with the linear
dynamical model by Komareji & Bouffanais*, we prove mathemat-
ically that consensus is always attainable in the absence of uncer-
tainty due to environmental noise sources. We also establish
analytically the exponential convergence of the system and find the
expression of the parameter controlling the rate of convergence to
consensus thereby allowing us to define a speed to consensus. This
quantity is proved to be strictly increasing with the number k of
topologically interacting neighbors. Furthermore, a numerical study
of the variations of both speed to consensus and time to consensus
with respect to k and for different swarm population sizes—with and
without uncertainty due to the possible presence of noise in the
signaling mechanisms—reveals that a value of k ~ 10 significantly
speeds up the rate of convergence to consensus to levels very close to
the optimal level corresponding to an all-to-all interaction signaling.
In addition, the rate of variation of the speed to consensus and time to
consensus with k are both found to be practically independent on the
group size, which for typical collective behaviors ranges from a few
dozens to a few thousands (in rare cases tens of thousands)'’.

In summary, our analysis allows us to prove that the remarkably
small number of topological neighbors (approx. 10) as compared to
the swarm size—at least two orders of magnitude—may find its
origins not only in obvious environmental and natural limitations,
as observed in***, but also more fundamentally in the structural
properties and dynamics of the signaling network. In particular,
our study reveals for the first time that it significantly enhances the
consensus reaching process, which is key to most swarming
behaviors.

Results

Relationship between speed to consensus and the network dyna-
mics. First, we investigated the swarm dynamics based on the
topological dynamic model governed by Eq. (11) (See Methods) in
the ideal case where noise is absent. A central point to always keep in
mind is the fact that the directed swarm signaling network (SSN)—
which is the information transfer channel underpinning the swarm
dynamics—has a dynamics that is evolving hand in hand with the
dynamics of the mobile agents in the physical space. In other words,
signaling network structure and information dynamics change on
the same time scale and are strongly interwoven. The SSN has been
found to be a homogeneous small-world and moderately clustered
network®. It is worth reminding that small-world effects have been
shown to directly influence the speed to consensus; indeed fast
consensus is achieved when the topology of the directed informa-
tion flow possesses the small-world characteristic®>*.

The speed of convergence to consensus is classically assessed by
means of the spectral properties of the graph Laplacians. Specifically,
the second smallest eigenvalue of the graph Laplacians A,—ak.a.
algebraic connectivity—quantifies that speed of convergence in the
presence of a static and balanced digraph. This is for instance the
approach considered by Young et al.*', where the H, nodal robust-
ness per neighbor was considered, as well as the consensus speed
which was defined as the real part of 4,. This approach was made
possible by the fact that Young ef al.*' considered a fixed static sens-
ing graph corresponding to the steady state. In the present study, we
consider the full transient swarm dynamics for which the graph
Laplacian of the SSN is both switching and not balanced—in general,
for each agent, the indegree is different from the fixed outdegree k**,
hence a more general approach is required.

Throughout the complete dynamical process, the SSN maintains a
constant number of nodes and a constant number of edges. However,
at each instant a certain number of link failures occurs which exactly
amounts to the number of newly created ones. The rate at which
those links are destroyed and created is governed by the pace of the
physical dynamics of the swarm as well as the degree of alignment—
or long-range synchronization. Hence, we are in the presence of a
switching network for the SSN. At this point, it is crucial pondering
over the precise nature of these topological switchings. Indeed, such
switching events intrinsically occur at nonuniform time intervals,
whenever at least one agent stop interacting with another agent—a
link is knocked down—in favor of a newly closer neighbor—a new
link is formed. Knowing the exact instants {f;, - - - ,t, - - -} at which
such switchings occur is not necessary to gain insight into the effects
of network switching on consensus reaching. Without loss of gen-
erality, we will assume that those switching events are evenly dis-
tributed in time, meaning that t,,, . ; = t,,, + 7 for all m, where tis a
characteristic SSN switching time scale. From the statistical physics
standpoint, 7 is directly related to the decorrelation time scale of the
matrix of correlations between normalized velocities C;; = (s; * s;)
also known as directional correlation function'!, where notations
from* are used. As all the agents move at the same speed v, the
decorrelation time scale is therefore strictly equivalent to the spatial
decorrelation scale, which given our topological neighborhood of
interaction is directly related to k*".

