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Abstract
Multimodality classification of Alzheimer’s disease (AD) and its prodromal stage, Mild Cognitive
Impairment (MCI), is of interest to the medical community. We improve on prior classification
frameworks by incorporating multiple features from MRI and PET data obtained with multiple
radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a
new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the
hippocampus region. Classification performance is evaluated on data from 17 healthy controls
(CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy
(Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3%
to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal
accuracy is achieved when Zernike and PET features are combined (accuracy, specificity,
sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD
(93.3%, 93.6%, 93.3%).
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1. INTRODUCTION
Neuroimaging tools such as Magnetic Resonance Imaging (MRI) and Positron Emission
Tomography (PET) provide valuable diagnostic information. Recently there has been a lot
of interest in PET radioligands fluorodeoxyglucose (FDG-PET) and Pittsburg compound-B
(PIB-PET). Moreover, there are reports that MRI and PET biomarkers may provide
complementary information that can be used to improve diagnostic accuracy [3]. The
question remains as to what are optimal feature combinations of each modality.

Recently, a “kernel combination” method was developed for optimally combining MRI and
FDG-PET measures. MRI gray matter volume and FDG-PET average intensity from 93
regions were used as features in a Support Vector Machine (SVM) classifier [4]. This
approach yielded good performance for CTR/AD and modest CTR/MCI discrimination.
Most importantly, they demonstrated that utilizing multiple biomarkers improves accuracy
by as much as 10–20%. While the results are admirable the features derived from MRI and
PET can be improved.
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First, hippocampal volume alone, when controlled for intracranial volume (i.e. head size) is
a significant predictor of MCI and AD, and it is complementary to other clinical markers [5].
Second, PET average intensity is influenced by overall brain uptake of the radioligand,
which can be accounted for by normalizing to average intensity in the cerebellum. Selecting
AD specific regions further improves accuracy [6]. Third, combining MRI with multiple
PET radioligands has yet to be evaluated. Finally, utilizing more advanced features from the
MRI (other than volume) has been suggested. Hippocampal shape and morphometric
changes in the hippocampal sub-regions appear to be related to progression from MCI to AD
[7]. Several studies demonstrated that hippocampus shape analysis from an MRI image
could differentiate between MCI subjects that do not progress to AD [8, 9]. However, there
is no agreement about the optimal way to analyze hippocampus shape and new approaches
could be valuable.

In this paper we evaluate the combined utility of multiple features and improve on the
features reported in other MCI/AD classification literature. Specifically, we explore the
combination of three modalities MRI, FDG-PET and PIB-PET. Most notably, we introduce
the first implementation of 3D Zernike moments to neuroimaging regional shape analysis
and use it to derive invariant shape descriptors of the hippocampus. After demonstrating the
utility of Zernike over the commonly used hippocampus volume measurement, we explore
the classification performance with different combinations of MRI, PET, 3D Zernike
features. To our knowledge this is the first report combining shape features with PET data
towards multimodality classification in neuroimaging.

2. ZERNIKE MOMENTS
This section briefly describes the theory behind 3D Zernike moments. Its application in the
context of shape analysis is developed in [10].

2.1 Moments
Moments are projections of the object function f ∈ L2 onto a set of functions φ = {φk}, k ∈
ℕ in the domain D ∈ ℝ3. This projection is computed as a dot product in L2, where x = (x, y,

z)T and  represents the complex conjugate, it yields [10]:

The desirable characteristics of shape descriptors are invariance, orthonormality and
completeness. The 3D Zernike functions, in spherical coordinates, are defined as:

where  are the spherical harmonics and Rnl(r) a polynomial in the radial direction,
both specified in [10]. They represent different harmonics on the unit sphere at different
radii taking the form of polynomials in Cartesian coordinates. Therefore, for a function f(x)
defined on the unit sphere, Zernike moments are derived as:
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where n ∈ [0, N], l ∈ [0, n] such that n − l is even and m ∈ [−l, l]. It is important to note the

symmetry relation , thus we only need to compute the Zernike moments
for m ≥ 0.