Consensus reaching process. Switching networks are generally
modeled using a dynamic graph Gy, parameterized with a switch-
ing signal s(¢) that takes its values in an index set {1, - - - ,m}**. That s
equivalent to choosing T = 1, thereby imposing one specific choice of
the unit of time of the swarm dynamics. Following that approach, let
G(N, k) denote the random k-nearest neighbor digraph model
representing the SSN of a group of N topologically interacting
agents randomly and uniformly distributed on a unit square®® .
We randomly choose a sequence Gi,Gy, - -,Gp, -+ in G(N, k),
and subsequently generate a Markovian dynamical random
network G(t) such that

G(t)=G,, foranyte |[m—1,m|. (1)

Note that the random character of the above Markovian dynamics
reflects the fact that between two consecutive instants m — 1 and m,
the interagent normalized velocity correlations matrix Cj is fully
decorrelated according to the above choice of time scale.

For a symmetric matrix A € RV ", we denote its spectrum in the
increasing order as

M(A)< - <An(A). (2)
Let 1=(1,---,1)" € RY. We want to show the following result

Theorem A. Assume that k = 1. For almost all random sequences

G1,Ga, - -+ ,Gp, - - - in G(N, k), the switching system
. 1
0()= 1 (=L1)e() 3)

does reach consensus. Here L(t) is the corresponding (outdegree) graph
Laplacian of G(t), and O(t) =[01(¢), - - - ,On(t)]".

Ifk = 3, then the system has exponential convergence and the rate of
convergence of consensus is dictated by the quantity v € (0, 1) defined

by
V= max{E[eﬁ)‘z(LT“)],l—EHefiLrle}a (4)

where ||+ || is the Euclidean norm of a vector. (see Supplementary
Information for a detailed proof of Theorem A).
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Figure 1| (A) (left): normalized consensus speed Cs vs. number of k-nearest neighbors in the topological distance. (B) (right): rate of variation

of Cs with k, dCs / dk, vs. k. Six different swarm populations N are considered, namely N = 100, 300, 500, 700, 900, and 1100. The normalized consensus
speed was calculated for each value of kin the range 3 to N — 1 based on Eqs. (4) and (5), using a statistically ample enough sample consisting of 1000 SSNs
from the G(N, k) model. The quantity dCs / dk is numerically obtained using a 5-point stencil differentiation of order one™.

This very general result guarantees that consensus will be reached
in the absence of any environmental noise sources. It is quite clear
that the speed of convergence to consensus will also be influenced by
the possible presence of noise. Given the above expression of v, the
rate of convergence to consensus, or speed to consensus, can be
explicitly defined as

1
CSZ ln; (5)

This choice of definition can easily be understood when turning to
the particular case of a static fixed and balanced graph G = L/k, for
which one would get Cg ~ 1,(G)*.

Influence of the number of neighbors on speed to consensus. We
then turned to the investigation of the influence of the number of
interacting neighbors—namely k given our k-nearest neighbors
topological neighborhood of interactions—on the consensus
reaching process. The following corollary shows that the rate of
convergence to consensus of system (3) strictly increases with k. In
our dynamical model of collective swarm behavior, the outdegree k
characterizes the density of information transfer channels and the
degree of connectivity of the SSN. Therefore, it is intuitively
imaginable that a higher k leads to faster consensus since the
connectivity of the network underpinning the dynamics of the
interacting swarming agents affects profoundly the consensus
capability—in general, higher degree of connectivity yields higher
rate of convergence to consensus® %,

Corollary B. Let k* be the optimal value which provides the fastest rate
of convergence to consensus, i.e.,

v(k*): =

min
3<k<N-1

v(k). (6)

Then k* = N — 1. Moreover, v(k) is strictly decreasing with respect to
k. (see Supplementary Information for a detailed proof of Corollary
B).

The result in Corollary B, although general and remarkable, does
not inform us about the exact dependence and variations of the
consensus speed with respect to the number of topologically inter-
acting agents k. To allow for a comparison between different swarm
populations, we consider the normalized consensus speed

Cs(k,N)  Cs(kN)
max Cs(k,N) Cs(N—1,N)’
k<N-—1

CS (kaN) = (7)

based on the highest speed to consensus—given by Corollary B—
achieved with the all-to-all SSN connectivity corresponding to k = N
— 1. In Fig. 1.A, we show the normalized consensus speed Cs as a

function of k for various sizes of SSNs numbering in the hundreds to
1100. Firstly, we observe that the consensus speed monotonously
increases with respect to k as predicted by Corollary B. Secondly,
by examining the trend of the graphs Cs for increasing values of the
swarm population N, we observe that Cs seems to be convergingas N
goes to infinity. The most important fact of all is that for relatively
small values of k, in the range from 3 to 10, the consensus speed varies
very little with N for a given value of k but actually has a very rapid
increase—Cs is approximately tripled when going from k = 3 to 10—
with the number of nearest neighbors k. This fact is much better
appreciated when looking at Fig. 1.B, where the rate of variation with
k of Cs sharply decreases in the interval 3 < k =< 10. This fact implies
that edges added in the process of increasing k, say from 3 to 10, do
contribute significantly to a larger algebraic connectivity of the
SSN*°. The result shown in Fig. 1.B is also remarkable as it reveals
an apparently complete independence on N of the rate of variation of
the consensus speed with k.

Influence of noise on the consensus reaching process. Up to this
point, our study did not account for the ubiquitous presence of noise
in the environment in which the agents are evolving. To include
those effects, we integrate numerically Eq. (11) (see Methods) with
switching events occuring every time unit—the choice of time unit is
still associated with T = 1—following the same Markovian dynamical
random network switching model for the SSN as before. At each
switching event, uncorrelated noise effects are added to the N state
variables 0;, with the same noise level 11 (see Methods). We let the
system evolve and observe the convergence, or not, towards a
consensus value. The consensus is said to be reached when the
criterion (max; < ; = v 0; — min; < ; = y 0;) = ¢ is satisfied; the
parameter ¢ characterizes the accuracy level in the consensus
reaching process. We now focus on the time to consensus T¢
defined as the time at which the above consensus criterion is
achieved. Note that T, like Cs, depends on both N and k. Similarly
to what was done with Cg, and to allow for a comparison between
different swarm populations, we consider the normalized time to
consensus

Tc(k,N)

el = L

(®)
We have proved that the consensus is guaranteed in the absence of
noise. However, we expect this to cease to be the case in the presence
of noise, especially for small values of k. It is worth noting that for the
highest possible value k = N — 1, a consensus is still expected, even in
the presence of noise, as each agent directly interacts with all the
other individuals forming the group. For k < N — 1, we consider
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Figure 2 | (A) (left): average normalized time to consensus T vs. number of k-nearest neighbors in the topological distance for a statistically ample

enough sample consisting of 1000 repeated dynamics; the associated standard deviations are shown through the errorbars. (B) (right): rate of variation of
Tc with k, dTC / dk, vs. k, obtained using the average normalized time to consensus. Five different swarm populations N are considered, namely N = 100,
300, 500, 1000 and 10000. The normalized time to consensus was calculated for each value of k in the range 3 to N — 1 although not all data points are
shown here to ensure graph legibility. The quantity dT¢ / dk is numerically obtained using a 5-point stencil differentiation of order one*. The consensus

reaching threshold is ¢ = 107*.

that the system does not reach consensus when the dynamics goes
beyond 100T(N — 1, N), which was always found to be a very long
duration.