2.2 3D Zernike Descriptors
Zernike moments in three dimensions are not invariant under rotations. In order to achieve
this property and use them as invariant descriptors we can construct the following vector:

 of (2l + 1) dimensionality. Therefore, the rotationally
invariant descriptors for three dimensions are [10]:

2.3 Efficient Algorithm for 3D Zernike
We utilize the efficient algorithm proposed in [11] for unstructured surface meshes of
triangles. As we have a triangle mesh, it allows us to decompose the integral, involving
geometric moments, in different tetrahedra. The latter permits the algorithm to run through
each facet sequentially and independently, allowing parallelization. Subsequently, Zernike
moments are derived from them.

3. MULTIMODAL CLASSIFIER
The SVM approach uses a vector of features and class labels to train a classifier to predict
the class given a novel vector of features. Let xi be a vector of features (e.g regional volume)
for the ith subject, and its class label yi ∈ {−1..1} (e.g. −1 implying CTR and 1 implying
MCI or AD). SVM solves the following problem:

subject to yi(wT φ(xi) + b) ≥ 1 − εi, εi ≥ 0, i = 1, …, n. Where wT and φ denote the normal
vector of the hyperplane, the kernel based mapping function. The equations can be
represented in the dual form as:

subject to Σij αiyi = 0, 0 ≤ αi ≤ C, i = 1, …, n, where C is the maximum penalty for any point
in feature space being on the wrong side of the hyperplane that separates the two classes. In

our analysis we used a linear kernel, so  is the kernel function for feature
vectors from the ith and jth samples. Once the dual form is solved the class of a new sample
can be derived from its feature vector, xs, by:

To combine multiple features we concatenate them into xi such that xi = [fi1, fi2,.., fim], with
m number of features f from all modalities. Finally, the feature vectors are centered and
normalized to their standard deviation.
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4. CLASSIFICATION OF SUBJECTS
We assess the performance of 3D Zernike descriptors, MRI volume, FDG-PET, and PIB-
PET modalities both individually and in combination; evaluating the performance on CTR/
MCI, CTR/AD and MCI/AD patient groups.

4.1. Subjects and data
Detailed description of the patients, MRI and PET acquisition and processing has been
previously described [6]. Briefly, patients were recruited in the Memory Disorders Center at
New York State Psychiatric Institute/Columbia University, based on consensus diagnosis. A
total of 17 CTR, 22 MCI and 17 AD patients completed the previous study. All patients had
structural MRI scan, FDG-PET, and PIB-PET. MRI was acquired from either a 1.5T or 3T
scanner, 1.5T image size was 256×256, 1.5×0.86×0.86 mm3, 3T was size of 256 × 256,
1×1×1mm3. Regions of interest (ROIs) were manually drawn on the MRI for prefrontal
(PFC), cingulate (CIN), parietal cortex (PAR), hippocampus (HIP), parrahippocampal gyrus
(PIP), and precuneus (PCN). PET images were acquired on an ECAT EXACT HR+
(Seimens/CTI, Knoxville Tenn.). PIB and FDG data were collected separately in 3D mode
for 90- and 60- minutes, respectively. They were reconstructed to a size 128×128×63,
2.5×2.5×5.1mm3. MRI data were de-skulled, segmented and co-registered to motion-
corrected PET data. Co-registered PET data were time averaged, 40–60min for FDG and
30–90min for PIB.