First, we investigated the noiseless case for widely different swarm
population sizes numbering from hundreds to ten thousand as is
shown in Fig. 2. For each data point, 1000 independent dynamics
were computed, hence providing a statistically ample enough sam-
pling. The numerical integration in time was performed using a
Runge-Kutta scheme of order 4* with a time step equal to 107*
guaranteeing an accuracy higher than the consensus reaching thresh-
old ¢ = 10™* We found little variation with the particular choice of ¢
in the range 0.7 to 107>

As a last step, we accounted for the effects of noise for two swarm
sizes: N = 100 and N = 1000. Two noise levels were considered—
moderate n = 0.17 and low n = 0.01n—following the study by
Komareji & Bouffanais®. The results, shown in Fig. 3, still yield a
decreasing time to consensus with increasing number of topological
numbers k. As expected, the addition of noise introduces more vari-
ability in the results as is seen in the higher standard deviations.
Interestingly, the variations of T¢ with k in the range 3 = k = 10
are much more rapid with increasing noise levels. Note that a con-
sensus was always reached with the small swarm comprising N = 100
individuals, while some instances of non-convergence to consensus
have been observed with k = 3 and 4 for the large swarm made of N =
1000 agents. This last observation can very easily explained by the
disruptive effects of noise on the connectedness of the SSN for small
values of k**.

1.45¢
1.4r
1.35r

o—n =0

——n =0.017

——n =0.17

~ 1.25f

Discussion

As mentioned by Vicsek & Zafeiris in their recent review'’, very few
exact results about collective motion are actually available. Most
relevant to the present study is the exact formulation of the conver-
gence to consensus in a population of autonomous agents achieved
by Cucker and Smale based on their own model®®. Note that this
powerful result was established under the strong assumption of a
weighted all-to-all signaling connectivity between agents. The new
exact result embodied by Theorem A relies on a much weaker
assumption of limited local interactions corresponding to a SSN of
the k-nearest neighbor digraph type. It is worth adding that the SSN
considered in our model independently switches at each time instant
with the characteristic time scale 7 = 1. In other words, it follows a
Markovian process of order “zero”. This simple yet tractable model
represents a very first step in understanding swarm dynamics from
the network science standpoint. To allow for a more realistic treat-
ment, the SSN should mathematically be modeled as a continu-
ous-time Markovian process, which would embody the coherent
evolution of the signaling network (see Supplementary Infor-
mation - Continuous-time Markovian process). The multiagent
dynamical systems driven by such Markovian switching networks
aimed at generating consensus behaviors (see detailed in
Supplementary Information) have been extensively studied in con-
trol theory over the past few years; see e.g.***'. One of the common
restrictive assumptions in these works turns out to be the balance
condition as used in Young et al.*'. Consequently, these results do not
apply here and a further thorough investigation is needed to fully

o—n =0
1.
——n = 0.017
1. ——n =0.17
1.5f
Tc 14
1.3f
1.2f
1.1F \
4L ) ¥
10° 10' 10° 10°
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Figure 3| (A) (left): N = 100; (B) (right): N = 1000: average normalized time to consensus Tc vs. number of k-nearest neighbors in the topological
distance for a statistically ample enough sample consisting of 1000 repeated dynamics; the associated standard deviations are shown through the
errorbars. Three noise levels are considered for each case: noiseless (7 = 0), low (1 = 0.017) and moderate (1 = 0.17). The consensus reaching threshold is

given by 1 + ¢ with ¢ = 107
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understand the consensus reaching process ruled by topologically
interacting neighbors under Markovian SSN.

Corollary B is quite remarkable in the sense that the rate of con-
vergence to consensus Cg is shown to strictly increase with the addi-
tion of edges (by means of increasing k) in the G(N, k) model. In
general, when dealing with directed networks, this is however not the
case—simply adding edges may not necessarily lead to faster conver-
gence; only those edges contributing to a larger algebraic connectivity
contribute to a faster convergence to consensus (see e.g.*®).

The results associated with Fig. 1A and Fig. 1B, relating to the
influence of k on the speed to consensus Cg and its rate of variation
with k, have a far-reaching consequence from the SSN design stand-
point: adding more edges to the SSN does accelerate the convergence
to consensus but this acceleration is very rapid when going from k =
3 to 10, but quickly becomes negligible when even higher values of k
are being considered. Practically, adding more edges by increasing
the number of topological agents with whom one is interacting is
feasible but only up to a certain extent as there is always a cost
associated with information exchange and also due to inherent limits
in terms of signaling mechanisms, sensory and cognitive capabil-
ities—for instance, see** for such biological considerations with
pigeons. Therefore, when accounting for the cost of adding new
edges, a trade-off value k, for the number of topologically interacting
agents emerges from the competition between, on the one hand,
faster consensus and higher interaction cost on the other hand.
This fact is in complete agreement with the results by Young
et al*' obtained using a fixed static sensing graph corresponding to
the steady state.

Our numerical analysis of the dependence of the time to consensus
T with respect to the number of topological neighbors is in complete
agreement with those for the consensus speed, namely: (i) for a given
value of k, T increases moderately with N, (ii) the time to consensus
decreases very rapidly in the range 3 =< k =< 10 for all values of N as is
well illustrated by the sharp increases in dT¢ /dk in that specific
range of values for k, (iii) the rate of variation of the time to consensus
with respect to k, dT¢ /dk, is found to be almost independent on N

similarly to what was observed for dCs /dk.

It appears therefore that the effectiveness of the consensus reach-
ing process is seriously impeded for the smallest values of k ~ 3, with
either no convergence or a very slow one. On the other side of the
spectrum, having k ~ O(N) most likely brings along overwhelming
communication costs either for the living organisms or for the
resources, with very limited gain in the consensus dynamics.
Having the number of topological neighbors in the narrow interval
k € [8,12] not only speeds up the consensus reaching process sig-
nificantly compared to the smallest possible values of k, but in addi-
tion, appears to be even more effective in the presence of noise.

As mentioned earlier and further detailed in the Methods section
below, in the present swarming problem, consensus means the con-
vergence to a common state asymptotically or in a finite time among
all group members through local interactions. Hence, our results
only apply to this particular type of consensus and not to more
sophisticated emergent behaviors such as rendez-vous in space or
collision avoidance for instance®®. From an analytical standpoint, our
specific synchronization or consensus protocol is embedded in Egs.
(10) and (11). It consists of two components: (i) the actual operation
performed on the local (here topological) information gathered by a
given agent—a linear averaging of the relative agents’ states with
respect to the actual agent receiving the information. The linearity
conveniently enables us to formulate the dynamical problem as in Eq.
(11) and to use the powerful results of graph theory. However, non-
linear protocols could be considered as in the case of nonlinearly
coupled oscillators on complex networks*’. The linearity allows for a
complete and insightful analytical investigation of the consensus
reaching process; (ii) the set of local neighbors formally represented

by the set of indices {j,j+ 1, - - ,j+k—1} in Eq. (10) that defines the
network connectivity. Both components are embedded into the
graph Laplacian L(t). It is worth adding that if one considers more
complex collective collectives such as human dynamics on social
networks, the more intricate nature of the local interactions gives
rise to social networks with properties vastly different from the SSN
considered here. Standard social networks are known to be hetero-
geneous scale-free networks** while the SSN in our case is homogen-
eous®. Therefore, the methodology presented here can be applied to
more complex social interactions but there is no doubt that the
conclusions, somehow, have to be different from those obtained in
our study.

In conclusion, all the results reported above shed a completely new
light on the physical reasons behind the selection of a particular
number of nearest neighbors locally affecting each individual’s
dynamics. These results are also quantitatively consistent with the
number of topological neighbors reported for flocks of starlings.

Methods

In the past two decades, a wealth of swarming models have been developed and
introduced. Most of them are aimed at generating consensus beha-
viors!1*18-23313845-48 " ften in the form of group alignment or polarization. In our
framework, such consensus behaviors amount to swarming that refers to a circum-
stance in which multiple adaptive agents—be them living creatures or artificial ones—
create a certain level of spatiotemporal order characterized by one or more macro-
level properties.

Following the work by Komareji & Bouffanais*, we consider a collective of N
identical and topologically interacting agents moving at the same speed''. Each
individual group member, at any given instant f, is assumed to be fully characterized
by a given state variable (). Such a generic state variable may represent widely
different characteristics depending on the nature of the group considered: e.g.
employed or unemployed forager state for honey bees, kinematic variables for fish in a
school, birds in a flock or robots in an artificial swarm, space available for a pedestrian
on a congested sidewalk, etc. Here, the state variable simply reduces to the direction of
travel and the achievement of swarm consensus therefore yields an alignment of all
the agents, in other words a polarized swarm. Hence, from a formal standpoint, by
reaching a consensus, we mean asymptotically converging to a one-dimensional
agreement in space characterized by y; =y, = - -- =y