4.2. Features extraction
The following features were calculated from MRI and PET data: (1) FDG- and PIB- PET
region to cerebellum average intensity ratio for each of the seven ROIs, (2) hippocampus
volume normalized to intracranial volume, and (3) hippocampus 3D Zernike descriptors.
Zernike moments were calculated for Order 20 as recommended in [10]. This resulted in 121
descriptors for the left and right hippocampus that were averaged, yielding a total of 121
descriptors per subject. Due to our small sample size we could not utilize all 121 descriptors
at the risk of over fitting. Instead we searched for the 2 descriptors with the highest
discriminatory power and used those. First, a single descriptor with the highest area under
the curve was determined from logistic regression within each CTR/AD, CTR/MCI and
CTR/AD patient groups. This descriptor was paired with the remaining 120; AUC was
determined for each case. The pair (2 descriptors) with the highest AUC was selected for
analysis. Forcing HIP Zernike to 2 features also made it more comparable to HIP Volume
(left and right), which are 2 features. A similar feature selection procedure was applied to
the ROI data. Single regions or pairs with the highest AUC from a logistic regression were
used in the analysis. Our small sample size rendered the SVM unstable with more than 5
features, so the number of features in each modality was limited to 1 or 2, maximum of 5
when modalities were combined.

4.3. Classification and bootstrapping
With an SVM classifier, one needs to select a value for the tuning parameter, C. Typically
this is done by splitting the data into training and testing samples, where optimal value for C
estimated using training data. Our small sample sizes (CTR and AD groups had < 20
subjects) prohibited reliable estimation of C. Instead, we performed a grid search over C
ranging 0.1–100, with a step of 0.1. For each value of C, the model was bootstrapped 100
times to obtain robust estimates of accuracy, specificity, sensitivity and their 95%
confidence intervals (CI). We report on the model(s) with the “best” bootstrapped results on
features individually and in combination.

Mikhno et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 February 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. RESULTS
Feature selection with logistic regression yielded pairs {} of Zernike descriptors, Ψnl (n,l),
FDG-PET and BTA-PET regions respectively: {(0,0), (19,9)}, PAR and PFC for CTR/AD;
{(6,0), (16,0)}, CIN and {CIN, PAR} for CTR/MCI; {(10,0), (11,3)}, PAR and PCN for
MCI/AD.

In order to assess the utility of 3D Zernike descriptors, we compared its performance against
HIP volume in three patient groups (Table 1). Bootstrapped mean performance was almost
always higher for Zernike than volume (Zernike vs. volume): CTR/AD accuracy (90.7% to
71.6%), specificity (93.8% vs. 72.8%), sensitivity (88.2 to 74.0%); CTR/MCI accuracy
(76.2% vs. 60.0%), specificity (75.7% vs. 68.3%), sensitivity (76.1% vs. 50.0%); MCI/AD
accuracy (84.3% vs. 65.5%), specificity (87.3% vs. 87.2%), sensitivity (80.9% vs. 39.4%).
The combined performance of volume and Zernike tended to be the same or worse than
Zernike alone, so volume was not included in subsequent analysis.

Zernike generally outperformed PET in all cases except CTR/AD where PIB-PET had the
highest accuracy, specificity and sensitivity (Table 2). CTR/MCI and MCI/AD performance
was mediocre, ranging between 50–85% for all modalities. However, the combination of
Zernike and PET features yielded the highest performance in all patient groups, CTR/AD,
CTR/MCI and MCI/AD accuracy of 98.8%, 84.3% and 93.3%, respectively. This suggests
that Zernike is comparable and complementary to PET.

6. DISCUSSION AND FUTURE WORK
We introduced a novel application of invariant 3D Zernike descriptors (e.g. 3D moment
invariants) as anatomical region shape descriptors in a neuroimaging application. Zernike
was applied to the hippocampus of MRI data where it showed significantly improved
performance over using hippocampal volume. Zernike was also comparable complementary
to PET biomarkers. The most notable finding was that classification performance was
greatest when features from multiple modalities were combined.

This proof of concept study was meant to demonstrate the potential benefit of using Zernike.
Further work is necessary to address the limitations herein. Zernike was calculated for
Order=20 yielding 121 shape descriptors. Due to our small sample size limitation we
selected 2 descriptors with the highest performance for bootstrap analysis. The issue of
multiple was comparisons were not addressed here. Dimension reduction may be
appropriate via principle components analysis, or feature selection done in independent
cohorts of patients.