In the dynamical model considered, the adaptive and interacting swarming agents
are modeled as self-propelled particles for which the biological details of the internal
origin of an agent’s thrust is considered to be irrelevant. Such SPP-based models are a
good representation of collective animal behaviors''. Here, these SPPs are moving
about a two-dimensional plane with constant speed v, and subject to a topological
neighborhood of interaction (see Fig. 4.A for a schematic of metric versus topological
neighborhood of interactions). As mentioned previously, each agent i is fully char-
acterized by its direction of travel—in other words, here ;(t) = 0,(t)—related to the
agent’s velocity through v; = v cos 0;x + vy sin ;3. The local synchronization pro-
tocol, based on relative states, is strictly equivalent to a local linear alignment rule
which mathematically can be stated as:

1) = 177 3, w60 =0,0). ©)

where N is the set of outdegree neighbors in the topological neighborhood of
interaction of agent i, with cardinal number |A/;|, and w; is the binary weight of the
i - j communication link. Note that in some models, w;; can take a more complicated
form than our binary choice’®**. Using the k-nearest neighbor rule to define the
topological distance, we have | A/;| =k (see Fig. 4 for the case k = 7) and the following
dynamical equation for each individual agent i in the swarm:

= F L6004 (001 -0) + -+ (s -0)]

(10)

= =

(7k0i+9j+9j+1 + - +0j+k71)a

where 0;, - - - ,0; 4 are its k-nearest neighbors’ velocity directions. The dynamics of
the agents in the two-dimensional physical space is intricately coupled to the
dynamics of the signaling network which is the information transfer channel
underlying the swarm dynamics. Constituent links of the swarm signaling network
(SSN) of a group whose agents have directed interactions are unidirectional by
opposition to bidirectional interactions in a group of agents with undirected inter-
action edges. The topological neighborhood of interaction based on the k-nearest
neighbor rule allows one to locally identify the links between agents (see Fig. 4.B). The
topological character of the neighborhood of interaction has a tremendous impact on
the properties of interagent connectivity, in particular with induced asymmetry in the
relationship whereby if agent j is in the neighborhood of agent i, then i is not
necessarily in the neighborhood of j—the interaction is directed as well as the flow of
information (see directed edges in Fig. 4.B). Note that with a metric neighborhood,
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Figure 4| (A) (Left) Schematics of metric (top) vs. topological (bottom) neighborhood of interactions. R is the radius of the metric neighborhood
and ris the radius of the topological one based on the rule of k-nearest neighbors with k = 7. Ris constant as it defines a metric zone around the agent while
r changes in accordance with the distance between the agent and its k-th (here 7-th) nearest neighbor. (B) (Right) Snapshot of a swarm of N = 100 of
agents whose directions are represented by black arrowheads. The N agents interact topologically with their k = 7 nearest neighbors and the associated
signaling network is shown. Nodes and edges are colored according to the topological distance (increasing distance from blue to red).

the interagent connectivity is fundamentally symmetric hence leading to an undir-
ected flow of information. The SSN, obtained by a straightforward bottom-up
assembly process, is a switching k-nearest neighbor digraph, for which the specific
value of k has a direct impact on its strongly connected character®>. More precisely,
Komareji & Bouffanais® have shown that the SSN is a homogeneous clustered small-
world network facilitating emergent outcomes if connectedness is maintained.

Using a network-theoretic approach, the dynamical equations (10) for the swarm
dynamics can be recast in the following global compact form

. 1

0(1)= £ (=L(1)e(r), (11)
where ©(£) = [0 (), - - ,0n(t)]", and L(t) is the outdegree-based graph Laplacian of
the SSN, which is a k-nearest neighbor digraph.

Noise can generally be assumed to be random fluctuations with a normal distri-
bution®. In the sequel, whenever the effects of noise are accounted for, a background
noise having a normal distribution—fully characterized by its noise level n—will be
considered. Specifically, a random number A6 chosen with a uniform probability
from the interval [—#/2, #/2] will be added to the agent’s direction of travel 6; at each
time step using a discrete-time approach.
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