Hippocampus ROIs were not drawn to volumetric standards reported in other studies [12].
So, volume results could yet be improved. It is likely that Zernike would also benefit from
having a more detailed labeling so results of this study can still be used as a benchmark for
comparing the two features. Additional studies, using a larger cohort of patients with
manually labeled volumetric hippocampus should be done. It is interesting that despite these
significant limitations, optimal performance of Zernike was quite remarkable, especially for
CTR/AD and MCI/AD patient groups. Automatically segmented hippocampus tends to be
much less accurate than manual, hence Zernike maybe able to extract relevant information
from these rough delineations and integrated into a fully automated diagnostic platform. We
are pursuing a more extensive validation of 3D Zernike descriptors using a significantly
larger cohort of patients with volumetric hippocampal labeling.
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Table 1

Individual and combined classification performance using hippocampus volume and shape (3D invariant
Zernike descriptors) features in different patient groups. Data are bootstrapped average accuracy (ACC),
specificity (SPEC), sensitivity (SENS) and 95% confidence interval (2.5%, 97.5%).

HIP Volume Zernike Combined

CTR vs. AD

ACC 71.6
(60.6, 75.8)

90.7
(84.7, 97.0)

90.9
(78.8, 97.0)

SPEC 72.8
(35.4, 94.1)

93.8
(81.3, 93.8)

91.0
(70.6, 100)

SENS 74.0
(43.8, 93.8)

88.2
(76.5, 100)

91.1
(75.0, 93.8)

CTR vs. MCI

ACC 60.0
(44.3, 75.1)

76.2
(59.7, 88.0)

74.2
(58.2, 86.2)

SPEC 68.3
(30.1, 81.7)

75.7
(45.9, 92.6)

78.1
(40.3, 94.2)

SENS 50.0
(20.4, 90.3)

76.1
(47.8, 92.0)

71.8
(61.9, 96.9)

MCI vs. AD

ACC 65.5
(52.6, 76.3)

84.3
(64.6, 95.2)

81.3
(67.9, 90.1)

SPEC 87.2
(27.3, 100)

87.3
(58.2, 98.5)

83.7
(59.2, 98.6)

SENS 39.4
(17.4, 87.5)

80.9
(51.8, 95.7)

78.0
(53.3, 98.0)
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Table 2

Individual and combined classification performance using HIP shape (3D invariant Zernike descriptors) and
PIB-PET and FDG-PET features in different patient groups. Data are bootstrapped average accuracy (ACC),
specificity (SPEC), sensitivity (SENS) and 95% confidence interval (2.5%, 97.5%).

Zernike PIB-PET FDG-PET Combined

CTR vs. AD

ACC 90.7
(84.7, 97.0)

96.7
(90.9, 97.0)

84.2
(72.7, 84.9)

98.8
(97.0, 100)

SPEC 93.8
(81.3, 93.8)

93.9
(81.3, 93.8)

80.9
(58.8, 94.1)

99.5
(94.1, 100)

SENS 88.2
(76.5, 100)

99.4
(94.1, 100)

88.9
(62.5, 87.0)

98.1
(93.4, 100)

CTR vs. MCI

ACC 76.2
(59.7, 87.9)

72.3
(58.9, 82.6)

53.8
(43.6, 66.8)

84.3
(70.8, 96.1)

SPEC 75.7
(45.9, 92.6)

64.4
(27.8, 94.7)

64.3
(31.6, 84.9)

82.9
(54.7, 98.2)

SENS 76.1
(47.8, 92.0)

80.0
(42.4, 100)

45.7
(22.8, 76.4)

85.9
(59.6, 100)

MCI vs. AD

ACC 84.3
(64.6, 95.2)

80.0
(73.7, 84.2)

81.5
(79.0, 84.2)

93.3
(84.2, 97.7)

SPEC 87.3
(58.2, 98.5)

83.7
(72.7, 90.9)

86.5
(81.8, 90.9)

93.6
(77.3, 95.5)

SENS 80.9
(51.8, 95.7)

76.3
(56.3, 93.8)

75.3
(62.5, 87.5)

93.3
(81.3, 100)
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